JPS6313148B2 - - Google Patents

Info

Publication number
JPS6313148B2
JPS6313148B2 JP56004295A JP429581A JPS6313148B2 JP S6313148 B2 JPS6313148 B2 JP S6313148B2 JP 56004295 A JP56004295 A JP 56004295A JP 429581 A JP429581 A JP 429581A JP S6313148 B2 JPS6313148 B2 JP S6313148B2
Authority
JP
Japan
Prior art keywords
electrode
sensor
polymer film
sensor according
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56004295A
Other languages
Japanese (ja)
Other versions
JPS57118153A (en
Inventor
Noboru Koyama
Hiroaki Matsuda
Takeshi Shimomura
Hidetoshi Tsuchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP56004295A priority Critical patent/JPS57118153A/en
Priority to EP19820100198 priority patent/EP0056283B1/en
Priority to DE8282100198T priority patent/DE3264957D1/en
Publication of JPS57118153A publication Critical patent/JPS57118153A/en
Publication of JPS6313148B2 publication Critical patent/JPS6313148B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳现な説明】 発明の背景 技術分野 この発明はPHセンサヌに係り、特に、重合䜓膜
を導電䜓衚面に盎接被着したPHセンサヌであ぀お
氎玠むオン濃床を電極電䜍応答で枬定するものに
関する。 先行技術および問題点 埓来、氎玠むオン濃床を枬定する電極ずしお氎
玠電極やキンヒドロン電極が知られおいるが、今
日、適甚範囲の広さ、粟確さずいう点でガラス電
極が広く甚いられるようにな぀おきおいる。この
ガラス電極によるPH枬定の原理は䞀方を基準液ず
する氎玠むオン濃床の異なる二぀の溶液を薄いガ
ラス膜で分離し、このガラス膜の䞡偎に生じた電
䜍差を枬定するこずからなる。 すなわち、ガラス電極では基準液宀を蚭ける必
芁があり、したが぀お埮小化が困難である。た
た、粘着性物質を含む溶液䞭ではガラス膜䞊に粘
着性物質が付着し、PHの枬定が困難であ぀たり、
電極電䜍応答の再珟性が悪くな぀たりする。た
た、ガラス電極のガラス膜の抵抗は10〜100MΩ
ず倧きく、PHの枬定には普通の電䜍差蚈を単独で
甚いるこずができず、高入力むンピヌダンスの増
幅噚が必芁ずなる。 発明の目的 したが぀お、この発明の目的は基準液宀を蚭け
る必芁がなく、埓぀お埮小化を蚈るこずのできる
PHセンサヌを提䟛するこずにある。 たた、この発明の目的は電䜍応答速床も早く、
枬定詊料溶液の皮類を問わず広範なPHの枬定が可
胜なPHセンサヌを提䟛するこずにある。 さらにこの発明の目的は枬定に圓぀お高入力む
ンピヌダンスの増幅噚を䜵甚する必芁のないPHセ
ンサヌを提䟛するこずにある。 䞊蚘諞目的および以埌の蚘茉から明らかずなる
であろう他の目的は、この発明によれば、導電䜓
衚面にヒドロキシ芳銙族化合物から誘導された重
合䜓膜を盎接被着しおなるPHセンサヌによ぀お達
成される。 前蚘重合䜓膜は䜎むンピヌダンス化され、たた
電解酞化重合によ぀お埗るのが奜たしい。 ヒドロキシ芳銙族化合物は匏 ここで、Arは芳銙栞、各は眮換基、およ
びはないしArの有効原子䟡数で瀺すこず
ができる。その具䜓䟋はプノヌル、ゞメチルフ
゚ノヌル、ヒドロキシピリゞン、―および―
ベンゞルアルコヌル、―、―および―ヒド
ロキシベンズアルデヒド、―および―ヒドロ
キシアセトプノン、―、―および―ヒド
ロキシプロピオプノン、―、―および―
ベンゟプノヌル、――および―ヒドロキ
シベンゟプノン、―、―および―カルボ
キシプノヌル、ゞプニルプノヌル、―メ
チル――ヒドロキノリン、―ヒドロキシ―
―ナフトキノン、――ヒドロキシフ
゚ニル――ブタノン、―ゞヒドロキシ
――テトラヒドロナフタレン、ビ
スプノヌルたたはこれらの混合物等である。
重合䜓膜ずしおみた堎合は、重合䜓膜が溶媒に溶
解し衚面に塗垃也燥したポリプリレンオキシ
ド、ポリカヌボネヌトであり、具䜓的にはポリフ
゚ニレンオキシド誘導䜓、ポリゞプニル・プ
ニレンオキシド、ポリゞメチルプニレンオキシ
ド、ポリカヌボネヌト誘導䜓等が挙げられる。 発明の具䜓的説明 以䞋、この発明を添付の図面に沿぀お詳しく説
明する。 第図に瀺すようにこの発明のPHセンサヌは任
意圢状の導電䜓の呚囲に絶瞁䜓を被芆
し、先端衚面の所定の重合䜓膜を被着・固定
しおなるものである。導電䜓は導電性材料で
構成され、癜金等が奜たしい。 導電䜓の衚面に被着されおいる重合䜓膜
はヒドロキシ芳銙族化合物の重合䜓よりなる。
このようなヒドロキシ芳銙族化合物は䟋えば、䞀
般匏 ここで、Arは芳銙栞、各は眮換基、およ
びはないしArの有効原子䟡数で瀺すこず
ができる。芳銙栞Arは単環匏䟋えば、ベンれ
ン栞、ピリゞン栞であ぀おも、倚栞匏䟋え
ば、キノリン栞、ナフトキノン栞、ビスプノヌ
ル栞であ぀おもよい。 眮換基の䟋を挙げるず、アルキル基䟋えばメ
チル基、アリヌル基䟋えばプニル基、アルキル
カルボニル基およびアリヌルカルボニル基
[Detailed Description of the Invention] BACKGROUND OF THE INVENTION Technical Field The present invention relates to a PH sensor, and more particularly to a PH sensor in which a polymer film is directly attached to the surface of a conductor, and which measures hydrogen ion concentration based on electrode potential response. Regarding. Prior art and problems Conventionally, hydrogen electrodes and quinhydrone electrodes have been known as electrodes for measuring hydrogen ion concentration, but today, glass electrodes have become widely used due to their wide range of application and accuracy. ing. The principle of PH measurement using this glass electrode consists of separating two solutions with different hydrogen ion concentrations, one of which is used as a reference solution, by a thin glass membrane, and measuring the potential difference generated on both sides of this glass membrane. That is, with a glass electrode, it is necessary to provide a reference liquid chamber, and therefore miniaturization is difficult. In addition, in solutions containing sticky substances, the sticky substances adhere to the glass membrane, making it difficult to measure the PH.
