JPH07124764A - Laser beam machining device - Google Patents

Laser beam machining device

Info

Publication number
JPH07124764A
JPH07124764A JP5270713A JP27071393A JPH07124764A JP H07124764 A JPH07124764 A JP H07124764A JP 5270713 A JP5270713 A JP 5270713A JP 27071393 A JP27071393 A JP 27071393A JP H07124764 A JPH07124764 A JP H07124764A
Authority
JP
Japan
Prior art keywords
laser
thin film
processing
wavelength
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5270713A
Other languages
Japanese (ja)
Other versions
JP2531453B2 (en
Inventor
Toshikazu Kajikawa
敏和 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5270713A priority Critical patent/JP2531453B2/en
Publication of JPH07124764A publication Critical patent/JPH07124764A/en
Application granted granted Critical
Publication of JP2531453B2 publication Critical patent/JP2531453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To effectively utilise laser energy and to realise stable machining by restraining change of reflectance caused by change of pressure, difference of number of layers and quality of a thin film and fixing the reflectance to machining laser beam in laser beam machining for an object to be machined which consists of thin film construction. CONSTITUTION:Machining is executed by projecting the image of a variable opening 14 on the film to be machined using a variable wavelength laser beam 11. Varying the laser wavelength, a reflected beam from the surface of film to be machined is monitored by a detector 12 to obtain the optimum wavelength and the film is machined. When the wavelength of laser beam 11 is fixed, actual reflectance of the thin film to the laser beam is optimized by using a means by which incident angle to the surface of substrate is changed. Thus, stable laser beam machining for an arbitrary thin film construction is realised.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ加工装置に関
し、レーザトリマ、レーザリペアなど特に薄膜構成基板
の除去加工に使用するレーザ加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser processing apparatus, and more particularly to a laser processing apparatus such as a laser trimmer and a laser repair, which is used for removing processing of a thin film constituting substrate.

【0002】[0002]

【従来の技術】レーザトリマ、レーザリぺアなどの加工
対象である配線基板やフォトマスクは、Siやガラス基
板上に多層薄膜構造のパターンを持つ。前記多層膜を構
成する薄膜は、Al/Ta/Cr、Siなどの窒化膜/
酸化膜であり、膜厚は1μm以下である。このような薄
膜にレーザ光を照射すると、パターン自体が波長依存性
を持つ反射鏡の効果を示す。従って薄膜の材質/層数/
膜厚によっては、加工用レーザ光の波長に対して高い反
射率を持つようになり、有効な加工を行うためには高い
出力のレーザを必要とすることになる。このような事態
を避けるため、従来はパターン設計に際して、パターン
が加工レーザ光に対して不必要に高い反射率を持たない
よう考慮する方法が取られていた。
2. Description of the Related Art A wiring substrate or a photomask, which is a processing object such as a laser trimmer or a laser repairer, has a pattern of a multilayer thin film structure on a Si or glass substrate. The thin film forming the multilayer film is a nitride film such as Al / Ta / Cr or Si /
It is an oxide film and has a film thickness of 1 μm or less. When such a thin film is irradiated with laser light, the pattern itself exhibits the effect of a reflecting mirror having wavelength dependence. Therefore, thin film material / number of layers /
Depending on the film thickness, it has a high reflectance with respect to the wavelength of the processing laser light, and a high output laser is required for effective processing. In order to avoid such a situation, conventionally, in designing a pattern, a method has been taken so that the pattern does not have an unnecessarily high reflectance with respect to the processing laser light.

【0003】例えば、特開昭60−211822号明細
書に記載されているように、絶緑体基板上多結晶シリコ
ン膜のレーザアニールに際しては、前記多結晶シリコン
膜厚が加工用レーザ光に対して反射率が最低となるよう
に膜厚を制御して堆積させる。レーザトリミングの分野
では、LSIメモリ中に設けられた冗長回路を構成する
ヒューズをレーザで切断し、不良LSIを良品に救済す
るメモリリペア技術がある。基板上に多結晶シリコンを
ヒューズ材として堆積させ、その上にはガラス材が保護
層として付けられる。この保護層の厚さが加工に必要な
照射レーザエネルギーに大きく影響することは、例え
ば、文献J.Master.Res.,Vol.1,N
o.2(1986)p.368〜p.381で述べられ
ている。この場合も従来は、必要最小限のエネルギーで
安定な加工ができるように、保護層の設計を最適化する
ことが行われた。加工対象層下の薄膜構造も、レーザト
リミングなどでは影響がある。シリコン窒化物/酸化物
等で構成される膜上にTiなどの金属膜で薄膜抵抗を構
成し、これをレーザトリミング法で切断する場合、下部
多層膜も含めて加工するほうが良好なトリミングができ
る。これは例えば、文献J.Appl.Phys.,V
ol.48,No.6(1977)p2323〜p.2
419などで報告されている。
For example, as described in Japanese Patent Application Laid-Open No. 60-212822, during laser annealing of a polycrystal silicon film on an insulator substrate, the polycrystal silicon film thickness is different from that of a processing laser beam. And the film thickness is controlled so that the reflectance becomes the lowest. In the field of laser trimming, there is a memory repair technique for repairing a defective LSI to a good product by cutting a fuse forming a redundant circuit provided in an LSI memory with a laser. Polycrystalline silicon is deposited on the substrate as a fuse material, on which a glass material is applied as a protective layer. The fact that the thickness of this protective layer greatly affects the irradiation laser energy required for processing is described in, for example, J. Master. Res. , Vol. 1, N
o. 2 (1986) p. 368-p. 381. Also in this case, conventionally, the design of the protective layer has been optimized so that stable processing can be performed with the minimum required energy. The thin film structure under the layer to be processed is also affected by laser trimming or the like. When a thin film resistor is made of a metal film such as Ti on a film made of silicon nitride / oxide, and is cut by the laser trimming method, it is better to process the lower multilayer film as well for better trimming. . This is described, for example, in Reference J. Appl. Phys. , V
ol. 48, No. 6 (1977) p2323-p. Two
419 and the like.

