JP5311501B2 - Method and apparatus for measuring pH using boron-doped diamond electrode - Google Patents

Method and apparatus for measuring pH using boron-doped diamond electrode Download PDF

Info

Publication number
JP5311501B2
JP5311501B2 JP2010039407A JP2010039407A JP5311501B2 JP 5311501 B2 JP5311501 B2 JP 5311501B2 JP 2010039407 A JP2010039407 A JP 2010039407A JP 2010039407 A JP2010039407 A JP 2010039407A JP 5311501 B2 JP5311501 B2 JP 5311501B2
Authority
JP
Japan
Prior art keywords
electrode
bdd
working electrode
boron
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010039407A
Other languages
Japanese (ja)
Other versions
JP2011174822A (en
Inventor
尚子 三谷
泰明 栄長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2010039407A priority Critical patent/JP5311501B2/en
Publication of JP2011174822A publication Critical patent/JP2011174822A/en
Application granted granted Critical
Publication of JP5311501B2 publication Critical patent/JP5311501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、pHの測定方法及び装置に関し、特に、ホウ素ドープダイヤモンド電極を用いたpHの測定方法及び装置に関する。   The present invention relates to a pH measuring method and apparatus, and more particularly to a pH measuring method and apparatus using a boron-doped diamond electrode.

従来、pH測定方法としては、指示薬を用いる方法、pH試験紙を用いる方法、水素電極、キンヒドロン電極、アンチモン電極などの金属電極による方法、及びガラス電極を用いる方法等が知られている。中でも、ガラス電極を用いる方法は、安価で測定が簡便であるため、最も広く用いられている方法であり、内部にpHが一定の緩衝溶液が封入されたガラス電極を用い、ガラス膜の内部および測定溶液に接触する外部にそれぞれ水素イオンが吸着し電位差を生ずることを用いる方法で、ガラス電極と参照電極との電位差をpHに換算するものである。
しかしながら、ガラス電極を用いる方法は、いくつかの問題がある。例えば、アルカリ溶液又はフッ化水素溶液中、或いは100℃以上の高温溶液中では不安定である。また、応答が遅く、ガラスの面積が応答性に影響することから小型化が困難である。特に、ガラスが有する硬さから、血液中や生体内(in vivo)での測定に適用するには課題がある。
Conventionally, as a pH measurement method, a method using an indicator, a method using a pH test paper, a method using a metal electrode such as a hydrogen electrode, a quinhydrone electrode, and an antimony electrode, a method using a glass electrode, and the like are known. Among them, the method using a glass electrode is the most widely used method because it is inexpensive and easy to measure, and uses a glass electrode in which a buffer solution having a constant pH is enclosed, and the inside of the glass membrane and The potential difference between the glass electrode and the reference electrode is converted to pH by a method using the fact that hydrogen ions are adsorbed to the outside in contact with the measurement solution to generate a potential difference.
However, the method using a glass electrode has several problems. For example, it is unstable in an alkaline solution or a hydrogen fluoride solution, or in a high temperature solution of 100 ° C. or higher. Moreover, since the response is slow and the area of the glass affects the responsiveness, it is difficult to reduce the size. In particular, due to the hardness of glass, there is a problem in applying it to measurement in blood or in vivo.

また、ガラス電極に限らず、電極を用いるpHの測定方法は、いわゆるpH測定領域を超えた領域では、酸誤差あるいはアルカリ誤差といわれるように、ネルンスト式の直線から大幅にずれるので、強酸あるいは強アルカリ水溶液中では使用できないという問題もある。   In addition to glass electrodes, the pH measurement method using an electrode greatly deviates from the Nernst-type straight line in a region beyond the so-called pH measurement region, so-called acid error or alkali error. There is also a problem that it cannot be used in an alkaline aqueous solution.