The reproducibility of electrode potential response may deteriorate. In addition, the resistance of the glass membrane of the glass electrode is 10 to 100MΩ
Therefore, an ordinary potentiometer cannot be used alone to measure PH, and an amplifier with high input impedance is required. Purpose of the Invention Therefore, the purpose of the present invention is to eliminate the need to provide a reference liquid chamber, and thus to achieve miniaturization.
Our goal is to provide PH sensors. In addition, the purpose of this invention is to have a fast potential response speed.
The object of the present invention is to provide a PH sensor capable of measuring a wide range of PH regardless of the type of sample solution to be measured. A further object of the present invention is to provide a PH sensor that does not require the use of a high input impedance amplifier for measurement. The above objects and other objects that will become clear from the following description are, according to the present invention, a PH sensor formed by directly depositing a polymer film derived from a hydroxy aromatic compound on the surface of a conductor. It is achieved by doing so. Preferably, the polymer film has a low impedance and is obtained by electrolytic oxidation polymerization. Hydroxyaromatic compounds have the formula (Here, Ar is an aromatic nucleus, each R is a substituent, and m is the effective valence number of O to Ar). Specific examples include phenol, dimethylphenol, hydroxypyridine, o- and m-
Benzyl alcohol, o-, m- and p-hydroxybenzaldehyde, o- and m-hydroxyacetophenone, o-, m- and p-hydroxypropiophenone, o-, m- and p-
Benzophenol, o-m- and p-hydroxybenzophenone, o-, m- and p-carboxyphenol, diphenylphenol, 2-methyl-8-hydroquinoline, 5-hydroxy-
These include 1,4-naphthoquinone, 4-(p-hydroxyphenyl)-2-butanone, 1,5-dihydroxy-1,2,3,4-tetrahydronaphthalene, bisphenol A, or a mixture thereof.
When viewed as a polymer film, it is polyphenylene oxide or polycarbonate, which is obtained by dissolving the polymer film in a solvent, coating it on the surface and drying it, and specifically, polyphenylene oxide derivatives, polydiphenyl/phenylene oxide, and polydimethylphenylene. Examples include oxides and polycarbonate derivatives. DETAILED DESCRIPTION OF THE INVENTION The present invention will now be described in detail with reference to the accompanying drawings. As shown in FIG. 1, the PH sensor of the present invention is constructed by covering a conductor 11 of arbitrary shape with an insulator 13, and attaching and fixing a predetermined polymer film 12 on the surface of the tip. The conductor 11 is made of a conductive material, preferably platinum or the like. Polymer film 1 adhered to the surface of the conductor 11
2 is made of a polymer of hydroxy aromatic compound.
Such hydroxyaromatic compounds may have, for example, the general formula (Here, Ar is an aromatic nucleus, each R is a substituent, and m is the effective valence number of O to Ar). The aromatic nucleus Ar may be monocyclic (for example, benzene nucleus, pyridine nucleus) or polynuclear (for example, quinoline nucleus, naphthoquinone nucleus, bisphenol nucleus). Examples of the substituent R include alkyl groups such as methyl groups, aryl groups such as phenyl groups, alkylcarbonyl groups and arylcarbonyl groups.