【0004】一方、金属、半導体、高分子材などの加工
対象物の反射率や吸収係数などは、波長依存性を持つ。
一般的にレーザ波長が短いほど物質の吸収係数が上が
り、加工効率が上がる。この観点から特開昭58−86
787号明細書に記載されているように、波長の異なる
複数台のレーザを加工レーザ光源として備え、加工対象
物の吸収特性に合わせて前記レーザの切り替えや出力の
混合を行う方法がある。また、特開平1−192492
号明細書に記載されているように非線形光学素子を使
い、波長変換技術によってレーザ出力光の高調波を発生
させ、これを必要に応じて切り替えて加工に使う方法が
ある。
On the other hand, the reflectance and absorption coefficient of the object to be processed such as metal, semiconductor and polymer material have wavelength dependence.
Generally, the shorter the laser wavelength, the higher the absorption coefficient of the substance, and the higher the processing efficiency. From this viewpoint, JP-A-58-86
As described in Japanese Patent No. 787, there is a method in which a plurality of lasers having different wavelengths are provided as processing laser light sources, and the lasers are switched or the outputs are mixed according to the absorption characteristics of the processing target. In addition, JP-A-1-192492
As described in the specification, there is a method in which a nonlinear optical element is used, a harmonic wave of laser output light is generated by a wavelength conversion technique, and this is used for processing by switching it as needed.

【0005】[0005]

【発明が解決しようとする課題】この従来のレーザ加工
装置は、以下に述べる問題点がある。加工レーザ光波長
に合わせた多層膜構成を最適化する方法では、その膜厚
の不均一性が問題となる。一例として、前記文献J.A
ppl.Phys.,Vol.50,No.7(197
9)p.5012より引用した膜構成を図5に示す。図
5の膜構成で、酸化膜の厚さが±10%変化した場合の
反射率変化を図6に示す。図6でグラフX軸の中心位置
が、波長1.064μmのYAGレーザ光に対応する。
1.064μmでの反射率を見ると、酸化膜厚が0.6
3μmの場合は反射率R=1.6%であったものが、前
記膜厚が10%増えた場合R=15.1%となり、前記
膜厚が10%減った場合はR=18.0%となる。この
ように膜厚の変化に対応して膜の反射率が増大するた
め、膜の加工に有効なレーザエネルギーが減少して加工
が不安定になる。LSIやフォトマスク等の微細パター
ンの加工では、下層部および加工周辺部への影響を最小
限にするため、加工しきい値に近いレーザパワーを設定
して、不必要に高いパワーのレーザ光を照射しないよう
にしている。このため多層膜構造の反射率変動は、加工
品質に大きな影響を及ぼすことになる。
The conventional laser processing apparatus has the following problems. In the method of optimizing the multilayer film structure according to the processing laser light wavelength, the nonuniformity of the film thickness becomes a problem. As an example, the document J. A
ppl. Phys. , Vol. 50, No. 7 (197
9) p. The film structure quoted from 5012 is shown in FIG. FIG. 6 shows the reflectance change when the thickness of the oxide film changes by ± 10% in the film structure of FIG. In FIG. 6, the center position of the X axis of the graph corresponds to the YAG laser beam having a wavelength of 1.064 μm.
Looking at the reflectance at 1.064 μm, the oxide film thickness is 0.6
When the thickness was 3 μm, the reflectance R was 1.6%, but when the film thickness increased 10%, R = 15.1%, and when the film thickness decreased 10%, R = 18.0. %. Since the reflectance of the film increases in accordance with the change in the film thickness in this way, the laser energy effective for processing the film decreases and the processing becomes unstable. In the processing of fine patterns such as LSIs and photomasks, in order to minimize the influence on the lower layer part and the processing peripheral part, the laser power close to the processing threshold is set, and laser light of unnecessarily high power is set. I try not to irradiate. For this reason, variations in the reflectance of the multilayer film structure have a great influence on the processing quality.

