JPS63131544A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63131544A
JPS63131544A JP27819886A JP27819886A JPS63131544A JP S63131544 A JPS63131544 A JP S63131544A JP 27819886 A JP27819886 A JP 27819886A JP 27819886 A JP27819886 A JP 27819886A JP S63131544 A JPS63131544 A JP S63131544A
Authority
JP
Japan
Prior art keywords
layer
film
semiconductor device
metallic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27819886A
Other languages
Japanese (ja)
Inventor
Tomoyuki Furuhata
智之 古畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP27819886A priority Critical patent/JPS63131544A/en
Publication of JPS63131544A publication Critical patent/JPS63131544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve the reliability of wirings due to electromigration resistance with good step coverage of a wiring metal layer by composing at least one layer of a plurality of metallic layers of a metallic layer formed by an organic metal vapor chemical growth method. CONSTITUTION:A polycrystalline silicon electrode 13 is formed through an oxide film 12 on a semiconductor substrate 10, and a metallic wiring layer 19 made of a laminated structure of a titanium nitride (TiN) film 16, an aluminum film 17 fored by an MOCVD method, and a titanium (Ti) film 18 is formed through a phosphorus glass (PSG) film 14 on the electrode 13. Thus, at least one layer 17 of the layers 19 is formed by the MOCVD method to improve the step coverage of the layer 19. Since the thickness of the metallic layer at the step is not thinned as compared with the flat part, the electromigration resistance of the layer 19 is largely improved to improve the reliability of the wirings.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に係り、より詳しくは半導体装置の
金属配線層の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to the structure of a metal wiring layer of a semiconductor device.

〔従来の技術〕[Conventional technology]

近年、半導体装置においては、微細加工技術の進歩によ
り、配線幅及び接続孔(フンタクト・ホール)等の微細
化が進んでいるが、それに伴う配線技術の問題が生じて
いる。
2. Description of the Related Art In recent years, in semiconductor devices, advances in microfabrication technology have led to miniaturization of interconnect widths, contact holes, etc., but problems with interconnect technology have arisen as a result.

以下、従来の半導体装置の一実施例につき、図面を参照
して説明する。
An example of a conventional semiconductor device will be described below with reference to the drawings.

第2図は、従来の半導体装置の一実施例の断面図を示す
FIG. 2 shows a cross-sectional view of one embodiment of a conventional semiconductor device.

第2図に示す半導体装置は、半導体基板10上に酸化膜
12を介して多結晶シリコンミ!極13が形成され、さ
らKこの多結晶シリコン電極13上にはリンガラス(P
SG)膜14を介してスパッタ法により数パーセントの
シリコンを含有したアルミニウム(An−81)膜から
なる配線層20が形成されている。
The semiconductor device shown in FIG. A pole 13 is formed, and on this polycrystalline silicon electrode 13, a phosphor glass (P
A wiring layer 20 made of an aluminum (An-81) film containing several percent silicon is formed by sputtering via the SG) film 14.

また、酸化膜11及びPSG膜14には選択的に開孔部
(コンタクト・ホール)15が設はラレ、半導体基板1
0内に形成された半導体層11と配線層20とが電気的
に接続されている。
Further, openings (contact holes) 15 are selectively provided in the oxide film 11 and the PSG film 14, and the semiconductor substrate 1
The semiconductor layer 11 and the wiring layer 20 formed in the semiconductor layer 0 are electrically connected to each other.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述の従来の半導体装置の構成によれば
、パターン幅の微細化が進むと、コンタクト・ホール1
5の7スペクト比が大きくなるため・第2図に示すよう
にコンタクト・ホール15の側壁でのスパッタ法による
配線層20の膜厚が薄くなり、配線層20のステップ・
カバレージが悪化する。さらに、スパッタ法により形成
した配線層においては、多結晶シリコン電極13による
段差部におけるPSG膜1膜上4上配線層20の膜厚は
平坦部の膜厚に比べて薄くなる。これらのことから、配
線層の断線及び耐エレクトロ・マイグレーション性等の
配線の信頼性が低下するという問題点が生じる。
However, according to the configuration of the conventional semiconductor device described above, as the pattern width becomes finer, the contact hole 1
As shown in FIG. 2, the thickness of the wiring layer 20 formed by sputtering on the side wall of the contact hole 15 becomes thinner, and the step ratio of the wiring layer 20 increases.
Coverage deteriorates. Furthermore, in the wiring layer formed by the sputtering method, the thickness of the wiring layer 20 on the PSG film 1 4 at the stepped portion formed by the polycrystalline silicon electrode 13 is thinner than that at the flat portion. These problems cause problems such as reduction in reliability of wiring such as disconnection of the wiring layer and resistance to electromigration.

そこで、本発明はこのような問題点を解決するもので、
その目的とするところは、配線金属層のステップ・カバ
レージが良好で耐エレクトロ・マイグレーション性等の
配線の信頼性を向上させた半導体装置を提供するところ
にあるQ 〔問題点を解決するための手段〕 本発明の半導体装置は、複数の金属層の積層構造からな
る配線層を有する半導体装置において、前記複数の金属
層の少なくとも1層が、有機金属気相化学成長(Met
alovganio Chemical’Vapor 
Deposition %以下MO(!VDと略記する
。)法により形成された金属層からなることを特徴とす
る。
Therefore, the present invention aims to solve these problems.
The purpose is to provide a semiconductor device with good step coverage of the wiring metal layer and improved wiring reliability such as electromigration resistance. ] The semiconductor device of the present invention has a wiring layer having a stacked structure of a plurality of metal layers, in which at least one of the plurality of metal layers is grown by metal organic vapor phase chemical growth (Met).
alovganio Chemical'Vapor
Deposition % or less It is characterized by being made of a metal layer formed by the MO (abbreviated as !VD) method.

〔実施例〕〔Example〕

以下、本発明の代表的な実施例を図面を参照して説明す
る。
Hereinafter, typical embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明による半導体装置の一実施例の断面図
を示す。
FIG. 1 shows a cross-sectional view of an embodiment of a semiconductor device according to the present invention.

第1図に示す半導体装置は、半導体基板10上に200
〜1ooooXの酸化膜12を介して1000〜5oo
oXの多結晶シリコンN極13が形成され、さらに、こ
の多結晶シリコン電極13上には5000〜10000
χリンガラス(PsG)@14を介して、300〜10
00χのチタンナイトライド(Tla)膜16とMOO
VD法により形成された5000〜1ooooXアルミ
ニウム(A2)膜17と300〜1000Xのチタン(
T1)膜18の積層構造からなる金属配線層19が形成
されている。
The semiconductor device shown in FIG.
~1000~5oo through the oxide film 12 of ~1ooooX
oX polycrystalline silicon N electrode 13 is formed, and furthermore, on this polycrystalline silicon electrode 13, 5000 to 10000
300-10 via χ phosphorus glass (PsG) @14
00χ titanium nitride (Tla) film 16 and MOO
A 5000-1000X aluminum (A2) film 17 formed by the VD method and a 300-1000X titanium (A2) film 17 are formed by the VD method.
T1) A metal wiring layer 19 having a laminated structure of films 18 is formed.

また、酸化膜11及びpso膜14には選択的に開孔部
(コンタクト・ホール)15が設けられ、° 半導体基
板10内に形成された半導体領域11と金属配線層19
とが電気的に接続されている。
Further, openings (contact holes) 15 are selectively provided in the oxide film 11 and the pso film 14, and the semiconductor region 11 formed in the semiconductor substrate 10 and the metal wiring layer 19 are connected to each other.
are electrically connected.

ここで注目すべき事項は、前記MOO’VD法により形
成されたAQ膜17の段差部におけるステップ・カバレ
ージが良好であるということである。
What should be noted here is that the step coverage in the step portion of the AQ film 17 formed by the MOO'VD method is good.

このため、第1図に示すように、多結晶シリコン111
ti上の段差、さらにはコンタク)−ホール15におけ
る段差での金属配線層19のステップ・カバレージが改
善され、その部分における金属配線層の断線が回避でき
る。そしてこれにより、この金属配線層19上に形成さ
れる絶縁膜もしくは金属配線層(第1図には図示せず。
Therefore, as shown in FIG.
The step coverage of the metal wiring layer 19 at the step in the hole 15 is improved, and disconnection of the metal wiring layer at that portion can be avoided. As a result, an insulating film or a metal wiring layer (not shown in FIG. 1) is formed on this metal wiring layer 19.