【匏】ヒドロキシアルキル基− R″OH、カルボキシル基、アルデヒド基、ヒド
ロキシル基等である。 このようなヒドロキシ芳銙族化合物の具䜓䟋を
挙げるず、プノヌル、ゞメチルプノヌル䟋
えば、―および―ゞメチルプノヌ
ル、―、―および―ヒドロキシピリゞン、
―および―ベンゞルアルコヌル、―、―
および―ヒドロキシベンズアルデヒド、―、
―および―ヒドロキシアセトプノン、
―、―および―ヒドロキシプロピオプノ
ン、―、―および―ベンゟプノヌル、
――および―ヒドロキシベンゟプノン、
―、―および―カルボキシプノヌル、ゞフ
゚ニルプノヌル䟋えば、―および
―ゞプニルプノヌル、―メチル――
ヒドロキノリン、―ヒドロキシ――ナフ
トキノン、――ヒドロキシプニル―
―ブタノン、―ゞヒドロキシ―
―テトラヒドロナフタレン、ビスプノヌ
ル等である。なお、この明现曞で甚いられおい
る重合䜓ずいう語は単独重合䜓および盞互重合䜓
䟋えば、共重合䜓、䞉元共重合䜓等の双方を
含む。具䜓的な重合䜓膜ずしおは、ポリプニレ
ンオキシド又はポリカヌボネヌト等である。具䜓
的には前述したずおりである。 このようなヒドロキシ芳銙族化合物の重合䜓膜
を導電䜓衚面䞊に被着するためには、ヒドロ
キシ芳銙族化合物を電解酞化重合法、プラズマ重
合法、熱重合法、攟射線重合法等で導電䜓衚
面䞊で重合させる方法、予め合成された重合䜓を
溶媒に溶かし、この溶液を浞挬・塗垃および也燥
により導電䜓衚面に固定する方法、さらには重合
䜓膜を化孊的凊理、物理的凊理もしくは照射凊理
によ぀お導電䜓衚面に盎接固定する方法を採るこ
ずができる。 䞊蚘被着方法のうち最も奜郜合な方法は電解酞
化重合法による方法である。この方法は、アルカ
リ性のメタノヌル等の溶媒䞭でヒドロキシ芳銙族
化合物を電解酞化重合させ動䜜電極ずしおの所望
導電䜓の衚面に重合䜓膜を被着するものである。 重合䜓膜の厚さに特に制限はないが0.1Όないし
2Ό皋床が適圓である。 発明の具䜓的䜜甚 以䞊の構成のPHセンサヌを甚いお詊料溶液のPH
を枬定するには、第図に瀺すように、槜䞭
にPHを枬定すべき詊料溶液を入れ、この溶液
にこの発明のPHセンサヌおよび参照電極
ずしおの銀―塩化銀電極、カロメル電極等を浞挬
する。そしお参照電極に察するPHセンサヌ
を電䜍差起電力を電䜍差蚈で枬定す
る。このずき、詊料溶液を撹拌機で撹拌
するずよい。そしおあらかじめ䜜補しおおいた起
電力ずPHずの盞関図から詊料溶液のPHを続み取
る。 この発明のPHセンサヌによる起電力ずPHずの関
係は広範囲のPH領域で59mVPHの募配を持぀盎
線関係を瀺し匏 E0−RTln〔H+〕 ここで、は起電力mV、E0は䞀定電䜍
mV、はガス定数、は絶察枩床、はフア
ラデヌ定数、〔H+〕は氎玠むオン濃床で瀺され
るネルンストの匏を満足する。 以䞋、この発明の実斜䟋を蚘す。 実斜䟋  電極被芆膜䜜成のために、電解セルずしお通垞
の電極匏型セルを䜿甚し、察極ずしお癜金
網、基準電極ずしお飜和カロメル電極を䜿甚し、
動䜜電極ずしお被芆固䜓電極甚の癜金線盎埄
mmをテフロン登録商暙名で線の回りを絶瞁
したものを甚い、電極衚面は研摩機で平滑にし、
垌王氎で先滌した埌蒞留氎で氎掗いし電解液に浞
挬した。電解液は、メタノヌル溶媒で、10mMの
プノヌルず30mMの氎酞化ナトリりムを含み、
電解前にアルゎンガスで十分に脱酞玠した。印加
電圧を走査させ、プノヌル単量䜓の酞化反応が
癜金電極衚面で生起しおいるこずを確認したの
ち、印加電圧を0.9ボルト察飜和カロメル電極
で止め、分間定電解し電極衚面に酞化重合䜓生
成物を被芆させた。その埌電極衚面を蒞留氎で
回以䞊掗滌し、高分子被芆化孊修食電極PHセン
サヌを䜜補した。第図は酞化重合反応の開始
を瀺すサむクリツクボルタングラムであり、第䞀
走査酞化波ず第二走査波ずのピヌク電流の違いは
電極衚面での被芆膜生成に起因するものである。
なお、電䜍走査速床は74mV秒であ぀た。 PH枬定甚詊料溶液ずしお、0.05Mの党リン酞濃
床を含む緩衝溶液を甚い、氎酞化ナトリりムおよ
び過塩玠酞で溶液のPHを2.00から12.00の範囲に
調敎したものを甚いた。この詊料溶液に被芆膜電
極を浞し、銀―塩化銀電極を基準電極ずしお起電
力を枬定した。この被芆膜電極の枬定起電力ず垂
販のガラス電極で枬定したPH倀ずをプロツトした
ものを第図に癜䞞印で瀺す。この盎線の募配は
広範囲のPH領域で59mVPHで、ネルンストの関
係匏を完党に満足する。又、本実斜䟋で埗たPHセ
ンサヌの亀流むンピヌダンス枬定結果を衚に瀺
す。重合䜓膜をコヌトする前埌での抵抗成分、容
量成分の倉化が少なく極めお䜎むンピヌダンスの
PHセンサヌが提䟛されさたこずが認められる。な
お、枬定条件はPHの0.05Mリン酞緩衝液溶液䞭
で癜金を電極ずしお甚いた。
[Formula] Hydroxyalkyl group (-R″OH), carboxyl group, aldehyde group, hydroxyl group, etc. Specific examples of such hydroxy aromatic compounds include phenol, dimethylphenol (for example, 2,6- and 3,5-dimethylphenol), 2-, 3- and 4-hydroxypyridine,
o- and m-benzyl alcohol, o-, m-
and p-hydroxybenzaldehyde, o-,
m- and n-hydroxyacetophenone, o
-, m- and p-hydroxypropiophenone, o-, m- and p-benzophenol, o
-m- and p-hydroxybenzophenone, o
-, m- and p-carboxyphenols, diphenylphenols (e.g. 2,6- and 3,
5-diphenylphenol), 2-methyl-8-
Hydroquinoline, 5-hydroxy-1,4-naphthoquinone, 4-(p-hydroxyphenyl)-2
-butanone, 1,5-dihydroxy-1,2,
3,4-tetrahydronaphthalene, bisphenol A, etc. Note that the term polymer used in this specification includes both homopolymers and interpolymers (eg, copolymers, terpolymers, etc.). Specific examples of the polymer film include polyphenylene oxide or polycarbonate. Specifically, it is as described above. In order to deposit such a polymer film of a hydroxy aromatic compound on the surface of the conductor 11, the hydroxy aromatic compound is coated onto the conductor by an electrolytic oxidation polymerization method, a plasma polymerization method, a thermal polymerization method, a radiation polymerization method, etc. 11 A method of polymerizing on the surface, a method of dissolving a pre-synthesized polymer in a solvent and fixing this solution on the conductor surface by dipping/coating and drying, and a method of polymerizing the polymer film by chemical treatment, physical treatment or A method of directly fixing it to the surface of the conductor by irradiation treatment can be adopted. The most convenient of the above deposition methods is by electrolytic oxidative polymerization. In this method, a hydroxy aromatic compound is electrolytically oxidized and polymerized in an alkaline solvent such as methanol, and a polymer film is deposited on the surface of a desired conductor as a working electrode. There is no particular limit to the thickness of the polymer film, but it is 0.1Ό or more.