【0006】また、複数台のレーザ加工装置を装備する
方法は、装置コストの増大/保守等の観点から問題があ
り、高調波を用いる方法では、せいぜい2倍波、3倍波
等が選択できるだけであり、必ずしも膜構造に適した波
長で加工できることにはならない。一般的には、フォト
マスクのパターンなど、レーザ加工を前提に膜厚/材質
を決めるわけではないので、加工レーザ光波長と膜構造
の不適合性はより顕著になる場合が多い。
Further, the method of equipping a plurality of laser processing apparatuses has a problem from the viewpoint of increase in apparatus cost / maintenance, etc., and in the method of using harmonics, at most 2nd harmonic, 3rd harmonic, etc. can be selected. Therefore, it cannot always be processed at a wavelength suitable for the film structure. In general, the film thickness / material is not determined on the premise of laser processing such as the pattern of a photomask, so that the incompatibility between the processing laser light wavelength and the film structure is often more remarkable.

【0007】[0007]

【課題を解決するための手段】本発明のレーザ加工装置
では、薄膜基板表面からの反射率を低減し、加工効率を
上げるために、薄膜材の実効屈折率を変化させ、安定な
反射率が得られるように制御する。このための手段とし
ては、2種の構成方式がある。1つは、装備する加工レ
ーザを波長可変とし、薄膜構成に適合した波長を選択す
る。他の1つは、加工レーザ光を固定波長とし、前記レ
ーザの薄膜基板に対する入射角度を調整する手段を有し
て、材質のレーザ光に対する実効屈折率を変化させる。
いずれの構成方式においても、薄膜基板表面からの反射
光、または透過光強度を検出する手段を備え、検出信号
により最適なレーザ発振波長または基板に対する入射角
度を制御し設定する。
In the laser processing apparatus of the present invention, in order to reduce the reflectance from the surface of the thin film substrate and increase the processing efficiency, the effective refractive index of the thin film material is changed to obtain a stable reflectance. Control to obtain. There are two types of configuration methods for this purpose. First, the processing laser to be installed is tunable in wavelength, and a wavelength suitable for the thin film structure is selected. The other one has a means for adjusting the incident angle of the laser with respect to the thin film substrate by changing the processing laser light to a fixed wavelength, and changes the effective refractive index of the material to the laser light.
In either configuration method, a means for detecting the intensity of reflected light or transmitted light from the surface of the thin film substrate is provided, and the optimum laser oscillation wavelength or incident angle to the substrate is controlled and set by the detection signal.

【0008】[0008]