こうした電極を用いる方法の課題を解決するpHの測定法として、ISFET(Ion Sensitive Field Effect Transistor)センサを用いる方法が知られている。ISFETは、MOSFET(Metal Oxide Semiconductor)の金属膜に該当する部分に、イオン感応膜を配置したものであり、溶液に参照電極から所定の電位を印加した状態で、イオン感応膜で溶液中の水素イオンを検出し、水素イオンの量をFETの電流に変換する方法である(特許文献1等)。
このセンサは、ガラス電極を用いないために、割れる心配がなく、KCl等の保存液を必要とせず、面積の応答性への影響などの制約がなく、半導体技術で小型化ができ、ゲート部分被覆によって様々なイオンの検出が可能である、等の利点を有する。しかしながら、デバイスの作製に手間がかかる等の問題がある。
As a method for measuring pH to solve the problem of the method using such an electrode, a method using an ISFET (Ion Sensitive Field Effect Transistor) sensor is known. An ISFET has an ion sensitive film disposed in a portion corresponding to a metal film of a MOSFET (Metal Oxide Semiconductor), and a hydrogen ion in a solution is applied to the solution by applying a predetermined potential from a reference electrode to the solution. In this method, ions are detected and the amount of hydrogen ions is converted into FET current (Patent Document 1, etc.).
Since this sensor does not use a glass electrode, there is no fear of breaking, no storage solution such as KCl is required, there is no restriction on the response of the area, etc., and it can be downsized with semiconductor technology, and the gate part The coating has the advantage that various ions can be detected. However, there is a problem that it takes time to manufacture the device.

一方、ホウ素をドープした導電性ダイヤモンド(BDD)電極を、種々の生化学種や環境汚染物資の電気化学的検出に用いることが提案されている。このダイヤモンド電極は、グラッシーカーボン(GC)電極、白金電極、金電極等の従来の電極とは異なる優れた性質を有していることから多くの注目が寄せられているものであり、特に、高い熱伝導率、高い硬度、および高い化学的不活性等のダイヤモンドの良く知られた特性に加えて、導電性ダイヤモンドの注目すべき特徴として、液体中及び固体中での広い電位窓、低い電気容量、優れた電気化学的安定性、及び優れた生体適合性などが知られている(特許文献2)。
本発明者等も、BDD電極を用いて、ストリッピングボルタンメトリ法により、被測定電解質中に電解質として溶解している元素を電気化学的に分析する方法を報告している(特許文献3)。
On the other hand, it has been proposed to use a conductive diamond (BDD) electrode doped with boron for electrochemical detection of various biochemical species and environmental pollutants. This diamond electrode has received a lot of attention because it has excellent properties different from conventional electrodes such as a glassy carbon (GC) electrode, a platinum electrode, and a gold electrode. In addition to the well-known properties of diamond, such as thermal conductivity, high hardness, and high chemical inertness, notable features of conductive diamond include a wide potential window in liquids and solids, low capacitance Excellent electrochemical stability and excellent biocompatibility are known (Patent Document 2).
The present inventors have also reported a method of electrochemically analyzing an element dissolved as an electrolyte in a measured electrolyte by a stripping voltammetry method using a BDD electrode (Patent Document 3). .

このダイヤモンド電極をマイクロサイズで作製することが可能になれば、in vivo測定をはじめ、センサーの小型化、高感度化も期待できるため、実用に供する電極形態として注目されている。本発明者らは、タングステンワイヤ上にダイヤモンドを堆積させることにより、ダイヤモンドマイクロ電極を作製することを試み、実際に脳内での測定が可能であるサイズ(直径5μm)の電極作製に成功し、マウス脳内のドーパミンのin vivo測定にこのBDDマイクロ電極を用いた(非特許文献1)。   If this diamond electrode can be produced in a micro size, it can be expected to reduce the size and increase the sensitivity of the sensor, including in vivo measurement, and is attracting attention as a practical electrode configuration. The inventors of the present invention attempted to produce a diamond microelectrode by depositing diamond on a tungsten wire, and succeeded in producing an electrode of a size (diameter 5 μm) that can actually be measured in the brain. This BDD microelectrode was used for in vivo measurement of dopamine in the mouse brain (Non-patent Document 1).

