JPS63133565A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPS63133565A
JPS63133565A JP61280214A JP28021486A JPS63133565A JP S63133565 A JPS63133565 A JP S63133565A JP 61280214 A JP61280214 A JP 61280214A JP 28021486 A JP28021486 A JP 28021486A JP S63133565 A JPS63133565 A JP S63133565A
Authority
JP
Japan
Prior art keywords
conductive layer
insulating film
capacitance
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61280214A
Other languages
Japanese (ja)
Inventor
Kenji Yoneda
健司 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP61280214A priority Critical patent/JPS63133565A/en
Publication of JPS63133565A publication Critical patent/JPS63133565A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/318DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor the storage electrode having multiple segments

Abstract

PURPOSE:To increase the capacitance of a cell sharply by a method wherein the capacitance between a first conductive layer and a second conductive layer is connected in parallel with the capacitance between the second conductive layer and a third conductive layer. CONSTITUTION:A polycrystalline silicon film is grown on a diffused layer 3, which, on a semiconductor layer 1, forms a source region, on an interlayer insulating film and on an element isolation region; it is transformed into a first conductive layer 7 after an impurity has been diffused. After the assembly has been oxidized, an insulating film 8a is formed. Then, after the polycrystalline silicon film has been grown, it is transformed into a second conductive layer 9; after diffusion of the impurity and after oxidation, an insulating film 8b is formed. Then, the insulating film at the edge part of the first conductive layer 7 is removed selectively by a photolithographic technique; in addition, the polycrystalline silicon film which is connected electrically to the first conductive layer 7 is grown on the insulating film 8b; this film is transformed into a third electric-conductive layer 12 after the impurity has been diffused. As a result, the capacitance of a cell becomes about twice the capacitance between the first conductive layer 7 and the second conductive layer 9.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体記憶装置、とりわけ、ダイナミックラ
ンダムアクセスメモリ(DRAM)のメモリセルに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor memory devices, particularly to memory cells of dynamic random access memories (DRAMs).

従来の技術 近年、DRAMの高集積化、大容量化に伴い、チップサ
イズの約半分を占めるメモリセルの高密度化が必須のも
のとなっている。したがって、こ−れらのメモリセルに
は微細化が要求されると共に、メモリとしての信頼性を
確保するため、充分なセル容量(50f F以上)の確
保も要求されている。これらの要求を満たすため、セル
容量素子の構造も、従来の平板型容量に代わるものとし
て、三次元構造をもつ溝堀り型容量、積層型容量等が提
案されている。
2. Description of the Related Art In recent years, as DRAMs have become more highly integrated and have larger capacities, it has become essential to increase the density of memory cells, which account for about half of the chip size. Therefore, these memory cells are required to be miniaturized and also required to have sufficient cell capacity (50 fF or more) to ensure reliability as a memory. In order to meet these demands, the structure of the cell capacitor element has been proposed as an alternative to the conventional flat plate capacitor, such as a trench type capacitor and a stacked capacitor having a three-dimensional structure.

第2図は三次元積層構造を有するメモリセルの断面図で
ある。メモリセルのアクセストランジスタのソース領域
である半導体基板1上の素子分離絶縁膜2で分離された
表面部分中の拡散層領域3上に、第一の導電層7を形成
し、この導電層の表面に絶縁薄膜8を形成後、この絶縁
薄膜上部にセルプレートとなる第二の導電層9を形成し
容量素子を構成する。この構造の容量素子では分離絶縁
膜2およびアクセストランジスタのゲート電極5上にも
容量が確保され、また、容量素子を構成する電極となる
導電層に起伏があるため、大きな容量が確保できる。
FIG. 2 is a cross-sectional view of a memory cell having a three-dimensional stacked structure. A first conductive layer 7 is formed on the diffusion layer region 3 in the surface portion separated by the element isolation insulating film 2 on the semiconductor substrate 1, which is the source region of the access transistor of the memory cell. After forming an insulating thin film 8, a second conductive layer 9 serving as a cell plate is formed on top of this insulating thin film to constitute a capacitive element. In the capacitive element of this structure, a large capacitance is ensured also on the isolation insulating film 2 and the gate electrode 5 of the access transistor, and since the conductive layer serving as the electrode constituting the capacitive element has undulations, a large capacitance can be ensured.