【実施例】本発明について図面を参照して説明する。図
1は、本発明の実施例1の構成図である。本実施例は、
波長可変レーザを用い、前記レーザ光で照射した可変開
口像を対物レンズで薄膜基板上に投影して加工するレー
ザリペアである。波長可変レーザ11の出力ビームは、
出力光ディテクタ13でパワーをモニタし、所定の加工
レーザ強度となるよう光減衰器15で制御される。可変
開口14は、制御部17の指令に従い、加工対象薄膜2
2上の欠陥に合わせた開口形状となる。可変開口14の
開口形状は、対物レンズ18で薄膜基板22上に転写さ
れ、欠陥部をレーザ加工する。薄膜基板22は、XYス
テージ上に固定され、X軸モータ20およびY軸モータ
21で対物レンズ18の焦点面内を移動し、所定の欠陥
位置に位置決めされる。加工面からの反射光は反射光デ
ィテクタ12でモニターされ、所定の反射光強度となる
よう、前記レーザ11の出力光波長を制御する。反射光
のモニタは、実際の加工前に光減衰器15で照射レーザ
光を弱めて行う。弱めたレーザ光を加工部位に照射し、
波長を順次変化させたときの信号強度をとれば、この強
度変化が反射率変化に対応する。当然ながら、反射光デ
ィテクタ12の出力は、出力光ディテクタ13の信号強
度で規格化し、レーザパワー変動の影響を最小限に抑え
る処置をする。例えば、図5の薄膜構成でレーザ11の
出力波長を変化させれば、図6の膜厚(0)で示すグラ
フとなる。この場合反射率が最低となる波長は、ほぼY
AGレーザの波長(1.064μm)付近にある。1.
064μm付近に前記レーザ11の波長を設定し、図5
の薄膜構成をもつ薄膜基板22に照射すれば、レーザ光
は下層シリコン基板まで効率よく到達することになる。
多層膜でのレーザ光吸収が少なくても、シリコン基板の
効果的な加熱が実現でき、その発熱/蒸散プロセスで上
部の多層膜を除去加工できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings. First Embodiment FIG. 1 is a configuration diagram of a first embodiment of the present invention. In this example,
It is a laser repair that uses a variable wavelength laser and projects a variable aperture image irradiated with the laser light onto a thin film substrate with an objective lens for processing. The output beam of the tunable laser 11 is
The output light detector 13 monitors the power, and the optical attenuator 15 controls so as to obtain a predetermined processing laser intensity. The variable opening 14 is processed by the control unit 17 according to a command,
The opening shape is adapted to the defects on the upper side. The aperture shape of the variable aperture 14 is transferred onto the thin film substrate 22 by the objective lens 18, and the defective portion is laser processed. The thin film substrate 22 is fixed on the XY stage, moved in the focal plane of the objective lens 18 by the X-axis motor 20 and the Y-axis motor 21, and positioned at a predetermined defect position. The reflected light from the processed surface is monitored by the reflected light detector 12, and the output light wavelength of the laser 11 is controlled so as to have a predetermined reflected light intensity. The reflected light is monitored by weakening the irradiation laser light by the optical attenuator 15 before the actual processing. Irradiate the weakened laser light to the processed part,
If the signal intensity when the wavelength is sequentially changed is taken, this intensity change corresponds to the reflectance change. As a matter of course, the output of the reflected light detector 12 is standardized by the signal intensity of the output light detector 13 to take measures to minimize the influence of laser power fluctuation. For example, when the output wavelength of the laser 11 is changed in the thin film structure of FIG. 5, the graph shown in FIG. 6 is the film thickness (0). In this case, the wavelength at which the reflectance is minimum is approximately Y
It is in the vicinity of the wavelength of the AG laser (1.064 μm). 1.
The wavelength of the laser 11 is set to around 064 μm, and
When the thin film substrate 22 having the above thin film structure is irradiated, the laser light efficiently reaches the lower silicon substrate.
Even if laser light absorption by the multilayer film is small, effective heating of the silicon substrate can be realized, and the multilayer film on the upper part can be removed by the heat generation / transpiration process.

【0009】次に本発明の実施例2について、図2を参
照して説明する。本実施例では、実施例1の構成におい
て、ディテクタ手段を反射光ディテクタ12から透過光
ディテクタ23に変更した構成となっている。加工対象
薄膜22を透過した透過光は、XYステージベースに固
定された集光レンズ24により、透過光ディィクタ23
に集められる。ここで、本実施例において適用される加
工対象薄膜22としては、液晶パネル等で用いられるガ
ラス基板上に形成された透明導電膜などである。透過光
ディテクタ23で透過光強度をモニタしながら、レーザ
11の波長を変化させ、最適透過率となる波長でレーザ
加工を行う。
Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, the detector means is changed from the reflected light detector 12 to the transmitted light detector 23 in the structure of the first embodiment. The transmitted light that has passed through the thin film 22 to be processed is transmitted by the condensing lens 24 fixed to the XY stage base to the transmitted light detector 23.
Collected in. Here, the thin film 22 to be processed applied in this embodiment is a transparent conductive film or the like formed on a glass substrate used in a liquid crystal panel or the like. While the transmitted light intensity is monitored by the transmitted light detector 23, the wavelength of the laser 11 is changed and laser processing is performed at the wavelength that provides the optimum transmittance.