)のステップ・カバレージをも良好にすることができる
。さらに、金属配線層19の膜厚が平坦部のそれに比べ
部分的に薄くなることがないため、耐エレクトロ・マイ
グレーション性等が大幅に向上し1配線の信頼性を向上
することができる、という優れた効果が得られる0 ところで、前記MOICvD法によるA2膜は、アルミ
ニウムトリクロライド(AQOf13) 、)リメチル
アルミニウム(AR3(CH3)s )、もしくはトリ
イソブチルアルミニウム(Afi (0,H,)3)の
いずれかのソースガスをグロー放電もしくは600℃以
下の高温雰囲気中で熱分解することにより形成される。
) can also have good step coverage. Furthermore, since the thickness of the metal wiring layer 19 does not become partially thinner than that of the flat portion, the electromigration resistance is greatly improved, and the reliability of one wiring can be improved. By the way, the A2 film produced by the MOICvD method is made of aluminum trichloride (AQOf13), )trimethylaluminum (AR3(CH3)s), or triisobutylaluminum (Afi(0,H,)3). It is formed by glow discharge or thermal decomposition of one of the source gases in a high temperature atmosphere of 600° C. or lower.

また、減圧雰囲気中で堆積を行なうことが好ましい@ なお、第1図の半導体装置においては、TiN膜1膜上
6リアーメタルの作用を・しており、コンタクト・ホー
ル15を含めた配線金属層19全体の下に敷かれている
が、フンタクト・ホール15部のみに選択的に形成して
も良い。
In addition, it is preferable to perform the deposition in a reduced pressure atmosphere @ Note that in the semiconductor device shown in FIG. Although the hole is laid under the entire hole 19, it may be formed selectively only in the hole 15.

また、T1膜18はA2膜17のヒロック発生を抑制す
るために形成されているが、配線金属層19の下に形成
されてもかまわない。
Further, although the T1 film 18 is formed to suppress the occurrence of hillocks in the A2 film 17, it may be formed under the wiring metal layer 19.

前述の本発明の一実施例においては、IA OOVD法
による金属層がA2膜である場合について述べたが、こ
の金属層がタングステン(6)、モリブデン(Mo)、
チタン(T1)、銅(Ou)、アルミニウム(人込)、
シリコン(Sl)等を含fした有機金属化合物のMOO
VD法により形成された金属層である場合においても、
本発明が有効であることは言うまでもない。また、前述
の本発明の一実施例においては、金属配線層が3層の積
層構造からなる場合について述べたが、バリア・メタル
等は適当に選択可能であり、2層もしくは4層の積層構
造にもすることができる。
In the embodiment of the present invention described above, the metal layer formed by the IA OOVD method was an A2 film, but this metal layer was made of tungsten (6), molybdenum (Mo),
Titanium (T1), copper (Ou), aluminum (crowd),
MOO of organometallic compounds containing silicon (Sl) etc.
Even in the case of a metal layer formed by the VD method,
It goes without saying that the present invention is effective. In addition, in the embodiment of the present invention described above, the metal wiring layer has a three-layer stacked structure, but the barrier metal etc. can be appropriately selected, and the metal wiring layer can have a two-layer or four-layer stacked structure. It can also be done.

〔発明の効果〕〔Effect of the invention〕

以上述べたようK、本発明の半導体装置によれば、複数
の金属層の積層構造からなる配線層を有する半導体装置
において、金属配線層の少なくとも1層をMO(1!V
D法により形成することに、金属配線層のステップ・カ
バレージか改善され、段差部における金属層の膜厚が平
坦部のそれに比べ薄くなることがないため、金属層の耐
エレクトロ・マイグレーション性等が大幅に向上し、配
線の信頼性を向上することができるという効果を有する
As described above, according to the semiconductor device of the present invention, in a semiconductor device having a wiring layer having a laminated structure of a plurality of metal layers, at least one of the metal wiring layers is
By forming using the D method, the step coverage of the metal wiring layer is improved, and the thickness of the metal layer at the stepped portion is not thinner than that at the flat portion, so the electromigration resistance of the metal layer is improved. This has the effect of significantly improving the reliability of wiring.