なお、この図中、アクセストランジスタのドレイン領域
拡散層4.ワードライン導電層62層間絶縁膜lOおよ
びビットライン導電111は、それぞれ、メモリセル形
成の過程で作り込まれる。
Note that in this figure, the drain region diffusion layer 4 of the access transistor. The word line conductive layer 62, interlayer insulating film 10, and bit line conductive layer 111 are each formed in the process of forming a memory cell.

発明が解決しようとする問題点 三次元積層構造をもつメモリセル容量素子は、アクセス
トランジスタのソース領域拡散層と基板とのPN接合部
の領域が小さく、α線等によるソフトエラーに強(、ま
た、素子分離領域およびアクセストランジスタ上に容量
素子を構成できるため、小面積でも比較的大きなメモリ
セル容量を確保しやすい。しかし、電極となる導電層が
二層の積層であり、その構造上、メモリセル容量の増大
には限界があり、メモリセルの一層の微細化の要求に対
しては、セル容量の不足が生ずるのは必至である。
Problems to be Solved by the Invention Memory cell capacitors with a three-dimensional stacked structure have a small area at the PN junction between the source region diffusion layer of the access transistor and the substrate, and are resistant to soft errors caused by alpha rays (and , it is possible to configure a capacitive element on the element isolation region and the access transistor, making it easy to secure a relatively large memory cell capacity even in a small area.However, the conductive layer that serves as the electrode is a stack of two layers, and its structure There is a limit to the increase in cell capacity, and the demand for further miniaturization of memory cells inevitably results in a shortage of cell capacity.

本発明は、前記セル容量の不足を解決するためのもので
三次元積層構造容量素子の特長としての低ソフトエラー
率、低リーク電流の特性を有しながら、セル容量を大幅
に増大させる構造を備えた半導体記憶装置を実現するt
)のである。
The present invention aims to solve the above-mentioned shortage of cell capacity, and has a structure that significantly increases cell capacity while having the low soft error rate and low leakage current characteristics that are the features of three-dimensional laminated structure capacitor elements. To realize a semiconductor memory device with
).

問題点を解決するための手段 本発明の半導体記憶装置は、半導体メモリセル部の所定
半導体基板拡散層上に形成された第一の導電層、前記第
一の導電層上に絶縁膜を介して形成された第二の導電層
、前記第二の導電層上に絶縁膜を介し、かつ、前記第一
の導電層に電気的に接続された第三の導電層を形成して
、前記第一の導電層と第二の導電層との間の容量および
前記第二の導電層と第三の導電層との間の容量が並列結
合された構造のものである。
Means for Solving the Problems The semiconductor memory device of the present invention includes a first conductive layer formed on a predetermined semiconductor substrate diffusion layer of a semiconductor memory cell portion, and a first conductive layer formed on the first conductive layer with an insulating film interposed therebetween. forming a third conductive layer electrically connected to the first conductive layer through an insulating film on the formed second conductive layer; The capacitance between the conductive layer and the second conductive layer and the capacitance between the second conductive layer and the third conductive layer are coupled in parallel.

作用 この構造のメモリセルによると、セル容量は第一の導電
層と第二の導電層間の容量と第三の導電層と第二の導電
層間の容量の並列接続容量となるため、通常の平板形お
よび三次元積層構造容量に比較して増大する。また、ア
クセストランジスタのソース領域拡散層の面積を設計上
あるいはプロセス技術上許容できる限り小さくすること
により、ソース領域拡散層と半導体基板との間のPN接
合領域を小さくすることができ、メモリセルの漏れ電流
を極めて小さくすることができる。さらに、前記PN接
合領域が小さいため、それに伴なう空乏層領域も非常に
小さくなり、α線ソフトエラーを低減することができる
Function According to a memory cell with this structure, the cell capacitance is the parallel connection capacitance of the capacitance between the first conductive layer and the second conductive layer and the capacitance between the third conductive layer and the second conductive layer. The shape and three-dimensional laminated structure capacity increases in comparison. In addition, by reducing the area of the source region diffusion layer of the access transistor as small as possible in terms of design or process technology, the PN junction region between the source region diffusion layer and the semiconductor substrate can be reduced, and the memory cell Leakage current can be made extremely small. Furthermore, since the PN junction region is small, the associated depletion layer region also becomes very small, making it possible to reduce α-ray soft errors.

実施例 以下、導電層として多結晶シリコン膜を用いた場合の本
発明の実施例を、第1図に示す断面図に従い、詳述する
EXAMPLE Hereinafter, an example of the present invention in which a polycrystalline silicon film is used as a conductive layer will be described in detail with reference to the cross-sectional view shown in FIG.

第1図においてアクセストランジスタのソース領域を形
成する半導体基板1上の拡散層3およびアクセストラン
ジスタ上の層間絶縁膜上、素子分離領域上に多結晶シリ
コン膜を200nm成長させ、不純物拡散を行い、第一
の導電層7とする。
In FIG. 1, a polycrystalline silicon film is grown to a thickness of 200 nm on the diffusion layer 3 on the semiconductor substrate 1 forming the source region of the access transistor, the interlayer insulating film on the access transistor, and the element isolation region, and impurity diffusion is performed. One conductive layer 7 is used.

次に前記多結晶シリコン膜表面を1050℃酸化性雰囲
気で酸化し、厚さLonIの絶縁膜8aを形成する。
Next, the surface of the polycrystalline silicon film is oxidized at 1050° C. in an oxidizing atmosphere to form an insulating film 8a having a thickness of LonI.

ついで、前記絶縁膜8上に多結晶シリコン膜を200n
m成長させ第二の導電層9とする。さらに、第二の導電
層に不純物拡散を行い、1050℃酸化雰囲気中で酸化
し、厚さ10nmの絶縁膜8bを形成する。次に、フォ
トリソグラフィー技術により第一の導電層7の端部の絶
縁膜を選択的に除去し、さらに絶縁膜8b上に、第一の
導電層7と電気的に接続された多結晶シリコン膜を20
0nm成長させ不純物拡散を行い第三の導電層12とす
る。これによりセル容量は第一の導電層7と第二の導電
I?R9との間の容量の約2倍となり、小面積でもセル
容量の確保が極めて容易である。なお、第1図中の他の
部分の説明を行なうと、3はアクセストランジスタのド
レイン領域を形成する拡散層、10は導電層間の電気的
分離のための層間絶縁膜、6はワードラインを形成する
導電層、11はビットラインを形成する導電層である。
Next, a 200nm polycrystalline silicon film is deposited on the insulating film 8.
m to form the second conductive layer 9. Further, impurities are diffused into the second conductive layer and oxidized in an oxidizing atmosphere at 1050° C. to form an insulating film 8b having a thickness of 10 nm. Next, the insulating film at the end of the first conductive layer 7 is selectively removed by photolithography, and a polycrystalline silicon film electrically connected to the first conductive layer 7 is placed on the insulating film 8b. 20
The third conductive layer 12 is grown to a thickness of 0 nm and subjected to impurity diffusion. As a result, the cell capacitance is increased between the first conductive layer 7 and the second conductive layer I? This is approximately twice the capacitance between R9 and cell capacitance, making it extremely easy to secure cell capacity even in a small area. To explain other parts in FIG. 1, 3 is a diffusion layer forming the drain region of the access transistor, 10 is an interlayer insulating film for electrical isolation between conductive layers, and 6 is a word line. 11 is a conductive layer forming a bit line.

以上の実施例は、第一の導電層と第三の導電層を電気的
に接続し、あたかも第一の導電層を折り返し構造とし第
二の導電層との間の容量を増加させているが、さらに第
四の導電層を第三の導電層上に絶縁膜を介して形成し第
二の導電層と電気的に接続することにより、第二の導電
層も折り返し構造を持たせると、さらにセル容量を増加
させることができる。すなわち、電気的に接続された奇
数番の導電層と電気的に接続された偶数番の導電層とを
、絶縁膜を介して、多層に積層することにより、大きな
セル容量を得ることができる。
In the above embodiment, the first conductive layer and the third conductive layer are electrically connected, and the capacitance between the first conductive layer and the second conductive layer is increased as if the first conductive layer had a folded structure. Furthermore, by forming a fourth conductive layer on the third conductive layer via an insulating film and electrically connecting it to the second conductive layer, the second conductive layer also has a folded structure. Cell capacity can be increased. That is, a large cell capacity can be obtained by stacking electrically connected odd-numbered conductive layers and electrically connected even-numbered conductive layers in multiple layers with an insulating film interposed therebetween.

以下は、導電層にチタンシリサイド(TiSi2)。Below, titanium silicide (TiSi2) is used as the conductive layer.

絶縁薄膜に高温中で形成したCVDSiO2膜を用いた
場合の本発明の一実施例を第1図の断面図に対応させて
詳述する。
An embodiment of the present invention in which a CVDSiO2 film formed at high temperature is used as the insulating thin film will be described in detail with reference to the cross-sectional view of FIG.

第一の導電層7として、スパッタ法によりTiSi2を
膜厚2000A堆積させ、Ar雰囲気中において900
℃、30分間の熱処理を行う。次にCVD法により85
0℃で5i02膜を厚さ10nn+成長させ、絶縁薄膜
8aを形成した後、第二の導電層9としてスパッタ法で
TiSi2を膜厚200OA堆積させ、Ar雰囲気中で
900℃、30分間の熱処理を行う。続いて、絶縁薄膜
8bとしてCVD法により850℃で酸化膜を厚さIo
ns成長させた後、フォトリソグラフィー技術により第
二の導電層端部の酸化膜を除去し、第二の導電層に電気
的に接続する第三の導電層12として、TiSi2膜2
00OAをスパッタ法により堆積し、Ar雰囲気中で9
00℃、30分の熱処理を行なう。これにより、セル容
量を増大させることが可能となる。
As the first conductive layer 7, TiSi2 was deposited to a thickness of 2000 Å by sputtering, and 900 Å thick was deposited in an Ar atmosphere.
Heat treatment is performed at ℃ for 30 minutes. Next, by CVD method, 85
After growing a 5i02 film to a thickness of 10 nm+ at 0°C to form an insulating thin film 8a, a TiSi2 film of 200 OA was deposited as a second conductive layer 9 by sputtering, and heat-treated at 900°C for 30 minutes in an Ar atmosphere. conduct. Subsequently, as the insulating thin film 8b, an oxide film is formed at 850° C. by CVD to a thickness of Io.
After the ns growth, the oxide film at the end of the second conductive layer is removed using a photolithography technique, and a TiSi2 film 2 is formed as a third conductive layer 12 electrically connected to the second conductive layer.
00OA was deposited by sputtering, and 9% was deposited in an Ar atmosphere.
Heat treatment is performed at 00°C for 30 minutes. This makes it possible to increase cell capacity.

発明の効果 以上のように、本発明による半導体記憶装置はメモリセ
ル容量を極めて太き(することが可能であり、また、α
線によるソフトエラー、漏れ電流の低減化にも有効であ
り、半導体記憶装置の一層の高集積化、大容量化を可能
としている。
Effects of the Invention As described above, the semiconductor memory device according to the present invention allows the memory cell capacity to be extremely large, and α
It is also effective in reducing soft errors caused by wires and leakage current, making it possible to further increase the integration and capacity of semiconductor memory devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体記憶装置のメモリセル断面
図、第2図は従来例装置の断面図である。 1・・・・・・半導体基板、2・・・・・・素子分離絶
縁膜、3・・・・・・ソース領域拡散層、4・・・・・
・ドレイン領域拡散層、5・・・・・・アクセストラン
ジスタゲート電極、6・・・・・・ワードライン導電層
、7・・・・・・第一の導電層、8a、8b・・・・・
・絶縁薄膜、9・・・・・・第二の導電層、10・・・
・・・層間絶縁膜、11・・・・・・ビットライン導電
層、12・・・・・・第三の導電層。 代理人の氏名 弁理士 中尾敏男 ほか1名f−早傳体
基孜 2°−素シ帽瞭1涙 8−ソtみ省−障捻嘴(− 4−ドIA>4A寧;歎雇
FIG. 1 is a sectional view of a memory cell of a semiconductor memory device according to the present invention, and FIG. 2 is a sectional view of a conventional device. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Element isolation insulating film, 3... Source region diffusion layer, 4...
- Drain region diffusion layer, 5... Access transistor gate electrode, 6... Word line conductive layer, 7... First conductive layer, 8a, 8b...・
- Insulating thin film, 9... Second conductive layer, 10...
. . . Interlayer insulating film, 11 . . . Bit line conductive layer, 12 . . . Third conductive layer. Name of agent Patent attorney Toshio Nakao and 1 other person