【0010】次に本発明の実施例3について、図3を参
照して説明する。本実施例では、実施例1において加工
用レーザ光の波長を変化させるかわりに、加工用レーザ
光の波長を固定し多層薄膜基板への入射角を変えること
によって多層膜を構成する薄膜の実効屈折率を変化さ
せ、結果として入射レーザ光に対する反射率を低減する
方法をとる。本実施例では薄膜基板22に対する入射角
θを変化させる方法として、レーザ光を対物レンズ18
の光軸に対して偏心させて入射する方法を取っている。
この他に、レーザ光を加工面に対して角度を持たせて入
射する方法はいろいろ考えられる。例えば、ビームは固
定し、基板自体を光軸に対して回転させる方法や、レー
ザ加工光学系の光軸全体を、基板面法線に対して回転さ
せる方法などがある。レーザ光強度を加工しきい値以下
に設定し、ビームスプリッタ16を紙面X軸方向に移動
させながら前記ディテクタ12で反射光強度をモニタす
る。ビームスプリッタ16が移動すれば、基板に対する
レーザ光の入射角度θが変化する。例として、図5の薄
膜構成で加工レーザにYAGレーザの基本波長(1.0
64μm)を使い、酸化膜SiO2の膜厚が0.693
μmである場合に、入射角度に依存して反射率が変化す
る様子を図7に示す。入射角が0度以外の場合は、レー
ザ光の偏光方向により反射率が異なる。図7からわかる
ように、垂直入射では15%程度あった反射率は、入射
角が30度になると2%程度まで減少する。従ってこの
ような薄膜構造では、30度入射で加工するほうが効率
がよいことになる。この効果は、各薄膜層内での屈折角
をφとすると、薄膜の各偏光に対する屈折率(実効屈折
率)がns=n×cosφ、np=n/cosφとな
り、そのままフレネルの反射式が適用できるためであ
る。
Next, a third embodiment of the present invention will be described with reference to FIG. In the present embodiment, instead of changing the wavelength of the processing laser light in the first embodiment, the wavelength of the processing laser light is fixed and the incident angle to the multilayer thin film substrate is changed, whereby the effective refraction of the thin film forming the multilayer film is changed. The rate is changed, and as a result, the reflectance for the incident laser light is reduced. In this embodiment, as a method of changing the incident angle θ with respect to the thin film substrate 22, laser light is applied to the objective lens 18.
The optical axis is made eccentric with respect to the optical axis and incident.
In addition to this, various methods can be considered in which the laser light is incident at an angle with respect to the processed surface. For example, there are a method of fixing the beam and rotating the substrate itself with respect to the optical axis, and a method of rotating the entire optical axis of the laser processing optical system with respect to the substrate surface normal. The laser light intensity is set below the processing threshold value, and the reflected light intensity is monitored by the detector 12 while moving the beam splitter 16 in the X-axis direction on the paper surface. When the beam splitter 16 moves, the incident angle θ of the laser light on the substrate changes. As an example, in the thin film configuration of FIG.
64 μm) and the thickness of the oxide film SiO2 is 0.693.
FIG. 7 shows how the reflectance changes depending on the incident angle in the case of μm. When the incident angle is other than 0 degree, the reflectance varies depending on the polarization direction of the laser light. As can be seen from FIG. 7, the reflectance, which was about 15% at normal incidence, decreases to about 2% at an incident angle of 30 degrees. Therefore, in such a thin film structure, it is more efficient to process at an incident angle of 30 degrees. This effect is that assuming that the refraction angle in each thin film layer is φ, the refractive index (effective refractive index) of each polarization of the thin film is ns = n × cosφ, np = n / cosφ, and the Fresnel reflection formula is applied as it is. Because you can.

【0011】また、実施例4は実施例1と実施例2との
関係のように、実施例3の構成において、反射光ディテ
クタ12を透過光ディテクタ23に変更して上記のよう
な動作を行う。
Further, in the fourth embodiment, like the relationship between the first embodiment and the second embodiment, in the configuration of the third embodiment, the reflected light detector 12 is changed to the transmitted light detector 23 to perform the above operation. .