Approximately 2Ό is appropriate. Specific effects of the invention The PH sensor of the above-mentioned configuration is used to determine the PH of a sample solution.
To measure PH, as shown in FIG.
Immerse silver-silver chloride electrodes, calomel electrodes, etc. and the PH sensor 2 relative to the reference electrode 24
3, the potential difference (electromotive force) is measured with a potentiometer 26. At this time, it is preferable to stir the sample solution 22 with a stirrer 25. Then, the PH of the sample solution is determined from the correlation diagram between electromotive force and PH prepared in advance. The relationship between the electromotive force and PH due to the PH sensor of this invention is a linear relationship with a slope of 59 mV/PH in a wide range of PH regions, and is expressed by the formula E=E 0 −RT/Fln[H + ] (where E is the electromotive force It satisfies the Nernst equation expressed by power (mV), E 0 is a constant potential (mV), R is a gas constant, T is an absolute temperature, F is a Faraday constant, and [H + ] is a hydrogen ion concentration). Examples of this invention will be described below. Example 1 To create an electrode coating film, a normal three-electrode H-type cell was used as an electrolytic cell, a platinum mesh was used as the counter electrode, a saturated calomel electrode was used as the reference electrode,
Platinum wire for coated solid electrode (diameter 1
mm) with the wires insulated with Teflon (registered trademark), and the electrode surface was smoothed with a polishing machine.
After pre-washing with dilute aqua regia, it was washed with distilled water and immersed in electrolyte. The electrolyte was a methanol solvent containing 10mM phenol and 30mM sodium hydroxide;
Before electrolysis, oxygen was sufficiently removed with argon gas. After scanning the applied voltage and confirming that the oxidation reaction of the phenol monomer is occurring on the surface of the platinum electrode, the applied voltage was increased to 0.9 volts (vs. saturated calomel electrode).
The electrode was stopped at a constant electrolytic state for 3 minutes to coat the electrode surface with the oxidized polymer product. After that, soak the electrode surface with distilled water.
After washing several times, a polymer-coated chemically modified electrode (PH sensor) was fabricated. FIG. 3 is a cyclic voltamgram showing the start of the oxidative polymerization reaction, and the difference in peak current between the first scanning oxidation wave and the second scanning wave is due to the formation of a coating film on the electrode surface.
Note that the potential scanning speed was 74 mV/sec. As a sample solution for PH measurement, a buffer solution containing a total phosphoric acid concentration of 0.05M was used, and the pH of the solution was adjusted to a range of 2.00 to 12.00 with sodium hydroxide and perchloric acid. The coated membrane electrode was immersed in this sample solution, and the electromotive force was measured using the silver-silver chloride electrode as a reference electrode. A plot of the measured electromotive force of this coated membrane electrode and the PH value measured with a commercially available glass electrode is shown in FIG. 4 by white circles. The slope of this straight line is 59mV/PH over a wide range of pH ranges, completely satisfying the Nernst relation. Further, Table 1 shows the AC impedance measurement results of the PH sensor obtained in this example. Extremely low impedance with little change in resistance and capacitance components before and after coating with polymer film.
It is acknowledged that the PH sensor was provided. The measurement conditions were as follows: platinum was used as an electrode in a 0.05M phosphate buffer solution with a pH of 7.