なお、本発明は前述の実施に限定されず、その要旨を逸
脱しない範囲で種々変更可能であり、金属2層以上の多
層金属配線を有する半導体装置へも適用可能であること
は言うまでもない0
It should be noted that the present invention is not limited to the above-described implementation, but can be modified in various ways without departing from the gist thereof, and it goes without saying that it is also applicable to semiconductor devices having multilayer metal interconnections with two or more metal layers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の一実施例を示す主要断面
図、第2図は従来の半導体装置を示す主要断面図である
。 16・・・チタンナイトライド膜 17・・・・・・MOOVD法により形成されたA2膜
18・・・・・・チタン膜 以  上 出願人 セイコーエプソン株式会社 、゛′
FIG. 1 is a main sectional view showing an embodiment of the semiconductor device of the present invention, and FIG. 2 is a main sectional view showing a conventional semiconductor device. 16...Titanium nitride film 17...A2 film formed by MOOVD method 18...Titanium film or more Applicant: Seiko Epson Corporation, ゛'

Claims (1)

【特許請求の範囲】[Claims] 複数の金属層の積層構造からなる配線層を有する半導体
装置において、前記複数の金属層の少なくとも1層が、
有機金属気相化学成長法により形成された金属層からな
ることを特徴とする半導体装置。
In a semiconductor device having a wiring layer having a laminated structure of a plurality of metal layers, at least one of the plurality of metal layers is
A semiconductor device comprising a metal layer formed by an organometallic vapor phase chemical growth method.
JP27819886A 1986-11-21 1986-11-21 Semiconductor device Pending JPS63131544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27819886A JPS63131544A (en) 1986-11-21 1986-11-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27819886A JPS63131544A (en) 1986-11-21 1986-11-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63131544A true JPS63131544A (en) 1988-06-03

Family

ID=17593961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27819886A Pending JPS63131544A (en) 1986-11-21 1986-11-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63131544A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804501A (en) * 1994-11-23 1998-09-08 Lg Semicon Co., Ltd. Method for forming a wiring metal layer in a semiconductor device
KR100238438B1 (en) * 1996-11-20 2000-01-15 정선종 Method of formation of metallization film for anti-corrosion in dry etching of al and alcu film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804501A (en) * 1994-11-23 1998-09-08 Lg Semicon Co., Ltd. Method for forming a wiring metal layer in a semiconductor device
KR100238438B1 (en) * 1996-11-20 2000-01-15 정선종 Method of formation of metallization film for anti-corrosion in dry etching of al and alcu film

Similar Documents

Publication Publication Date Title
US5162262A (en) Multi-layered interconnection structure for a semiconductor device and manufactured method thereof
US5266519A (en) Method for forming a metal conductor in semiconductor device
JP2000501882A (en) Metal interconnect structure for integrated circuits with improved electromigration reliability
KR0148325B1 (en) Formation method of metal layer in semiconductor device
JPH06104341A (en) Semiconductor integrated circuit and its manufacture
JP2000228372A (en) Manufacture of semiconductor device
US5750439A (en) Method of making aluminum alloy wiring with less silicon nodule
JPS63131544A (en) Semiconductor device
JPH05326510A (en) Semiconductor device
JP3277909B2 (en) Semiconductor device and manufacturing method thereof
JPH03280431A (en) Manufacturing process and device of multilayer wiring
KR100247643B1 (en) A reaction chamber for forming metal layer and method for forming metal layer in semiconductor device using the same
JPH0338832A (en) Wiring structure of semiconductor device
JPH0547764A (en) Semiconductor device and its manufacture
JPH1154617A (en) Manufacture of semiconductor device
JPH10223753A (en) Manufacture of semiconductor integrated circuit device and semiconductor integrated circuit device
KR0147598B1 (en) Method for forming wiring layer in semiconductor device
JPH0235753A (en) Manufacture of semiconductor device
JP2893800B2 (en) Method for manufacturing semiconductor device
JPS62291948A (en) Metal thin film miring and manufacture thereof
JPH05243229A (en) Semiconductor integrated circuit device
JPS62156834A (en) Semiconductor integrated circuit device
JP2000260863A (en) Semiconductor device and its manufacture
JPH0936229A (en) Semiconductor integrated circuit device and its manufacture
KR20050032305A (en) Method of forming metal line in semiconductor devices