【0012】次に本発明の実施例5について、図4を参
照して説明する。本実施例では、加工用レーザ光を固定
波長とし、複数に分割したビームをそれぞれ入射角を変
えて多層薄膜基板上の加工箇所へ同時照射する。多層薄
膜の個々の入射ビームに対する実効屈折率は、入射角に
依存して異なる。結果として複数波長のレーザビームを
薄膜基板に同時入射した場合と同じ効果が得られ、前記
基板の膜厚が基板毎あるいは基板内の位置により変動し
ても、薄膜で反射されるレーザエネルギーの総量の変動
はある程度均一化でき、より安定な薄膜加工を実現する
ことが可能となる。図4の実施例では、4枚のビームス
プリッタ16で加工用レーザ11の出力光を分割してお
り、各角度での分割ビーム強度が均等になるように設定
する。各分割ビームは対物レンズ群18で加工対象薄膜
22上の同一箇所に集光する。照射レーザエネルギー全
体は、出力光ディテクタ13でモニタされ、光減衰器1
5を制御して加工に最適なレーザパワーを設定する。分
割ビームの強度比や前記ビーム個々の入射角(θ1:最
小入射角、θ2:最大入射角)は、薄膜構造、製造上の
膜厚ばらつきおよび加工特性により、所定の値に設定す
ることも可能である。図5の薄膜構造で、酸化膜厚が
2.5%、5.0%、および10%変動した場合の反射
率の入射角度依存性を図8に示す。レーザ光はs偏光で
ある。入射角θを0度、10度、20度、30度の4種
類に均等に分割して、そのときの平均反射率Rsを計算
で求めると、酸化膜厚変化なし(do=0.6μm)の
場合Rs=5.6%、d=do+2.5%の場合Rs=
3.4%、d=do+5.0%の場合Rs=3.3%、
d=do+10%の場合Rs=9.3%となる。垂直入
射だけの場合、反射率Rは1.6%から15.1%の変
化を示すことを考えると、この発明の照射方法による平
均反射率は、かなり効果的に反射率変動をおさえている
ことがわかる。従ってそれだけ安定なパワーでレーザ加
工できることになり、膜厚変動に影響されにくい、より
安定なレーザ加工が実現できる。
Next, a fifth embodiment of the present invention will be described with reference to FIG. In this embodiment, the processing laser light has a fixed wavelength, and the beams divided into a plurality of beams are simultaneously irradiated to the processing locations on the multilayer thin film substrate by changing the incident angles. The effective refractive index of the multilayer thin film for each incident beam varies depending on the incident angle. As a result, the same effect as when the laser beams of multiple wavelengths are simultaneously incident on the thin film substrate is obtained, and the total amount of laser energy reflected by the thin film is changed even if the film thickness of the substrate varies depending on the substrate or the position within the substrate. Can be made uniform to some extent, and more stable thin film processing can be realized. In the embodiment of FIG. 4, the output light of the processing laser 11 is split by the four beam splitters 16, and the split beam intensity is set to be equal at each angle. Each split beam is focused by the objective lens group 18 at the same position on the thin film 22 to be processed. The total irradiation laser energy is monitored by the output photodetector 13, and the optical attenuator 1
5 is controlled to set the optimum laser power for processing. The intensity ratio of the split beams and the incident angle of each of the beams (θ1: minimum incident angle, θ2: maximum incident angle) can be set to predetermined values depending on the thin film structure, film thickness variation in manufacturing, and processing characteristics. Is. FIG. 8 shows the incident angle dependence of the reflectance when the oxide film thickness varies by 2.5%, 5.0%, and 10% in the thin film structure of FIG. Laser light is s-polarized. The incident angle θ is evenly divided into four types of 0 degree, 10 degrees, 20 degrees, and 30 degrees, and when the average reflectance Rs at that time is calculated, there is no change in the oxide film thickness (do = 0.6 μm). When Rs = 5.6%, d = do + 2.5% Rs =
When 3.4% and d = do + 5.0%, Rs = 3.3%,
When d = do + 10%, Rs = 9.3%. Considering that the reflectance R changes from 1.6% to 15.1% in the case of only vertical incidence, the average reflectance by the irradiation method of the present invention suppresses the reflectance fluctuation quite effectively. I understand. Therefore, the laser processing can be performed with such a stable power, and more stable laser processing that is less affected by the film thickness variation can be realized.

【0013】[0013]

【発明の効果】以上説明したように、本発明によるレー
ザ加工装置では、多層薄膜構造を有する基板の加工にお
いて、薄膜の厚み変動がある場合には、加工用レーザの
波長もしくは前記基板面への入射角を制御することによ
り、多層薄膜材内での干渉効果を一定に保持し、結果と
して基板表面での前記レーザ光反射率を一定に保つこと
ができる。このため、ある程度の膜圧変動に対しても、
安定なレーザ加工を実現できる効果がある。また異なる
材質/構成の多層薄膜基板に対しても、波長もしくは入
射角を選択することにより、レーザ加工条件の最適化を
はかることが可能となる効果を有する。
As described above, in the laser processing apparatus according to the present invention, in the processing of a substrate having a multilayer thin film structure, when there is a variation in the thickness of the thin film, the wavelength of the laser for processing or the surface of the substrate is changed. By controlling the incident angle, the interference effect in the multilayer thin film material can be kept constant, and as a result, the laser light reflectance on the substrate surface can be kept constant. Therefore, even if the membrane pressure varies to some extent,
This has the effect of realizing stable laser processing. Further, even for multi-layered thin film substrates of different materials / structures, by selecting the wavelength or the incident angle, it is possible to optimize the laser processing conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の構成図である。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】本発明の実施例2の構成図である。FIG. 2 is a configuration diagram of a second embodiment of the present invention.

【図3】本発明の実施例3の構成図である。FIG. 3 is a configuration diagram of a third embodiment of the present invention.

【図4】本発明の実施例5の構成図である。FIG. 4 is a configuration diagram of a fifth embodiment of the present invention.

【図5】本発明が加工対象とする多層薄膜構造を有する
基板の構成例を示す図である。
FIG. 5 is a diagram showing a configuration example of a substrate having a multi-layered thin film structure to be processed by the present invention.

【図6】図5の多層薄膜基板で、酸化薄膜厚み変化した
場合の反射率の波長依存性を示す計算結果を表すグラフ
である。
6 is a graph showing a calculation result showing the wavelength dependence of the reflectance when the thickness of the oxide thin film is changed in the multilayer thin film substrate of FIG.

【図7】図5の構造をもつ多層薄膜基板で、反射率の入
射角度依存性を示す計算結果を表すグラフである。
7 is a graph showing a calculation result showing the incident angle dependency of reflectance in the multilayer thin film substrate having the structure of FIG.