Claims (1)

【特許請求の範囲】[Claims]  半導体メモリセル部の所定半導体基板拡散層上に形成
された第一の導電層、前記第一の導電層上に絶縁膜を介
して形成された第二の導電層、前記第二の導電層上に絶
縁膜を介し、かつ、前記第一の導電層に電気的に接続さ
れた第三の導電層を形成して、前記、第一の導電層と第
二の導電層との間の容量および前記第二の導電層と第三
の導電層との間の容量が並列結合されたことを特徴とす
る半導体記憶装置。
A first conductive layer formed on a predetermined semiconductor substrate diffusion layer of the semiconductor memory cell section, a second conductive layer formed on the first conductive layer with an insulating film interposed therebetween, and on the second conductive layer. A third conductive layer is formed which is electrically connected to the first conductive layer through an insulating film, and the capacitance between the first conductive layer and the second conductive layer is increased. A semiconductor memory device characterized in that capacitances between the second conductive layer and the third conductive layer are coupled in parallel.
JP61280214A 1986-11-25 1986-11-25 Semiconductor storage device Pending JPS63133565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61280214A JPS63133565A (en) 1986-11-25 1986-11-25 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280214A JPS63133565A (en) 1986-11-25 1986-11-25 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPS63133565A true JPS63133565A (en) 1988-06-06

Family

ID=17621900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280214A Pending JPS63133565A (en) 1986-11-25 1986-11-25 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPS63133565A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156566A (en) * 1988-12-08 1990-06-15 Mitsubishi Electric Corp Semiconductor storage device and its manufacture
US5005072A (en) * 1990-01-29 1991-04-02 Micron Technology, Inc. Stacked cell design for 16-megabit DRAM array having a pair of interconnected poly layers which enfold a single field plate layer and connect to the cell's storage node junction
US5068200A (en) * 1989-06-13 1991-11-26 Samsung Electronics Co., Ltd. Method of manufacturing DRAM cell
US5338700A (en) * 1993-04-14 1994-08-16 Micron Semiconductor, Inc. Method of forming a bit line over capacitor array of memory cells
US5438011A (en) * 1995-03-03 1995-08-01 Micron Technology, Inc. Method of forming a capacitor using a photoresist contact sidewall having standing wave ripples
US5498562A (en) * 1993-04-07 1996-03-12 Micron Technology, Inc. Semiconductor processing methods of forming stacked capacitors
US5684315A (en) * 1993-12-28 1997-11-04 Hitachi, Ltd. Semiconductor memory device including memory cells each having an information storage capacitor component formed over control electrode of cell selecting transistor
US6083831A (en) * 1996-03-26 2000-07-04 Micron Technology, Inc. Semiconductor processing method of forming a contact pedestal, of forming a storage node of a capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112066A (en) * 1980-12-29 1982-07-12 Fujitsu Ltd Laminated capacitive element
JPS58213461A (en) * 1982-06-07 1983-12-12 Nec Corp Semiconductor device
JPS6074470A (en) * 1983-09-29 1985-04-26 Fujitsu Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112066A (en) * 1980-12-29 1982-07-12 Fujitsu Ltd Laminated capacitive element
JPS58213461A (en) * 1982-06-07 1983-12-12 Nec Corp Semiconductor device
JPS6074470A (en) * 1983-09-29 1985-04-26 Fujitsu Ltd Semiconductor device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156566A (en) * 1988-12-08 1990-06-15 Mitsubishi Electric Corp Semiconductor storage device and its manufacture
US5068200A (en) * 1989-06-13 1991-11-26 Samsung Electronics Co., Ltd. Method of manufacturing DRAM cell
US5005072A (en) * 1990-01-29 1991-04-02 Micron Technology, Inc. Stacked cell design for 16-megabit DRAM array having a pair of interconnected poly layers which enfold a single field plate layer and connect to the cell's storage node junction
US6037218A (en) * 1993-04-07 2000-03-14 Micron Technology, Inc. Semiconductor processing methods of forming stacked capacitors
US6180450B1 (en) 1993-04-07 2001-01-30 Micron Technologies, Inc. Semiconductor processing methods of forming stacked capacitors
US5498562A (en) * 1993-04-07 1996-03-12 Micron Technology, Inc. Semiconductor processing methods of forming stacked capacitors
US5652164A (en) * 1993-04-07 1997-07-29 Micron Technology, Inc. Semiconductor processing methods of forming stacked capacitors
US5338700A (en) * 1993-04-14 1994-08-16 Micron Semiconductor, Inc. Method of forming a bit line over capacitor array of memory cells
US5684315A (en) * 1993-12-28 1997-11-04 Hitachi, Ltd. Semiconductor memory device including memory cells each having an information storage capacitor component formed over control electrode of cell selecting transistor
US5438011A (en) * 1995-03-03 1995-08-01 Micron Technology, Inc. Method of forming a capacitor using a photoresist contact sidewall having standing wave ripples
US6083831A (en) * 1996-03-26 2000-07-04 Micron Technology, Inc. Semiconductor processing method of forming a contact pedestal, of forming a storage node of a capacitor
US6300213B1 (en) 1996-03-26 2001-10-09 Micron Technology, Inc. Semiconductor processing methods of forming a storage node of a capacitor
US6312984B1 (en) 1996-03-26 2001-11-06 Micron Technology, Inc. Semiconductor processing method of forming a contact pedestal of forming a storage node of a capacitor and integrated circuitry
US6331725B1 (en) 1996-03-26 2001-12-18 Micron Technology, Inc. Integrated circuitry
US6498375B2 (en) 1996-03-26 2002-12-24 Micron Technology, Inc. Integrated circuitry

Similar Documents

Publication Publication Date Title
TW424306B (en) Semiconductor integrated circuit device and method for fabricating the same
JPH0294471A (en) Semiconductor storage device and manufacture thereof
JP3172321B2 (en) Method for manufacturing semiconductor memory device
JPH01243573A (en) Semiconductor memory device and its manufacture
JPS62286270A (en) Semiconductor memory
JPH0496272A (en) High integrated semiconductor memory device and manufacture thereof
JPS63133565A (en) Semiconductor storage device
JPH04176168A (en) Semiconductor memory device and manufacture thereof
JPS63281457A (en) Semiconductor memory
JPH0691219B2 (en) Semiconductor memory device
JPH0279462A (en) Semiconductor memory
JPS58212161A (en) Semiconductor memory device
JPH0221653A (en) Semiconductor device and manufacture thereof
JPH03185757A (en) Ultra-high integrated dram and manufacture thereof
JP2739965B2 (en) Semiconductor memory device and method of manufacturing the same
JPS62193275A (en) Three-dimensional one transistor cell device and manufactureof the same
KR940007460B1 (en) Fet, memory cell, semiconductor device and method of making fet
JPH01270344A (en) Manufacture of semiconductor device
JPS61107768A (en) Semiconductor memory device
JPS62137863A (en) Semiconductor memory device
JP2794761B2 (en) Semiconductor memory cell and manufacturing method thereof
JPH01265556A (en) Semiconductor memory and manufacture thereof
JPH06302778A (en) Semiconductor device and manufacture thereof
JP3079558B2 (en) Method of forming semiconductor memory cell
JPS62124765A (en) Semiconductor device