JPH01270344A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01270344A
JPH01270344A JP63100650A JP10065088A JPH01270344A JP H01270344 A JPH01270344 A JP H01270344A JP 63100650 A JP63100650 A JP 63100650A JP 10065088 A JP10065088 A JP 10065088A JP H01270344 A JPH01270344 A JP H01270344A
Authority
JP
Japan
Prior art keywords
film
substrate
electrode
insulating film
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63100650A
Other languages
Japanese (ja)
Inventor
Hiroshi Horie
博 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63100650A priority Critical patent/JPH01270344A/en
Publication of JPH01270344A publication Critical patent/JPH01270344A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/318DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor the storage electrode having multiple segments
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To increase remarkably a storage capacitance to contrive an increasing in the integration of a DRAM without forming a through hole for increasing the lamination of a storage electrode by a method wherein the overhang-shaped storage electrode supported on the source and drain region on one side is formed. CONSTITUTION:A gate insulating film 3 and a gate 4 are formed in order on a semiconductor substrate 1 and an impurity having a conductivity type opposited to that of the substrate is introduced in the substrate on both sides of the gate to form source and drain regions 5. Then, an interlayer insulating film 6 and a film 6A are adhered in order on the whole surface of the substrate and an aperture is formed on the films 6 and 6A to expose the source and drain region on one side. Then, the aperture is covered with a storage electrode 7 to form the electrode 7 on the film 6A and the film 6A is etched away by an etching method, in which the etching speed of the film 6A is larger than those of the substrate, the film 6 and the electrode 7, to form a dielectric film 8A on the surface of the electrode 7. The film 8A is formed continuously up to the lower sides of the overhangs of the electrode 7. Moreover, an opposed electrode 9A is formed in contact to the film 8A.

Description

【発明の詳細な説明】 〔概要〕 半導体装置、特にスタックドキャパシタ型DRAMセル
の製造方法に関し。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for manufacturing a semiconductor device, particularly a stacked capacitor type DRAM cell.

電極を積層化するためのスルーホールを形成することな
しに、スタックドキャパシタ型DRAMセルの蓄積容量
を顕著に増加させ、 DRAMの高集積化をはかること
を目的とし。
The purpose is to significantly increase the storage capacity of stacked capacitor type DRAM cells without forming through holes for stacking electrodes, and to achieve higher integration of DRAMs.

電極を積層化するためのスルーホールを形成することな
しに、蓄積容量を顕著に増加できるようにしてDRAM
の高集積化をはかることを目的とし。
DRAM by making it possible to significantly increase the storage capacity without forming through holes for stacking electrodes.
The purpose is to achieve high integration.

半導体基板(1)上に順にゲート絶縁膜(3)、ゲート
(4)を形成し、該ゲートの両側において該基板とは反
対の不純物を該基板内に導入し、てソースドレイン領域
(5)を形成し、該基板上全面に層間絶縁膜(6)と被
膜(6A)とを順次被着し、核層間絶縁膜と該皮膜を開
口して一方のソースドレイン領域を露出し、該開口を覆
って該皮膜上に蓄積電極(7)を形成し、該皮膜のエツ
チングレートが該基板、核層間絶縁膜及び該蓄積電極よ
り大きいエフチング法により該皮膜(6^)をエツチン
グ除去し。
A gate insulating film (3) and a gate (4) are sequentially formed on a semiconductor substrate (1), impurities opposite to the substrate are introduced into the substrate on both sides of the gate, and a source/drain region (5) is formed. An interlayer insulating film (6) and a film (6A) are sequentially deposited on the entire surface of the substrate, and the core interlayer insulating film and the film are opened to expose one source/drain region, and the opening is opened. A storage electrode (7) is formed on the film, and the film (6^) is etched away using an etching method in which the etching rate of the film is higher than that of the substrate, the core interlayer insulating film, and the storage electrode.

該蓄積電極の表面に誘電体膜(8A)を形成し、該誘電
体膜に接して対向電極(9A)を形成するように構成す
る。
A dielectric film (8A) is formed on the surface of the storage electrode, and a counter electrode (9A) is formed in contact with the dielectric film.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置、特にスタックドキャパシタ型DR
AMセルの製造方法に関する。
The present invention relates to semiconductor devices, particularly stacked capacitor type DR.
The present invention relates to a method of manufacturing an AM cell.

スタックドキャパシタ型DRA?セルは、高集積のDR
ArI用のセルとして広く用いられている。
Stacked capacitor type DRA? The cell is a highly integrated DR
It is widely used as a cell for ArI.

〔従来の技術〕[Conventional technology]

DRAMの高集積化に伴いセル面積が縮小されるため、
セルの蓄積容量とセル面積との比を大きくするための種
々の試みがなされている。
As the cell area becomes smaller as DRAM becomes more highly integrated,
Various attempts have been made to increase the ratio of cell storage capacity to cell area.

第2図は従来例のスタックドキャパシタ型DRAMセル
の断面図である。
FIG. 2 is a sectional view of a conventional stacked capacitor type DRAM cell.

セルは情報電荷を蓄積する1個の蓄積キャパシタと、情
報を転送する1個の転送トランジスタで構成される。
A cell is composed of one storage capacitor that stores information charge and one transfer transistor that transfers information.

超絶縁膜、3はゲート絶縁膜、4はポリSiからなるワ
ード線であって且つトランジスタのゲート。
A super insulating film, 3 a gate insulating film, and 4 a word line made of poly-Si and the gate of a transistor.

5は2個あるがそれぞれトランジスタのソースドレイン
領域、6は層間絶縁膜、7はポリSiからなるキャパシ
タの蓄積電極、8はキャパシタの誘電体膜、9はポリS
iからなるキャパシタの対向電極。
There are two numerals 5, each representing a source/drain region of a transistor, 6 an interlayer insulating film, 7 a storage electrode of a capacitor made of poly-Si, 8 a dielectric film of the capacitor, and 9 a poly-S
The opposing electrode of the capacitor consisting of i.

10は層間絶縁膜、11はA1層からなるビット線であ
る。
10 is an interlayer insulating film, and 11 is a bit line made of an A1 layer.

このセルは蓄積電極7の形状が立体的な形状に形成され
ているので、平面電極の場合に比べ30〜40%増の容
量が得られ、高集積DRA?Iの実現に有効なセル構造
である。
Since the storage electrode 7 in this cell is formed in a three-dimensional shape, a capacity increased by 30 to 40% compared to the case of a flat electrode can be obtained, making it possible to obtain a highly integrated DRA. This is an effective cell structure for realizing I.

〔発明が解決しようとする課闘〕[The challenge that the invention attempts to solve]

しかしながら、前記の従来構造においても、メモリの集
積ビット数が増えて、蓄積容量部分の絶対的な寸法が小
さくなるに従って、蓄積容量の減少は避けられなかった
However, even in the above-mentioned conventional structure, as the number of integrated bits of the memory increases and the absolute size of the storage capacitor portion becomes smaller, a decrease in the storage capacitance is unavoidable.

更に蓄積容量を増大させるために、キャパシタ電極を積
層化する構造が多く提案されているが。
In order to further increase the storage capacity, many structures have been proposed in which capacitor electrodes are stacked.

電極間を接続するためにスルーホールを形成する必要が
あったりして、当該スルーホール形成のための位置合わ
せ余裕をとるためセルを小型化できない等の欠点があっ
た。
It is necessary to form a through hole to connect between the electrodes, and there are drawbacks such as the fact that the cell cannot be miniaturized in order to provide alignment margin for forming the through hole.

本発明は、電極を積層化するためのスルーホールを形成
することなしに、スタックドキャパシタ型DRAMセル
の蓄積容量を顕著に増加させることを目的とする。
An object of the present invention is to significantly increase the storage capacity of a stacked capacitor type DRAM cell without forming through holes for stacking electrodes.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、半導体基板(1)上に順にゲート絶
縁膜(3)、ゲート(4)を形成し、該ゲートの両側に
おいて該基板とは反対の不純物を該基板内に導入してソ
ースドレイン領域(5)を形成し、該基板上全面に層間
絶縁膜(6)と被膜(6A)とを順次被着し、該層間絶
縁膜と該皮膜を開口して一方のソースドレイン領域を露
出し、該開口を覆って該皮膜上に蓄積電極(7)を形成
し、該皮膜のエツチングレートが該基板、核層間絶縁膜
及び該蓄積電極より大きいエツチング法により該皮膜(
6A)をエツチング除去し、該蓄積電極の表面に誘電体
膜(8A)を形成し、該誘電体膜に接して対向電極(9
A)を形成する工程を有する半導体装置の製造方法によ
り達成される。
To solve the above problem, a gate insulating film (3) and a gate (4) are sequentially formed on a semiconductor substrate (1), and impurities opposite to the substrate are introduced into the substrate on both sides of the gate. A drain region (5) is formed, an interlayer insulating film (6) and a film (6A) are sequentially deposited on the entire surface of the substrate, and the interlayer insulating film and the film are opened to expose one source/drain region. Then, a storage electrode (7) is formed on the film covering the opening, and the film (7) is etched by an etching method in which the etching rate of the film is higher than that of the substrate, the core interlayer insulating film, and the storage electrode.
6A) is removed by etching, a dielectric film (8A) is formed on the surface of the storage electrode, and a counter electrode (9A) is formed in contact with the dielectric film.
This is achieved by a method for manufacturing a semiconductor device including the step of forming A).

〔作用〕[Effect]

本発明は、一方のソースドレイン開城上に支持された庇
状の蓄積電極を形成することにより、蓄積電極をくるむ
ようにしてキャパシタを形成できる方法を提供して蓄積
容量を増加させるものである。
The present invention increases the storage capacitance by providing a method of forming a capacitor that wraps around the storage electrode by forming an eave-like storage electrode supported on one of the source and drain openings.

〔実施例〕〔Example〕

第1図(1)〜(5)は本発明の一実施例によるスタッ
クドキャパシタ型DRAMセルの製造方法を説明する断
面図である。
FIGS. 1(1) to 1(5) are cross-sectional views illustrating a method of manufacturing a stacked capacitor type DRAM cell according to an embodiment of the present invention.

第1図(1)において、ウェット熱酸化によりp−5i
基板1の分離領域に分M絶縁膜2を形成し1通常の方法
を用いて基板の素子形成領域上にゲート絶縁膜3.ポリ
Siからなるゲート4を形成する。
In Figure 1 (1), p-5i is
An insulating film 2 is formed on the isolation region of the substrate 1, and a gate insulating film 3 is formed on the element formation region of the substrate using a conventional method. A gate 4 made of poly-Si is formed.

次に、ゲート4をマスクにして砒素イオン(As”)又
は燐イオン(P“)を注入してn゛型のソースドレイン
領域5を形成する。
Next, using the gate 4 as a mask, arsenic ions (As") or phosphorus ions (P") are implanted to form n-type source/drain regions 5.

次に、気相成長(CVD)法により、11間絶縁膜とし
て基板上全面に二酸化珪素膜(SiOア膜)6と。
Next, a silicon dioxide film (SiO film) 6 is formed on the entire surface of the substrate as an insulating film 11 by a vapor phase growth (CVD) method.

蓄積電極の底形成用の皮膜として窒化珪素膜(sisN
4膜) 6Aを成長し、これらの膜に蓄積電極用のコン
タクト孔を開口し、一方のソースドレイン領域5の表面
を露出する。
A silicon nitride film (sisN) is used as a film for forming the bottom of the storage electrode.
4 films) 6A are grown, contact holes for storage electrodes are opened in these films, and the surface of one source/drain region 5 is exposed.

第1図(2)において、 CVD法により、前記コンタ
クト孔を覆って基板全面に厚さ2500人のドープされ
たポリSi層7′を成長する。
In FIG. 1(2), a doped poly-Si layer 7' having a thickness of 2500 nm is grown over the entire surface of the substrate by the CVD method, covering the contact hole.

第1図(3)において、5iJ4膜6A上のポリSi層
7′を所定の大きさにパターニングして蓄積電極7を形
成する。このパターンはゲート4まで覆うようにできる
だけ大きく形成する。
In FIG. 1(3), the storage electrode 7 is formed by patterning the poly-Si layer 7' on the 5iJ4 film 6A to a predetermined size. This pattern is formed as large as possible so as to cover up to the gate 4.

第1図(4)において、熱燐酸を用いて5iJ4膜6A
を除去すると、コンタクト部において支えられた庇状の
蓄積電極7が残る。
In FIG. 1 (4), 5iJ4 film 6A was prepared using hot phosphoric acid.
When removed, an eave-shaped storage electrode 7 supported by the contact portion remains.