【図8】図5の構造をもつ多層薄膜基板で、各酸化膜厚
における反射率の入射角度依存性を示す計算結果を表す
グラフである。
FIG. 8 is a graph showing a calculation result showing the incident angle dependence of the reflectance at each oxide film thickness in the multilayer thin film substrate having the structure of FIG.

【符号の説明】[Explanation of symbols]

11 加工用レーザ 12 反射光ディテクタ 13 出力光ディテクタ 14 可変開口 15 光減衰器 16 ビームスプリッタ 17 制御部 18 対物レンズ 19 ステージ駆動部 20 X軸モータ 21 Y軸モータ 22 加工対象薄膜 23 透過光ディテクタ 24 集光レンズ 25 検出レンズ 11 Processing Laser 12 Reflected Light Detector 13 Output Light Detector 14 Variable Aperture 15 Optical Attenuator 16 Beam Splitter 17 Control Section 18 Objective Lens 19 Stage Drive Section 20 X-Axis Motor 21 Y-Axis Motor 22 Processing Target Thin Film 23 Transmitted Light Detector 24 Collection Optical lens 25 Detection lens

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/027 27/01 321 H01S 3/10 Z Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location H01L 21/027 27/01 321 H01S 3/10 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発振波長可変なレーザ発振器と、レーザ
光を加工対象物表面に集光する手段と、前記レーザ光を
前記加工対象物表面上の指定位置に位置決めする移動手
段と、加工対象物表面からの反射光または透過光の強度
を検出する手段と、この検出手段による検出信号の強度
により前記レーザ発振器の発振波長およびレーザ出力を
制御する手段とを有することを特徴とするレーザ加工装
置。
1. A laser oscillator whose oscillation wavelength is variable, means for condensing laser light on the surface of a workpiece, moving means for positioning the laser light at a specified position on the surface of the workpiece, and a workpiece. A laser processing apparatus comprising: a means for detecting the intensity of reflected light or transmitted light from the surface; and a means for controlling the oscillation wavelength and laser output of the laser oscillator according to the intensity of the detection signal by the detecting means.
【請求項2】 発振波長固定なレーザ発振器と、レーザ
光を加工対象物表面に集光する手段と、前記レーザ光を
前記加工対象物表面上の指定位置に位置決めする移動手
段と、レーザ光の前記加工対象物表面への入射角を制御
する手段と、加工対象物表面からの反射光または透過光
の強度を検出する手段と、この検出手段による検出信号
の強度により前記レーザ光の入射角を制御する手段とを
有することを特徴とするレーザ加工装置。
2. A laser oscillator having a fixed oscillation wavelength, a means for condensing the laser light on the surface of the processing object, a moving means for positioning the laser light at a designated position on the surface of the processing object, and a laser light The means for controlling the incident angle to the surface of the object to be processed, the means for detecting the intensity of the reflected light or the transmitted light from the surface of the object to be processed, and the angle of incidence of the laser beam by the intensity of the detection signal by the detection means. And a means for controlling the laser processing apparatus.
【請求項3】 発振波長固定なレーザ発振器と、レーザ
光を加工対象物表面に集光する手段と、前記レーザ光を
前記加工対象物表面上の指定位置に位置決めする移動手
段と、前記レーザ光を所定強度で複数本のビームに分割
する手段と、前記複数本のビームをそれぞれ独立した入
射角度で、前記加工対象物表面の同一箇所へ同時照射す
る手段とを有することを特徴とするレーザ加工装置。
3. A laser oscillator having a fixed oscillation wavelength, a means for condensing the laser light on the surface of the object to be processed, a moving means for positioning the laser light at a designated position on the surface of the object to be processed, and the laser light. Laser processing having means for splitting a plurality of beams into a plurality of beams at a predetermined intensity and means for simultaneously irradiating the plurality of beams at the same location on the surface of the object to be processed at independent incident angles. apparatus.
JP5270713A 1993-10-28 1993-10-28 Laser processing equipment Expired - Fee Related JP2531453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5270713A JP2531453B2 (en) 1993-10-28 1993-10-28 Laser processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5270713A JP2531453B2 (en) 1993-10-28 1993-10-28 Laser processing equipment

Publications (2)

Publication Number Publication Date
JPH07124764A true JPH07124764A (en) 1995-05-16
JP2531453B2 JP2531453B2 (en) 1996-09-04

Family

ID=17489931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5270713A Expired - Fee Related JP2531453B2 (en) 1993-10-28 1993-10-28 Laser processing equipment

Country Status (1)