さらに、本発明者等は、このBDD電極が有している、電位窓が広く、バックグラウンド電流が小さく、高い化学的耐性を有するため、苛酷な条件下でも電気化学的分析を行うことができるという利点を、電気化学的検出法に用いるだけでなく、pH測定にも応用することを検討し、報告している(非特許文献2)。すなわち、前述のGC電極、白金電極、金電極等の従来の電極ではpH測定域(2〜12)を超えた領域では正確な測定ができないという問題は、それらの電位窓が小さいことによるものであり、該課題を広い電位窓を有するBDD電極を用いることにより解決するものである。   Furthermore, since the present inventors have a wide potential window, a small background current, and high chemical resistance, the present inventors can perform electrochemical analysis even under severe conditions. We have studied and reported that this advantage can be applied not only to electrochemical detection methods but also to pH measurement (Non-patent Document 2). That is, the problem that the conventional electrodes such as the above-mentioned GC electrode, platinum electrode, and gold electrode cannot perform accurate measurement in the region exceeding the pH measurement range (2 to 12) is due to their small potential window. The problem is solved by using a BDD electrode having a wide potential window.

特開平8−94577号公報JP-A-8-94577 特開平11−83799号公報Japanese Patent Laid-Open No. 11-83799 特許第4215132号公報Japanese Patent No. 4215132

A. Suzuki, Tribidasari A. Ivandini, K. Yoshimi, A. Fujishima,G.Oyama, T. Nakazato, N. Hattori, S. Kitazawa, Y.Einaga/ Anal. Chem.2007, 79,8608-8615, Fabrication, Characterization, and Application of Boron-DopedDiamond Microelectrodes for in Vivo Dopamine Detection.A. Suzuki, Tribidasari A. Ivandini, K. Yoshimi, A. Fujishima, G. Oyama, T. Nakazato, N. Hattori, S. Kitazawa, Y. Einaga / Anal. Chem. 2007, 79, 8608-8615, Fabrication , Characterization, and Application of Boron-DopedDiamond Microelectrodes for in Vivo Dopamine Detection. N. Mitani, A. Einaga/ Jounal of Electroanalytical Chemistry 626(2009) 156-160, The simple voltammetric analysis of acids using highly boron-dopeddiamond macroelectrodes and microelectrodes.N. Mitani, A. Einaga / Jounal of Electroanalytical Chemistry 626 (2009) 156-160, The simple voltammetric analysis of acids using highly boron-dopeddiamond macroelectrodes and microelectrodes.

図15は、従来の電極とBDD電極の電位窓の幅を比較する図である。
図16は、非特許文献2に記載の方法で、すなわち、LSV法により、HCl溶液を用いて行ったpH測定の結果を示す図であり、横軸は、対極と参照電極の電位を示し、縦軸は発生した電流値を示している。なお、作用電極にBDD、対極に白金(Pt)、参照電極にAg/AgClを用いている。
該図から明らかなように、酸性領域では、pH値の違いにより、明らかな電流値の差が生じ、pH測定は可能であることがわかる。
しかしながら、アルカリ領域では同様な結果が得られないために、この方法では、酸性溶液のpH測定にしか用いることができないという問題がある。
FIG. 15 is a diagram comparing the width of the potential window of the conventional electrode and the BDD electrode.
FIG. 16 is a diagram showing the results of pH measurement performed by using the HCl solution by the method described in Non-Patent Document 2, that is, by the LSV method, and the horizontal axis shows the potential of the counter electrode and the reference electrode. The vertical axis indicates the generated current value. BDD is used for the working electrode, platinum (Pt) is used for the counter electrode, and Ag / AgCl is used for the reference electrode.
As is apparent from the figure, in the acidic region, a clear difference in current value occurs due to the difference in pH value, and it can be seen that pH measurement is possible.
However, since similar results cannot be obtained in the alkaline region, this method has a problem that it can be used only for pH measurement of acidic solutions.

本発明は、以上のような事情に鑑みてなされたものであって、BDD電極を用いたpH測定方法において、酸性領域のみならずアルカリ性領域においても測定可能な方法を提供すること目的とするものである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of measuring not only in an acidic region but also in an alkaline region in a pH measuring method using a BDD electrode. It is.