例えば20人程度熱酸化し1次いでこの上にCVD S
i:+N4を薄く9例えば100人程程度積し、更に酸
素雰囲気中で熱酸化して総計厚さ200人の誘電体膜8
八を形成する。
For example, about 20 people are thermally oxidized and then CVD S is applied on top of this.
i: A thin layer of +N4 is deposited, for example, about 100 layers, and then thermally oxidized in an oxygen atmosphere to form a dielectric film 8 with a total thickness of 200 layers.
form eight.

このようにして、誘電体膜8Aは蓄積電極7の庇の下側
まで連続して形成される。
In this way, the dielectric film 8A is formed continuously to the underside of the eaves of the storage electrode 7.

更に、 CVD法により、基板全面に厚さ2500人の
ドープされたポリSi層を成長して対向電極9^を形成
する。
Furthermore, a 2,500-layer doped poly-Si layer is grown on the entire surface of the substrate by CVD to form a counter electrode 9^.

この後、基板全面に層間絶縁膜10を成長し、他方のソ
ースドレイン領域にコンタクト孔を開け。
Thereafter, an interlayer insulating film 10 is grown over the entire surface of the substrate, and contact holes are made in the other source/drain region.

このコンタクト孔を覆って基板全面にAl膜を被着し、
バターニングしてビット線11を形成する。
An Al film is deposited on the entire surface of the substrate to cover this contact hole,
Bit lines 11 are formed by patterning.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電極を積層化する
ためのスルーホールを形成することなしに、スタックド
キャパシタ型DRAMセルの蓄積容量を顕著に増加でき
る製造方法が得られ、 DRAMO高集積化に寄与でき
る。
As explained above, according to the present invention, a manufacturing method can be obtained which can significantly increase the storage capacity of a stacked capacitor type DRAM cell without forming through holes for stacking electrodes, and it is possible to obtain a manufacturing method that can significantly increase the storage capacity of a stacked capacitor type DRAM cell. can contribute to the development of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(11〜(5)は本発明の一実施例によるスタッ
クドキャパシタ型DRAMセルの製造方法を説明する断
面図。 第2図は従来例のスタックドキャパシタ型DRAMセル
の断面図である。 図において。 1はp−5t基板。 2は分離絶縁膜。 3はゲート絶縁膜。 4はゲート。 5はソースドレイン領域。 6は層間絶縁膜で5iOz膜。 6AはS:sNa膜。 7は蓄積電極。 7′はポリSi層。 8Aは誘電体膜。 9Aは対向電極。 10は層間絶縁膜。 11はビット線
FIG. 1 (11 to (5)) is a cross-sectional view illustrating a method of manufacturing a stacked capacitor type DRAM cell according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of a conventional stacked capacitor type DRAM cell. In the figure: 1 is a p-5t substrate. 2 is an isolation insulating film. 3 is a gate insulating film. 4 is a gate. 5 is a source/drain region. 6 is an interlayer insulating film, which is a 5iOz film. 6A is an S:sNa film. 7 is a storage electrode. 7' is a poly-Si layer. 8A is a dielectric film. 9A is a counter electrode. 10 is an interlayer insulating film. 11 is a bit line

Claims (1)

【特許請求の範囲】 半導体基板(1)上に順にゲート絶縁膜(3)、ゲート
(4)を形成し、該ゲートの両側において該基板とは反
対の不純物を該基板内に導入してソースドレイン領域(
5)を形成し、 該基板上全面に層間絶縁膜(6)と被膜(6A)とを順
次被着し、該層間絶縁膜と該被膜を開口して一方のソー
スドレイン領域を露出し、 該開口を覆って該皮膜上に蓄積電極(7)を形成し、該
皮膜のエッチングレートが該基板、該層間絶縁膜及び該
蓄積電極のそれより大きいエッチング法により該皮膜(
6A)をエッチング除去し、該蓄積電極の表面に誘電体
膜(8A)を形成し、該誘電体膜に接して対向電極(9
A)を形成する工程を有することを特徴とする半導体装
置の製造方法。
[Claims] A gate insulating film (3) and a gate (4) are sequentially formed on a semiconductor substrate (1), and impurities opposite to the substrate are introduced into the substrate on both sides of the gate to form a source. Drain region (
5), depositing an interlayer insulating film (6) and a coating (6A) sequentially over the entire surface of the substrate, opening the interlayer insulating film and the coating to expose one source/drain region, and A storage electrode (7) is formed on the film covering the opening, and the film (7) is etched by an etching method in which the etching rate of the film is higher than that of the substrate, the interlayer insulating film, and the storage electrode.
6A), a dielectric film (8A) is formed on the surface of the storage electrode, and a counter electrode (9A) is formed in contact with the dielectric film.
A method for manufacturing a semiconductor device, comprising the step of forming A).
JP63100650A 1988-04-22 1988-04-22 Manufacture of semiconductor device Pending JPH01270344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63100650A JPH01270344A (en) 1988-04-22 1988-04-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63100650A JPH01270344A (en) 1988-04-22 1988-04-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01270344A true JPH01270344A (en) 1989-10-27

Family

ID=14279699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63100650A Pending JPH01270344A (en) 1988-04-22 1988-04-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01270344A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135775A (en) * 1988-11-16 1990-05-24 Mitsubishi Electric Corp Semiconductor storage device and manufacture thereof
JPH02281655A (en) * 1989-04-21 1990-11-19 Nec Corp Manufacture of mis type semiconductor memory device
FR2662850A1 (en) * 1990-06-05 1991-12-06 Samsung Electronics Co Ltd STACK CAPACITOR FOR DRAM CELL AND PROCESS FOR PRODUCING THE SAME
US5953608A (en) * 1996-07-04 1999-09-14 Nec Corporation Method of forming a DRAM stacked capacitor using an etch blocking film of silicon oxide
US5969381A (en) * 1997-02-26 1999-10-19 Nec Corporation Semiconductor device with unbreakable testing elements for evaluating components and process of fabrication thereof
US6300186B1 (en) 1995-04-27 2001-10-09 Nec Corporation Method of measuring semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135775A (en) * 1988-11-16 1990-05-24 Mitsubishi Electric Corp Semiconductor storage device and manufacture thereof
JPH02281655A (en) * 1989-04-21 1990-11-19 Nec Corp Manufacture of mis type semiconductor memory device
FR2662850A1 (en) * 1990-06-05 1991-12-06 Samsung Electronics Co Ltd STACK CAPACITOR FOR DRAM CELL AND PROCESS FOR PRODUCING THE SAME
US6300186B1 (en) 1995-04-27 2001-10-09 Nec Corporation Method of measuring semiconductor device
US5953608A (en) * 1996-07-04 1999-09-14 Nec Corporation Method of forming a DRAM stacked capacitor using an etch blocking film of silicon oxide
US5969381A (en) * 1997-02-26 1999-10-19 Nec Corporation Semiconductor device with unbreakable testing elements for evaluating components and process of fabrication thereof
US6204076B1 (en) * 1997-02-26 2001-03-20 Nec Corporation Semiconductor device with unbreakable testing elements for evaluating components and process of fabrication thereof

Similar Documents

Publication Publication Date Title
EP0430404B1 (en) Method of manufacturing a capacitor for a DRAM cell
JPH0666437B2 (en) Semiconductor memory device and manufacturing method thereof
JPH0226065A (en) Stacked capacitor dram cell and its manufacture
JPH0210867A (en) Semiconductor memory
JPS62286270A (en) Semiconductor memory
JPH04283963A (en) Dynamic ram and manufacture thereof
JPH01270344A (en) Manufacture of semiconductor device
JPS6156445A (en) Semiconductor device
JPS63281457A (en) Semiconductor memory
JPH0294561A (en) Semiconductor storage device and manufacture thereof
JPH0276257A (en) Semiconductor memory element
JPS63133565A (en) Semiconductor storage device
JPH0321062A (en) Semiconductor storage device
JPH01270343A (en) Manufacture of semiconductor device
JPH03185757A (en) Ultra-high integrated dram and manufacture thereof
JP2627515B2 (en) Semiconductor memory device and method of manufacturing the same
JPH06196650A (en) Semiconductor device and its manufacture
JPH01265556A (en) Semiconductor memory and manufacture thereof
JPH073860B2 (en) Method of manufacturing semiconductor memory device
JPS6338252A (en) Formation of dynamic random access memory cell
JPS63260166A (en) Semiconductor memory device and manufacture thereof
JPH03183162A (en) Manufacture of semiconductor memory
JPS6185857A (en) Manufacture of semiconductor memory
JPH04216666A (en) Semiconductor device and its manufacture
JPH022672A (en) Semiconductor memory cell and manufacture thereof