Country Link
JP (1) JP2531453B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206550A (en) * 2006-02-03 2007-08-16 Toshiba Corp Defective pixel correcting device for liquid crystal panel
JP2009248126A (en) * 2008-04-04 2009-10-29 Shibaura Mechatronics Corp Laser machining device
WO2009096750A3 (en) * 2008-01-31 2009-11-05 광주과학기술원 Laser processing apparatus for monitoring processing state by using optical coherence tomography technology
US7666759B2 (en) 2002-03-27 2010-02-23 Gsi Lumonics Corporation Method and system for high-speed, precise micromachining an array of devices
JP2018027551A (en) * 2016-08-17 2018-02-22 株式会社フォーサイトテクノ Confocal beam profiler
CN107717248A (en) * 2016-08-10 2018-02-23 株式会社迪思科 The generation method of SiC wafer
CN114353938A (en) * 2022-01-10 2022-04-15 江苏亚威艾欧斯激光科技有限公司 Laser detection method, device, equipment and medium based on precision machining

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838794B2 (en) 1999-12-28 2010-11-23 Gsi Group Corporation Laser-based method and system for removing one or more target link structures
US7723642B2 (en) 1999-12-28 2010-05-25 Gsi Group Corporation Laser-based system for memory link processing with picosecond lasers
US6639177B2 (en) 2001-03-29 2003-10-28 Gsi Lumonics Corporation Method and system for processing one or more microstructures of a multi-material device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619987A (en) * 1984-06-27 1986-01-17 Sanyo Electric Co Ltd Laser beam machining
JPS62126630A (en) * 1985-11-27 1987-06-08 Nec Corp Laser processing device
JPH0433785A (en) * 1990-05-30 1992-02-05 Toshiba Corp Laser beam machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619987A (en) * 1984-06-27 1986-01-17 Sanyo Electric Co Ltd Laser beam machining
JPS62126630A (en) * 1985-11-27 1987-06-08 Nec Corp Laser processing device
JPH0433785A (en) * 1990-05-30 1992-02-05 Toshiba Corp Laser beam machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666759B2 (en) 2002-03-27 2010-02-23 Gsi Lumonics Corporation Method and system for high-speed, precise micromachining an array of devices
JP2007206550A (en) * 2006-02-03 2007-08-16 Toshiba Corp Defective pixel correcting device for liquid crystal panel
KR100837456B1 (en) * 2006-02-03 2008-06-12 가부시끼가이샤 도시바 Apparatus for correcting a defect pixel in a liquid crystal panel
US7564543B2 (en) 2006-02-03 2009-07-21 Kabushiki Kaisha Toshiba Defective pixel correction apparatus for liquid crystal panel
WO2009096750A3 (en) * 2008-01-31 2009-11-05 광주과학기술원 Laser processing apparatus for monitoring processing state by using optical coherence tomography technology
JP2009248126A (en) * 2008-04-04 2009-10-29 Shibaura Mechatronics Corp Laser machining device
CN107717248A (en) * 2016-08-10 2018-02-23 株式会社迪思科 The generation method of SiC wafer
JP2018027551A (en) * 2016-08-17 2018-02-22 株式会社フォーサイトテクノ Confocal beam profiler
CN114353938A (en) * 2022-01-10 2022-04-15 江苏亚威艾欧斯激光科技有限公司 Laser detection method, device, equipment and medium based on precision machining

Also Published As

Publication number Publication date
JP2531453B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
US5293389A (en) Multi-pulse laser beam generation method and device and laser beam machining method and apparatus using multi-pulse laser beam
JP5033296B2 (en) UV laser system and method for single pulse for IC fuse cutting
US7759606B2 (en) Method and apparatus for repair of reflective photomasks
US6635850B2 (en) Laser machining method for precision machining
US7858901B2 (en) Focusing an optical beam to two foci
US7977602B2 (en) Laser ablation using multiple wavelengths
US20100187207A1 (en) Laser processing apparatus and method using beam split
US6987786B2 (en) Controlling laser polarization
JP2531453B2 (en) Laser processing equipment
JP2004526335A (en) Two-stage laser cutting of wafer
US6187484B1 (en) Irradiation mask
JP2799080B2 (en) Laser processing method and apparatus, transmission type liquid crystal element, wiring pattern defect correcting method and apparatus
WO2007055452A1 (en) Laser processing apparatus using laser beam splitting
US9707714B2 (en) Apparatus and method for manufacturing fine pattern using interferogram of optical axis direction
JP2002178323A (en) Ceramic green sheet processing apparatus
JPH11245060A (en) Laser processing device
KR100862522B1 (en) Laser beam machining system and method for cutting of substrate using the same
JP2002006510A (en) Defect correcting apparatus
JPH1190659A (en) Laser repairing device
US7205076B2 (en) Mask for laser irradiation and apparatus for laser crystallization using the same
JPH10296468A (en) Laser beam machining device
JP2002263876A (en) Equipment and method for laser machining
JP4292906B2 (en) Laser patterning method
JPH0857678A (en) Laser beam processing machine
JPS5940548A (en) Semiconductor ic circuit and laser processing thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960507

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees