JPS63131576A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63131576A
JPS63131576A JP27774786A JP27774786A JPS63131576A JP S63131576 A JPS63131576 A JP S63131576A JP 27774786 A JP27774786 A JP 27774786A JP 27774786 A JP27774786 A JP 27774786A JP S63131576 A JPS63131576 A JP S63131576A
Authority
JP
Japan
Prior art keywords
ions
layer
polycrystalline
gate electrode
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27774786A
Other languages
Japanese (ja)
Inventor
Masahiko Ito
政彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP27774786A priority Critical patent/JPS63131576A/en
Publication of JPS63131576A publication Critical patent/JPS63131576A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain LDD structure having precise size through a simple method by forming a gate electrode having the different length of upper and lower sides in a cross section parallel with the direction of gate length, implanting the ions of an impurity in low concentration so as to be passed through the longer side and implanting the ions of an impurity in high concentration so as not to be passed through the longer side. CONSTITUTION:A gate oxide film 2 is formed onto the surface of a p-type Si substrate 1, a polycrystalline Si layer 3 is grown, and a photo-resist layer 5 is applied and patterned. The polycrystalline Si layer 3 is etched in an isotropic manner, using the photo-resist layer 5 as a mask, and the polycrystalline Si layer 3 is formed to a tapered shape. When an SiO2 layer 2' is grown on the surface of the polycrystalline Si layer 3 through thermal oxidation and P<+> ions are implanted to shape n<-> regions, implanted ions pass through one part of the oxide film of the side wall of a gate electrode, thus forming an n<-> ion implantation regions to a shape that an upper end intrudes to the gate electrode side. When As<+> ions are implanted to shape n<+> source-drain regions, the acceleration voltage of ions is controlled, and the n<+> regions are not brought into contact with the n<-> regions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イオン注入を用いてLDD (Lightl
yDoped Drain)構造を制御性良(形成する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention uses ion implantation to create an LDD (Light Device).
The present invention relates to a method for forming a yDoped Drain structure with good controllability.

〔発明の概要〕[Summary of the invention]

本発明は、LDD構造のトランジスタを製造する方法に
於いて、ゲート長方向に平行な断面で上辺と下辺の長さ
が異なるゲート電極を形成し、上辺と下辺のうちの長い
方の辺を通過させて低濃度の不純物をイオン注入し、そ
の長い辺を通過させない様にして高濃度の不純物をイオ
ン注入させる事によって、寸法の正確に制御されたLD
D構造を従来の製造方法に比較して簡便な方法で得るこ
とを可能としたものである。
The present invention provides a method for manufacturing a transistor with an LDD structure, in which a gate electrode is formed with different lengths of an upper side and a lower side in a cross section parallel to the gate length direction, and the gate electrode passes through the longer side of the upper side and the lower side. By implanting low-concentration impurity ions while preventing the ions from passing through the long sides, high-concentration impurity ions are implanted without passing through the long sides of the LD.
This makes it possible to obtain the D structure using a simpler method than conventional manufacturing methods.

〔従来の技術〕[Conventional technology]

超LSIの集積度が向上するにつれて、トランジスタは
縮小、微細化されているが、チャンネル長が11m以下
になると、短チャンネル効果、チャンネル・ホット・エ
レクトロン注入効果、ドレイン近傍でのキャリアの衝突
イオン化・なだれ破壊、ドレイン近傍での光電子発生、
ソース・ドレイン間の絶縁破壊、ソース・ドレイン間の
パンチスルー、ドレイン抵抗増大による信号伝達遅延と
言った様々な問題が発生している。
As the integration level of VLSI improves, transistors are becoming smaller and finer, but when the channel length becomes 11 m or less, short channel effects, channel hot electron injection effects, carrier collision ionization near the drain, etc. Avalanche destruction, photoelectron generation near the drain,
Various problems have occurred, such as dielectric breakdown between the source and drain, punch-through between the source and drain, and signal transmission delay due to increased drain resistance.

これらの問題は、ドレイン電界が大きいために発生する
もので、これを防止するためにLDD構造が用いられる
。これは、ドレインをn−1n9の二重構造にしてドレ
インの空欠層をチャンネル領域のみならずn−側にも広
がらせることによって、ドレイン電界を弱めるものであ
る。
These problems occur because the drain electric field is large, and an LDD structure is used to prevent this. This weakens the drain electric field by forming the drain into an n-1n9 double structure and expanding the void layer of the drain not only in the channel region but also on the n- side.

第2図に基づいて、従来のLDD構造の製造方法を説明
する。
A conventional method for manufacturing an LDD structure will be explained based on FIG.

通常の方法と同様にして、p型Si基板l上のフィール
ド酸化膜2の内側にトランジスタを形成する。多結晶S
iのゲート電極3をパターニングした後、これをマスク
にしてPoをイオン注入して電界緩和用のn−領域を形
成する(第2図A)。
A transistor is formed inside the field oxide film 2 on the p-type Si substrate 1 in the same manner as in the usual method. Polycrystalline S
After patterning the gate electrode 3 of i, using this as a mask, Po ions are implanted to form an n- region for electric field relaxation (FIG. 2A).

全面にSiO□層4をCVD法により成長させる(第2
図B)。
A SiO□ layer 4 is grown on the entire surface by CVD method (second
Figure B).

RIH法によりゲート電極3の上面が露出するまで、C
VD 5iOzJW 4をバックエッチして、サイドウ
オールにSiO□層4′を残す(第2図C)。
C until the upper surface of the gate electrode 3 is exposed by the RIH method.
Back etch the VD 5iOzJW 4 to leave a SiO□ layer 4' on the sidewall (Figure 2C).

As”をイオン注入してn“のソース、ドレイン領域を
形成する(第2図D)。(「日経マイクロデバイスJ 
 1985年夏号 P、43)〔発明が解決しようとす
る問題点〕 従来のLDD構造の製造方法では、サイドウオールはC
VD SiO□層のバックエッチにより形成されるので
、サイドウオールの幅を厳密にコントロールすることは
困難であった。
Source and drain regions of n" are formed by ion implantation of As" (FIG. 2D). (“Nikkei Microdevice J
Summer 1985 issue P, 43) [Problems to be solved by the invention] In the conventional manufacturing method of LDD structure, the sidewall is C
Since it is formed by back-etching the VD SiO□ layer, it has been difficult to precisely control the width of the sidewall.

また、RIHのエツチングの終点を検出する事が難しく
、基板上の5i02膜を不必要にエツチングしてしまう
問題点があった。
Furthermore, it is difficult to detect the end point of RIH etching, resulting in the problem of unnecessary etching of the 5i02 film on the substrate.

さらに、RIE処理により酸化膜にダメージを与えてし
まうと言った問題点もあった。
Furthermore, there was a problem in that the RIE treatment caused damage to the oxide film.

〔発明を解決するための手段〕[Means for solving the invention]

本発明は、ゲート長方向に平行な断面で上辺と下辺の長
さが異なるゲート電極を形成し、上辺と下辺のうちの長
い方の辺を通過させて低濃度の不純物をイオン注入し、
その長い辺を通過させない様にして高濃度の不純物をイ
オン注入させる事によって、前記問題点を解決した。
The present invention forms a gate electrode with different lengths of the upper side and lower side in a cross section parallel to the gate length direction, and implants low concentration impurity ions through the longer side of the upper side and the lower side,
The above-mentioned problem was solved by implanting high-concentration impurity ions while not allowing them to pass through the long sides.

〔作用〕[Effect]

本発明は、イオン、が斜面部の酸化膜の薄い部分を透過
することと、イオン注入領域の深さが加速電圧により精
密にコントロールできることを利用している。
The present invention takes advantage of the fact that ions pass through the thin part of the oxide film on the slope and that the depth of the ion implantation region can be precisely controlled by accelerating voltage.

つまり第1図Cで示す様に、イオンはゲート電極のテー
パ一部分の酸化膜の薄い部分を透過するので、その上端
がゲート電極側に侵入している形状のn −mW域を形
成し、さらに第1図りで示す様に、As”イオンの加速
電圧を適当に選択することによりn−領域内にn″領域
設けて最適なLDD構造を形成している。
In other words, as shown in Figure 1C, ions pass through the thin part of the oxide film in the tapered part of the gate electrode, forming an n-mW region whose upper end penetrates into the gate electrode side. As shown in the first diagram, an optimal LDD structure is formed by providing an n'' region within an n- region by appropriately selecting the accelerating voltage for As'' ions.

従来の製造方法に於いては、第2図C,Dに示されるよ
うにサイドウオールの巾によってn一層の巾が決まって
いたが、本発明の製造方法に於いては、イオン注入の加
速電圧の制御によってLDD構造が決定される。
In the conventional manufacturing method, the width of the n layer was determined by the width of the sidewall as shown in FIG. The LDD structure is determined by the control of .

〔実施例〕〔Example〕

第1図A−Dに基づいて、本発明の詳細な説明する。 The present invention will be described in detail based on FIGS. 1A to 1D.

Ap型Si基板1の表面に、ゲート酸化膜2を熱酸化に
より形成する。その5iOzJ!lf2の上に多結晶S
t層3を成長させ、さらにその上にフォトレジスト層5
を塗布してそれをパターニングする。このパターニング
されたフォトレジストN5をマスクにして、多結晶Si
層3をプラズマエツチングにより等方エッチする。この
等方エツチングによって多結晶Si層3は、図の様なテ
ーパー状の形状に形成される。
A gate oxide film 2 is formed on the surface of an Ap type Si substrate 1 by thermal oxidation. That 5iOzJ! Polycrystalline S on top of lf2
A t-layer 3 is grown, and a photoresist layer 5 is further formed on it.
and pattern it. Using this patterned photoresist N5 as a mask, polycrystalline Si
Layer 3 is isotropically etched by plasma etching. By this isotropic etching, the polycrystalline Si layer 3 is formed into a tapered shape as shown in the figure.

B 熱酸化により、多結晶Si層3の表面に数100人
のSiO□層2′を成長させる。
B: Several hundred SiO□ layers 2' are grown on the surface of the polycrystalline Si layer 3 by thermal oxidation.

CP+をイオン注入してnUI域を形成する。この際、
注入されるイオンは、ゲート電極の側壁の酸化膜の一部
分を通過するので、n−のイオン注入領域は、その上端
がゲート電極側に侵入した形に形成される。
CP+ ions are implanted to form an nUI region. On this occasion,
Since the implanted ions pass through a portion of the oxide film on the side wall of the gate electrode, the n- ion implantation region is formed with its upper end penetrating into the gate electrode side.

D  As、”をイオン注入して、n゛のソース、ドレ
イン領域を形成する。この時、イオンの加速電圧をコン
トロールして、し゛領域がゲート側に侵入してn−領域
に接触しない様にする。
D As,'' is ion-implanted to form n' source and drain regions. At this time, the ion acceleration voltage is controlled to prevent the ion region from penetrating into the gate side and contacting the n- region. do.

この後N2雰囲気中で、アニーリングを行い、イオン注
入によるダメソジを回復させる。
Thereafter, annealing is performed in an N2 atmosphere to recover damage caused by ion implantation.

この実施例に於いては、ゲート電極の断面で、上辺より
も下辺の方が長い順テーパー形状のゲート電極を使用し
たが、上辺の方が下辺よりも長い逆テーパー形状のゲー
ト電極を使用しても、同様な不純物濃度分布のLDD構
造を得ることができる。
In this example, in the cross section of the gate electrode, a forward tapered gate electrode was used where the bottom side was longer than the top side, but a reverse tapered gate electrode was used where the top side was longer than the bottom side. However, an LDD structure with a similar impurity concentration distribution can be obtained.

また、この実施例ではゲート電極には多結晶Si層を用
いたが、高融点金属等も使用できる。
Further, although a polycrystalline Si layer is used for the gate electrode in this embodiment, a high melting point metal or the like may also be used.

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法には、次の様な効果が期待できる。 The following effects can be expected from the manufacturing method of the present invention.

(i ) CVD 5iOz層をRIEによりバックエ
ッチしてサイドウオールを形成する工程が存在しないの
で、工程が簡便である。
(i) The process is simple because there is no step of back-etching the CVD 5iOz layer by RIE to form a sidewall.

(ii )膜厚コントロールの難しいサイドウオールを
必要とせず、2回のイオン注入とゲート電極のテーパー
形状で不純物分布が決まるので、不純物濃度分布が正確
にコントロールできる。
(ii) Since the impurity distribution is determined by two ion implantations and the tapered shape of the gate electrode without requiring side walls whose thickness is difficult to control, the impurity concentration distribution can be accurately controlled.

(iii)RIEによる基板表面の酸化膜へのダメソジ
とか酸化膜それ自身のエツチングと言った問題が発生し
ない。
(iii) Problems such as damage to the oxide film on the substrate surface or etching of the oxide film itself due to RIE do not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Dは本発明の半導体装置の製造方法を示す。 第2図A−Dは従来のLDD構造の製造方法を示す。 l・・・p型基板    2.2′・・・SiO□層3
・・・多結晶Si層   4.4′・・・CvDSiO
□層5・・・フォトレジスト層
1A to 1D show a method of manufacturing a semiconductor device according to the present invention. 2A-2D illustrate a conventional method of manufacturing an LDD structure. l...p-type substrate 2.2'...SiO□ layer 3
...Polycrystalline Si layer 4.4'...CvDSiO
□Layer 5...Photoresist layer

Claims (1)

【特許請求の範囲】[Claims] ゲート長方向に平行な断面で上辺と下辺とで長さが異な
るゲート電極を形成する工程と、上記上辺と下辺のうち
長い辺でかつ短い辺と重ならない部分を通過させて低濃
度の不純物をイオン注入し、該長い辺を通過しない条件
で高濃度の不純物をイオン注入する工程とからなる半導
体装置の製造方法。
A process of forming a gate electrode with different lengths on the top and bottom sides in a cross section parallel to the gate length direction, and a process of forming a low concentration impurity by passing through the long side of the top and bottom sides and the part that does not overlap with the short side. A method for manufacturing a semiconductor device comprising the steps of: implanting ions; and implanting highly concentrated impurity ions under conditions that the ions do not pass through the long sides.
JP27774786A 1986-11-20 1986-11-20 Manufacture of semiconductor device Pending JPS63131576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27774786A JPS63131576A (en) 1986-11-20 1986-11-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27774786A JPS63131576A (en) 1986-11-20 1986-11-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63131576A true JPS63131576A (en) 1988-06-03

Family

ID=17587766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27774786A Pending JPS63131576A (en) 1986-11-20 1986-11-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63131576A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012680A1 (en) * 1989-04-21 1990-10-25 Mitsubishi Electric Corp CONTROL CIRCUIT FOR AN ACTUATOR
US5100820A (en) * 1990-06-14 1992-03-31 Oki Electric Industry Co., Ltd. MOSFET fabrication process with lightly-doped drain using local oxidation step to pattern gate electrode
US5219782A (en) * 1992-03-30 1993-06-15 Texas Instruments Incorporated Sublithographic antifuse method for manufacturing
US6417543B1 (en) 1993-01-18 2002-07-09 Semiconductor Energy Laboratory Co., Ltd. MIS semiconductor device with sloped gate, source, and drain regions

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012680A1 (en) * 1989-04-21 1990-10-25 Mitsubishi Electric Corp CONTROL CIRCUIT FOR AN ACTUATOR
US5004080A (en) * 1989-04-21 1991-04-02 Mitsubishi Denki Kabushiki Kaisha Controlling circuit for actuator
US5100820A (en) * 1990-06-14 1992-03-31 Oki Electric Industry Co., Ltd. MOSFET fabrication process with lightly-doped drain using local oxidation step to pattern gate electrode
US5219782A (en) * 1992-03-30 1993-06-15 Texas Instruments Incorporated Sublithographic antifuse method for manufacturing
US6417543B1 (en) 1993-01-18 2002-07-09 Semiconductor Energy Laboratory Co., Ltd. MIS semiconductor device with sloped gate, source, and drain regions
US6984551B2 (en) 1993-01-18 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. MIS semiconductor device and method of fabricating the same
US7351624B2 (en) 1993-01-18 2008-04-01 Semiconductor Energy Laboratory Co., Ltd. MIS semiconductor device and method of fabricating the same

Similar Documents

Publication Publication Date Title
US4488351A (en) Method for manufacturing semiconductor device
JP2826924B2 (en) Method of manufacturing MOSFET
JP2905808B2 (en) Semiconductor device and manufacturing method thereof
JPH0629532A (en) Mosfet and its manufacture
JP3821707B2 (en) Manufacturing method of semiconductor device
JPH06204469A (en) Field-effect transistor and manufacture thereof
US5693542A (en) Method for forming a transistor with a trench
JPH08264789A (en) Insulated gate semiconductor device and manufacture
KR100596444B1 (en) Semiconductor device and method for manufacturing the same
JPS63131576A (en) Manufacture of semiconductor device
JPH10144922A (en) Field-effect transistor (fet) and method for forming semiconductor field-effect transistor
JP3049496B2 (en) Method of manufacturing MOSFET
JP2633104B2 (en) Method for manufacturing semiconductor device
JP2952570B2 (en) Method for manufacturing semiconductor device
JPH0818042A (en) Method for manufacturing mos transistor
JPH09181313A (en) Manufacturing method for mosfet
KR100198676B1 (en) Transistor of semiconductor device and method of manufacturing the same
JPH02196434A (en) Manufacture of mos transistor
JPH1168096A (en) Semiconductor device and manufacture thereof
JP2956635B2 (en) Semiconductor device and manufacturing method thereof
KR100551942B1 (en) Semiconductor device using Silicon-On-Insulator substrate and method for manufacturing the same
KR100261166B1 (en) Method for fabricating semiconductor device
JPH05211328A (en) Mos transistor and manufacturing method thereof
JPH04346476A (en) Manufacture of mosfet
JPS6057971A (en) Manufacture of semiconductor device