本発明者が、上記目的を達成すべく検討したところ、作用極にホウ素ドープ導電性ダイヤモンド(BDD)電極を使用し、クロノポテンシオメトリー法(以下、「CP法」ということもある。)を適用して水素発生電位から被測定試料溶液のpH(水素イオン濃度)を測定することにより、広範囲な測定が可能となることが判明した。また、更に検討した結果、作用極にBDD−M電極を用いた場合には、緩衝液の緩衝能の影響を受けずにpHの測定が可能になることを見いだした。さらに検討を重ねたところ、カリウムの飽和溶液を用いることにより、共存イオンの影響を考慮せずに、pHの測定が可能であるという知見を得た。   When the present inventor has studied to achieve the above object, a boron-doped conductive diamond (BDD) electrode is used as a working electrode, and a chronopotentiometric method (hereinafter also referred to as “CP method”) is used. It was found that a wide range of measurements can be performed by measuring the pH (hydrogen ion concentration) of the sample solution to be measured from the hydrogen generation potential. Further, as a result of further investigation, it was found that when a BDD-M electrode was used as the working electrode, it was possible to measure pH without being affected by the buffer capacity of the buffer solution. As a result of further studies, it was found that by using a saturated solution of potassium, the pH can be measured without considering the influence of coexisting ions.

本発明は、これらの知見に基づいて完成されたものであり、以下の発明を提供するものである。
[1] 少なくとも、ホウ素ドープダイヤモンド電極からなる作用極、対極及び参照極を用意し、前記作用極と前記対電極と前記参照極を被測定試料に接触させ、前記作用極と前記対極との間に一定の電流を流し、所定時間経過後における前記作用極と前記参照極間の電圧値を測定し、得られた電圧値から前記試料中のpHを算出することを含んでなる、pH測定方法。
[2] 前記ホウ素ドープダイヤモンド電極からなる作用極が、マイクロ電極であることを特徴とする上記[1]のpH測定方法。
[3] 緩衝液を用いないことを特徴とする上記[2]のpH測定方法。
[4] 飽和塩化カリウム溶液を含む系でおこなうことを特徴とする上記[2]のpH測定方法。
[5] 被測定試料を収納する容器と、
該被測定試料と接触するように配置された、ホウ素ドープダイヤモンド電極からなる作用極、対極及び参照極と、
前記作用極と前記対極との間に一定の電流を流す手段、
一定電流を流してから所定時間経過後における前記作用極と前記参照極間の電圧値を測定する手段、及び
該電圧値から前記試料中のpH値を算出する手段
を少なくとも有するpH測定装置。
[6] 前記ホウ素ドープダイヤモンド電極からなる作用極が、マイクロ電極であることを特徴とする上記[5]のpH測定装置。
The present invention has been completed based on these findings, and provides the following inventions.
[1] At least a working electrode, a counter electrode, and a reference electrode made of a boron-doped diamond electrode are prepared, the working electrode, the counter electrode, and the reference electrode are brought into contact with a sample to be measured, and the working electrode and the counter electrode are placed between the working electrode and the counter electrode. A method for measuring pH, comprising: passing a constant current through the electrode, measuring a voltage value between the working electrode and the reference electrode after elapse of a predetermined time, and calculating a pH in the sample from the obtained voltage value. .
[2] The pH measurement method according to [1], wherein the working electrode composed of the boron-doped diamond electrode is a microelectrode.
[3] The pH measurement method according to the above [2], wherein no buffer solution is used.
[4] The pH measurement method according to the above [2], which is carried out in a system containing a saturated potassium chloride solution.
[5] a container for storing the sample to be measured;
A working electrode, a counter electrode, and a reference electrode made of a boron-doped diamond electrode disposed so as to be in contact with the sample to be measured;
Means for causing a constant current to flow between the working electrode and the counter electrode;
A pH measuring device comprising at least means for measuring a voltage value between the working electrode and the reference electrode after a predetermined time has passed after passing a constant current, and means for calculating a pH value in the sample from the voltage value.
[6] The pH measurement apparatus according to [5], wherein the working electrode composed of the boron-doped diamond electrode is a microelectrode.

本発明によれば、強酸水溶液から強アルカリ水溶液までの、広範囲な領域におけるpHの測定が可能となる。特に、作用極にBDD−M電極を用いることにより、緩衝液の緩衝能の影響を受けずにpHの測定が可能になる。さらに、カリウムの飽和溶液を用いることにより、共存イオンの影響を考慮せずに、pHの測定が可能となる。   According to the present invention, it is possible to measure pH in a wide range from a strong acid aqueous solution to a strong alkali aqueous solution. In particular, by using a BDD-M electrode as the working electrode, the pH can be measured without being affected by the buffering capacity of the buffer solution. Furthermore, by using a saturated solution of potassium, it becomes possible to measure pH without considering the influence of coexisting ions.

マイクロ波プラズマCVD法によりBDD電極を製造するための装置を模式的に示す図。The figure which shows typically the apparatus for manufacturing a BDD electrode by a microwave plasma CVD method. マイクロ波プラズマCVD法によりBDD−M電極を製造する方法を模式的に示す図。The figure which shows typically the method of manufacturing a BDD-M electrode by the microwave plasma CVD method. 本発明において製造したBDD−M電極の図。The figure of the BDD-M electrode manufactured in this invention. 作用極にBDD平板電極を用いたpHの測定用の実験装置を模式的に示す図。The figure which shows typically the experimental apparatus for the measurement of pH which used the BDD flat electrode for the working electrode. 作用極にBDD−M電極を用いたpHの測定用の実験装置を模式的に示す図。The figure which shows typically the experimental apparatus for the measurement of pH which used the BDD-M electrode for the working electrode. 本発明のBDD−M電極を用いたpH測定装置の一態様を示す図。The figure which shows the one aspect | mode of the pH measuring apparatus using the BDD-M electrode of this invention. 本発明のBDD電極のSEM写真。The SEM photograph of the BDD electrode of this invention. 本発明のBDD−M電極のSEM写真。The SEM photograph of the BDD-M electrode of this invention. 一定電流を流した場合のBDD電極と参照電極間の電位の時間経過による変化を表す図。The figure showing the change by the time passage of the electric potential between a BDD electrode and a reference electrode at the time of flowing a fixed current. 図9(a)の10秒におけるpHと電位の関係を示す図。The figure which shows the relationship between pH and electric potential in 10 second of Fig.9 (a). 一定電流を流した場合のグラッシーカーボン(GC)電極と参照電極間の電位の時間経過による変化を表す図。The figure showing the change by the time passage of the potential between a glassy carbon (GC) electrode and a reference electrode when a constant current is passed. 図10(a)の10秒におけるpHと電位の関係を示す図。The figure which shows the relationship between pH and electric potential in 10 second of Fig.10 (a). BDD平板電極を用いた場合の10秒におけるpHと電位の関係を示す図。The figure which shows the relationship between pH and electric potential in 10 second at the time of using a BDD flat plate electrode. BDD−M電極を用いた場合の10秒におけるpHと電位の関係を示す図。The figure which shows the relationship between pH and electric potential in 10 second at the time of using a BDD-M electrode. CP法によるpH測定における共存イオンの影響を示す図。The figure which shows the influence of the coexisting ion in pH measurement by CP method. 飽和KCl:未知試料を1:5で混合した場合の、pHと、対極及び参照極間の電圧との関係を示す図。The figure which shows the relationship between pH and the voltage between a counter electrode and a reference electrode at the time of mixing saturated KCl: unknown sample 1: 5. 従来の電極とBDD電極の電位窓の幅を比較する図。The figure which compares the width | variety of the electric potential window of the conventional electrode and a BDD electrode. BDD電極を用いてLSV法により、HCl溶液を用いて行ったpH測定の結果を示す図。The figure which shows the result of the pH measurement performed using the HCl solution by the LSV method using the BDD electrode.

本発明は、作用極にホウ素ドープ導電性ダイヤモンド(以下、「BDD」ということもある。)電極を使用し、クロノポテンシオメトリー法(以下、「CP法」ということもある。)により電解液中のpH(水素イオン濃度)を測定することを特徴としている。すなわち、BDD電極からなる作用極、対極、及び参照極が、測定対象である被測定試料に接触するように配置し、作用極と対局間に一定の電流を流して定電流電解を行い、所定時間経過後の作用極と参照極間における電位を測定し、得られた電位から被測定試料中のpH値を算出することを基本的な構成としている。
そして、本発明の上記特徴は、pH測定にCP法を適用する場合、作用極としてホウ素ドープ導電性ダイヤモンド電極を用いることにより、他の材料からなる従来の電極を用いた場合には得られない安定したpHの測定が可能であることを見いだしたことによるものである。
In the present invention, a boron-doped conductive diamond (hereinafter also referred to as “BDD”) electrode is used as a working electrode, and an electrolytic solution is obtained by a chronopotentiometry method (hereinafter also referred to as “CP method”). It is characterized by measuring the pH (hydrogen ion concentration) inside. In other words, the working electrode, the counter electrode, and the reference electrode made up of BDD electrodes are arranged so as to be in contact with the sample to be measured, and constant current electrolysis is performed by flowing a constant current between the working electrode and the counter. The basic configuration is to measure the potential between the working electrode and the reference electrode after the elapse of time and calculate the pH value in the sample to be measured from the obtained potential.
And when the CP method is applied to pH measurement, the above features of the present invention cannot be obtained when a conventional electrode made of another material is used by using a boron-doped conductive diamond electrode as a working electrode. This is because it has been found that stable pH measurement is possible.

すなわち、後に記載する実施例から明らかなように、BDD電極からなる作用極、対極、及び参照極を被測定試料に接触するように配置して、CP法を適用した場合、作用極にBDD電極を用いる限り、経過時間に影響を受けずに、参照極との間に一定の安定した電位が得られるが、例えば、電気化学分析用として代表的な電極である、グラッシーカーボン電極を用いると、参照極との間に一定の安定した電位を得ることができない。   That is, as will be apparent from the examples described later, when the CP method is applied with the working electrode, the counter electrode, and the reference electrode made of BDD electrodes in contact with the sample to be measured, the BDD electrode is used as the working electrode. As long as is used, a constant stable potential can be obtained between the reference electrode without being affected by the elapsed time.For example, when a glassy carbon electrode, which is a typical electrode for electrochemical analysis, is used, A constant stable potential cannot be obtained between the reference electrode and the reference electrode.

また、本発明のもう1つの発明は、作用極にBDDマイクロ(以下、「BDD−M」ということもある。)電極を用いることにより、pH緩衝能の影響を受けない測定が可能であることを見いだしたことによるものである。
すなわち、通常、本発明のpHの測定においても、pH緩衝液(buffer solution)が用いられるが、BDDの平板電極を用いた測定では、緩衝液の緩衝能の影響をうけるが、BDD−M電極を用いた測定では、緩衝能の影響を受けない。
In addition, another invention of the present invention is capable of measurement without being affected by pH buffering ability by using a BDD micro (hereinafter also referred to as “BDD-M”) electrode as a working electrode. This is due to the finding.
In other words, a pH buffer solution (buffer solution) is usually used in the measurement of the pH of the present invention, but in the measurement using a BDD flat plate electrode, the buffer capacity of the buffer solution is affected, but the BDD-M electrode In the measurement using is not affected by the buffer capacity.

本発明のさらにもう1つ発明は、複数のイオンが共存する系において、カリウムイオンが飽和状態の系において、作用極にBDD−M電極を用いて測定することにより、未知の試料中のpHを測定することができることを見いだしたことによるものである。   According to yet another aspect of the present invention, in a system in which a plurality of ions coexist, in a system in which potassium ions are saturated, the pH in an unknown sample is measured by using a BDD-M electrode as a working electrode. This is because it has been found that it can be measured.