【衚】 電極電䜍起電力応答の粟床ず安定性に関し
おは、〜分以内で電䜍は䞀定倀ずなりその埌
数時間、±2mVの範囲内で安定であり、氎玠むオ
ン濃床枬定に極めお優れた電極である。たた、ネ
ルンスト匏を満足するPH範囲は、3.0PH10.5
の範囲にあり、ガラス電極ず同様の枬定PH範囲を
も぀。 次に、該圓電極をPHのリン酞緩衝液に24時
間浞挬を続けた埌、起電力枬定を行぀た結果を第
図に黒䞞印で瀺すが、この堎合もネルンスト匏
を満足し、被芆膜電極の耐久性が極めお良いこず
が蚌明できた。 実斜䟋 〜21 実斜䟋ず同様の電解重合法で、䞋蚘衚に瀺
すヒドロキシ芳銙族化合物を癜金電極䞊で重合さ
せ被芆膜ずし、該電極のPHセンサヌずしおの機胜
性を怜蚎した。この結果を衚にたずめお瀺す。
この䞭で、―ヒドロキシベンゟプノン、―
ヒドロキシベンゞルアルコヌル、―ゞメチ
ルプノヌルの電解重合被芆電極が特に氎玠むオ
ン濃床枬定センサヌずしお優れおいるこずがわか
぀た。
[Table] Regarding the accuracy and stability of the electrode potential (electromotive force) response, the potential reaches a constant value within 3 to 5 minutes and remains stable within a range of ±2 mV for several hours thereafter, making it extremely excellent for measuring hydrogen ion concentration. This is an electrode. Also, the PH range that satisfies the Nernst formula is 3.0PH10.5
It has a measurement pH range similar to that of a glass electrode. Next, after continuing to immerse the corresponding electrode in a phosphate buffer solution with a pH of 7 for 24 hours, the electromotive force was measured. The results are shown in Figure 4 with black circles, and in this case, the Nernst equation was also satisfied. The durability of the coated membrane electrode was proved to be extremely good. Examples 2 to 21 Using the same electrolytic polymerization method as in Example 1, the hydroxy aromatic compounds shown in Table 2 below were polymerized on a platinum electrode to form a coating film, and the functionality of the electrode as a PH sensor was investigated. The results are summarized in Table 2.
Among these, o-hydroxybenzophenone, o-
It has been found that an electrode coated with electrolytic polymerization of hydroxybenzyl alcohol and 3,5-dimethylphenol is particularly excellent as a sensor for measuring hydrogen ion concentration.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 泚φはフェニル基を瀺す。
実斜䟋 22 詊料溶液䞭のむオン濃床をかえるため党リン酞
濃床を0.1Mから×10-4Mたで倉化させ、実斜
䟋で䜜補された電極で氎玠むオン濃床に察する
起電力応答を調べた。PH範囲3.0PH10.0で
59mVPHの傟きを満足した。該電極が、支持電
解質をほずんど含たない詊料溶䞭でも、PHセンサ
ヌずしお䜿甚可胜であるこずがわか぀た。 実斜䟋 23 ポリプニレンオキシド、ポリ―ゞメチ
ルプニレンオキシド及びポリカヌボネヌトをそ
れぞれ0.01重量の濃床でベンれンに溶解し、こ
れら各溶液に癜金線の末端郚を浞挬した。数秒埌
各癜金線を各溶液から取り出し、也燥させお実斜
䟋のものず同様の機胜を有するPHセンサヌを埗
た。起電力ずPHずの関係では、ポリカヌボネヌト
で54mVPHずなり、他は59mVPHであ぀た。 発明の具䜓的効果 以䞊述べたように、この発明のPHセンサヌは埓
来のガラス電極ず異なり以䞋に列挙する効果を奏
する。 (1) ヒドロキシ芳銙族化合物から誘導された重合
䜓膜を被着しおなる導電䜓を溶液に浞挬し、そ
の電極電䜍応答でPHを枬定できる。したが぀
お、基準液宀を蚭ける必芁がなく、導電䜓の加
工限定範囲たで埮小化でき、枬定詊料液が少量
でよい。たた、電䜍応答速床も早い。この発明
のPHセンサヌは䜓内挿入可胜なように圢成する
こずもできる。 (2) 重合䜓膜の導電性は極めお良く、膜抵抗は非
垞に小さく、䜎むンピヌダンス化されおいるの
で、枬定に高入力むンピヌダンスの増幅噚を䜵
甚する必芁がない。 (3) 倚皮類のむオン皮を含む溶液䞭でも短時間に
PHを定量的に確実に枬定できる。たた、懞濁液
やスラリヌ状液のような䞍均䞀物質を含む溶液
系でもPHの枬定ができるように適圓な被芆膜凊
理をおこなえる。 (4) 基準液宀がなく、しかも重合䜓膜は玄200℃
の耐熱性を瀺すので、高枩液䞭でのPH枬定が可
胜である。 (5) 重合䜓膜が消耗するたで䜕回も䜿甚できる。 (6) ガラス電極のPH枬定可胜範囲PH〜10
ばかりでなく、それを越える範囲にわた぀おPH
の枬定ができ、特にアルカリ領域でのPH枬定に
奜適である。
[Table] *Note) φ represents a phenyl group.
Example 22 In order to change the ion concentration in the sample solution, the total phosphoric acid concentration was varied from 0.1 M to 5×10 −4 M, and the electromotive force response to the hydrogen ion concentration was investigated using the electrode prepared in Example 1. PH range 3.0PH10.0
The slope of 59mV/PH was satisfied. It was found that the electrode can be used as a PH sensor even in a sample solution containing almost no supporting electrolyte. Example 23 Polyphenylene oxide, poly2,6-dimethylphenylene oxide, and polycarbonate were each dissolved in benzene at a concentration of 0.01% by weight, and the end of a platinum wire was immersed in each of these solutions. After several seconds, each platinum wire was taken out from each solution and dried to obtain a PH sensor having the same function as that of Example 1. The relationship between electromotive force and PH was 54 mV/PH for polycarbonate, and 59 mV/PH for the others. Specific Effects of the Invention As described above, the PH sensor of the present invention has the following effects, unlike conventional glass electrodes. (1) A conductor coated with a polymer film derived from a hydroxyaromatic compound is immersed in a solution, and PH can be measured based on the electrode potential response. Therefore, there is no need to provide a reference liquid chamber, miniaturization can be achieved to a limited range of processing of the conductor, and a small amount of measurement sample liquid is required. Also, the potential response speed is fast. The PH sensor of this invention can also be formed so that it can be inserted into the body. (2) The conductivity of the polymer membrane is extremely good, the membrane resistance is extremely low, and the impedance is low, so there is no need to use a high input impedance amplifier for measurement. (3) In a short time even in solutions containing many types of ionic species.
PH can be measured quantitatively and reliably. In addition, an appropriate coating film treatment can be performed to enable PH measurement even in solution systems containing heterogeneous substances such as suspensions and slurry liquids. (4) There is no reference liquid chamber, and the temperature of the polymer membrane is approximately 200℃.
PH measurement in high temperature liquids is possible. (5) The polymer membrane can be used many times until it wears out. (6) PH measurable range of glass electrode (PH=3 to 10)
PH not only, but also beyond that.
can be measured, making it particularly suitable for PH measurement in the alkaline region.

【図面の簡単な説明】[Brief explanation of the drawing]

第図はこの発明のPHセンサヌの䞀郚の拡倧断
面図、第図はこの発明のPHセンサヌによるPH枬
定方法を瀺す抂略図、第図はプノヌルの電極
酞化反応時のサむクリツクボルタングラム、第
図はこの発明のPHセンサヌの起電力ずPHずの関係
を瀺すグラフ。   導電䜓、  重合䜓膜、  
PHセンサヌ、  参照電極、  電䜍差
蚈。
Fig. 1 is an enlarged sectional view of a part of the PH sensor of the present invention, Fig. 2 is a schematic diagram showing the PH measurement method using the PH sensor of the present invention, and Fig. 3 is a cyclic voltamgram during the electrode oxidation reaction of phenol. , 4th
The figure is a graph showing the relationship between the electromotive force and PH of the PH sensor of this invention. 11... Conductor, 12... Polymer film, 23...
PH sensor, 24... reference electrode, 26... potentiometer.

Claims (1)

【特蚱請求の範囲】  溶液のPHを電極電䜍応答で枬定するPHセンサ
ヌであ぀お、導電䜓の衚面にヒドロキシ芳銙族化
合物から誘導された重合䜓膜を盎接的に被着しお
なるこずを特城ずするPHセンサヌ。  重合䜓膜が䜎むンピヌダンス化されおいるこ
ずを特城ずする特蚱請求の範囲第項蚘茉のPHセ
ンサヌ。  重合䜓膜が電解酞化重合膜である特蚱請求の
範囲第項たたは第項蚘茉のPHセンサヌ。  ヒドロキシ芳銙族化合物が匏 ここで、Arは芳銙栞、各は眮換基、およ
びはないしArの有効原子䟡数で瀺される
特蚱請求の範囲第項ないし第項のいずれかに
蚘茉のPHセンサヌ。  ヒドロキシ芳銙族化合物がプノヌル、ゞメ
チルプノヌル、ヒドロキシピリゞン、―およ
び―ベンゞルアルコヌル、―、―および
―ヒドロキシベンズアルデヒド、―および―
ヒドロキシアセトプノン、―、―および
―ヒドロキシプロピオプノン、―、―およ
び―ベンゟプノヌル、―、―および―
ヒドロキシベンゟプノン、―、―および
―カルボキシプノヌル、ゞプニルプノヌ
ル、―メチル――ヒドロキノリン、―ヒド
ロキシ――ナフトキノン、――ヒド
ロキシプニル――ブタノン、―ゞヒ
ドロキシ――テトラヒドロナフタ
レン、䞊びにビスプノヌルよりなる矀の䞭か
ら遞ばれた少なくずも皮である特蚱請求の範囲
第項蚘茉のPHセンサヌ。  重合䜓膜が溶媒に溶解し衚面に塗垃也燥した
ポリプニレンオキシド又はポリカヌボネヌトで
ある特蚱請求の範囲第項又は第項蚘茉のPHセ
ンサヌ。  重合䜓膜がポリプニレンオキシド、ポリフ
゚ニレンオキシド誘導䜓、ポリゞプニルプニ
レンオキシド、ポリゞメチル・プニレンオキシ
ド、ポリカヌボネヌト誘導䜓の少くずも぀より
なる矀の䞭から遞ばれたものである特蚱請求の範
囲第項、第項および第項のいずれかに蚘茉
のPHセンサヌ。
[Claims] 1. A PH sensor that measures the PH of a solution based on electrode potential response, which is made by directly depositing a polymer film derived from a hydroxy aromatic compound on the surface of a conductor. Characteristic PH sensor. 2. The PH sensor according to claim 1, wherein the polymer film has a low impedance. 3. The PH sensor according to claim 1 or 2, wherein the polymer membrane is an electrolytically oxidized polymer membrane. 4 Hydroxy aromatic compound has the formula (Here, Ar is an aromatic nucleus, each R is a substituent, and m is the effective valence number of O to Ar.) PH sensor according to any one of claims 1 to 3. 5 Hydroxyaromatic compounds include phenol, dimethylphenol, hydroxypyridine, o- and m-benzyl alcohol, o-, m- and p-
-Hydroxybenzaldehyde, o- and m-
Hydroxyacetophenone, o-, m- and p
-Hydroxypropiophenone, o-, m- and p-benzophenol, o-, m- and p-
Hydroxybenzophenone, o-, m- and p
-Carboxyphenol, diphenylphenol, 2-methyl-8-hydroquinoline, 5-hydroxy-1,4-naphthoquinone, 4-(p-hydroxyphenyl)-2-butanone, 1,5-dihydroxy-1,2 , 3,4-tetrahydronaphthalene, and bisphenol A. 6. The PH sensor according to claim 1 or 2, wherein the polymer film is polyphenylene oxide or polycarbonate dissolved in a solvent, coated on the surface and dried. 7. A patent in which the polymer film is selected from the group consisting of at least one of polyphenylene oxide, polyphenylene oxide derivatives, polydiphenylphenylene oxide, polydimethyl phenylene oxide, and polycarbonate derivatives. PH sensor according to any one of claims 1, 2 and 6.
JP56004295A 1981-01-14 1981-01-14 Ph sensor Granted JPS57118153A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56004295A JPS57118153A (en) 1981-01-14 1981-01-14 Ph sensor
EP19820100198 EP0056283B1 (en) 1981-01-14 1982-01-13 Ion sensor
DE8282100198T DE3264957D1 (en) 1981-01-14 1982-01-13 Ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56004295A JPS57118153A (en) 1981-01-14 1981-01-14 Ph sensor

Publications (2)

Publication Number Publication Date
JPS57118153A JPS57118153A (en) 1982-07-22
JPS6313148B2 true JPS6313148B2 (en) 1988-03-24

Family

ID=11580517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56004295A Granted JPS57118153A (en) 1981-01-14 1981-01-14 Ph sensor

Country Status (1)

Country Link
JP (1) JPS57118153A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852556A (en) * 1981-09-24 1983-03-28 Terumo Corp Ion selective permeable film and ion sensor
JPS5832155A (en) * 1981-08-19 1983-02-25 Terumo Corp Ion sensor
JPS59123395U (en) * 1983-02-07 1984-08-20 株匏䌚瀟アドバンテスト Magazine transfer device for IC tester
JPS6114560A (en) * 1984-06-30 1986-01-22 Terumo Corp Ph sensor
US4717673A (en) * 1984-11-23 1988-01-05 Massachusetts Institute Of Technology Microelectrochemical devices
JPS61213661A (en) * 1985-03-19 1986-09-22 Terumo Corp Ph sensor
JPS63131056A (en) * 1986-11-20 1988-06-03 Terumo Corp Fet electrode
JPS63131057A (en) * 1986-11-20 1988-06-03 Terumo Corp Enzyme sensor
US5156728A (en) * 1987-02-12 1992-10-20 Terumo Kabushiki Kaisha Ion sensor
JPH0743338B2 (en) * 1987-07-03 1995-05-15 テルモ株匏䌚瀟 Multi-sensor
JPH0781980B2 (en) * 1989-06-05 1995-09-06 工業技術院長 Ion-selective modified electrode

Also Published As

Publication number Publication date
JPS57118153A (en) 1982-07-22

Similar Documents

Publication Publication Date Title
EP0167126B1 (en) Ph sensor
US6797152B2 (en) Sensors and sensing methods for detecting analytes based on changes in pKa of a sensing polymer
JPH10507521A (en) Analyte selection sensor
JPH0431545B2 (en)
JPS6313148B2 (en)
Agui et al. Analytical applications of cylindrical carbon fiber microelectrodes. Simultaneous voltammetric determination of phenolic antioxidants in food
JPH048744B2 (en)
JPS59142451A (en) Ion sensor
JP6875673B2 (en) Chiral compound detection method
JPS61251764A (en) Ph sensor
JP5311501B2 (en) Method and apparatus for measuring pH using boron-doped diamond electrode
Passamonti et al. Determination of Captropril using adsorptive cathodic differential pulse stripping voltammetry with the HMDE
Issac et al. Voltammetric study of pyridine-2-aldoxime methochloride at poly (p-toluene sulfonic acid) modified glassy carbon sensor and its analytical applications
JPH0446378B2 (en)
EP0614082A2 (en) Procedure and apparatus for the determination of concentration of ammonia, and a procedure for the manufacturing of a detector
JPH0410985B2 (en)
JPS5832155A (en) Ion sensor
JPS5852556A (en) Ion selective permeable film and ion sensor
JPH0375063B2 (en)
JPH0339582B2 (en)
JPH03295460A (en) Rotary electrode and concentration measuring method
JPH0339586B2 (en)
JPH0641929B2 (en) Ion sensor
JPH0370781B2 (en)
JPH0375065B2 (en)