本発明に用いるBDD電極は、ダイヤモンドにホウ素をドープしてダイヤモンドを導電性としたものであるが、ホウ素ドープダイヤモンドの製造方法自体は公知である。
例えば、図1に示すマイクロ波プラズマCVD法により、以下のようにして製造される。
反応室内の試料台に、シリコンプレートなどの基板を設置し、ここに水素を一定量、キャリアガスとして流す。このキャリアガスの一部はバブリング用として、反応室に到達する前に、炭素源及びホウ素源を溶液させた溶液中を通過させ、炭素、ホウ素を含ませる。この状態で反応室内にマイクロ波を一定条件で与えて、プラズマ放電を起こさせると、キャリアガス中の炭素源から炭素ラジカルが生成し、基板上に堆積してダイヤモンドの薄膜が形成される。
The BDD electrode used in the present invention is obtained by doping diamond with boron to make the diamond conductive, but a method for producing boron-doped diamond is known per se.
For example, it is manufactured as follows by the microwave plasma CVD method shown in FIG.
A substrate such as a silicon plate is set on the sample stage in the reaction chamber, and a certain amount of hydrogen is allowed to flow as a carrier gas. A part of the carrier gas is used for bubbling, and before passing into the reaction chamber, the carrier gas is passed through a solution in which a carbon source and a boron source are in solution to contain carbon and boron. In this state, when microwaves are applied to the reaction chamber under certain conditions to cause plasma discharge, carbon radicals are generated from the carbon source in the carrier gas and deposited on the substrate to form a diamond thin film.

図2は、BDD−M電極の製造装置の概略図方法及び製造された電極の写真である。
図2に示すとおり、BDD−M電極は、図1と同様の装置を用いて、タングステンワイヤ上にダイヤモンドを堆積させたものであり、直径が5μm程度の大きさのものである。
図3は、この電極を用いて製造した作用極の写真である。
FIG. 2 is a schematic diagram of a BDD-M electrode manufacturing apparatus and a photograph of the manufactured electrode.
As shown in FIG. 2, the BDD-M electrode is obtained by depositing diamond on a tungsten wire using the same apparatus as in FIG. 1, and has a diameter of about 5 μm.
FIG. 3 is a photograph of a working electrode manufactured using this electrode.

図4は、本発明において、作用極にBDD平板電極を用いたpHの測定用の実験装置を模式的に示す図であり、測定対象となる電解質溶液中に、対極及び参照極を配置し、電解質溶液に接触するように容器の底面に作用極を配置したものであり、作用極と対極間に一定の電流を流すことにより定電流電解を行いながら、作用極の電極電位を測定する手段を有している。   FIG. 4 is a diagram schematically showing an experimental apparatus for measuring pH using a BDD plate electrode as a working electrode in the present invention, in which a counter electrode and a reference electrode are arranged in an electrolyte solution to be measured, A working electrode is arranged on the bottom of the container so as to contact the electrolyte solution. A means for measuring the electrode potential of the working electrode while performing constant current electrolysis by flowing a constant current between the working electrode and the counter electrode. Have.

図5は、本発明において、作用極にBDD−M電極を用いたpHの測定用の実験装置を模式的に示す図であり、測定対象となる電解質溶液に接触するように、BDD−M電極からなる作用極、対極、及び参照極を配置し、作用極と対極間に一定の電流を流すことにより定電流電解を行い、一定時間経過後の作用極と参照極の間の電極電位を測定する手段、を有している。   FIG. 5 is a diagram schematically showing an experimental apparatus for measuring pH using a BDD-M electrode as a working electrode in the present invention. The BDD-M electrode is in contact with the electrolyte solution to be measured. The working electrode, the counter electrode, and the reference electrode are arranged, and constant current electrolysis is performed by passing a constant current between the working electrode and the counter electrode, and the electrode potential between the working electrode and the reference electrode after a certain time has elapsed Means.

図6は、本発明のBDD−M電極を用いたpH測定装置の一態様を示すものである。
測定対象となる電解質溶液中に、BDD−M電極からなる作用極、対極、及び参照極を配置し、作用極と対極間に一定の電流を流すことにより定電流電解を行い、一定時間経過後の作用極と参照極の間の電極電位を測定する手段、を有している。
FIG. 6 shows one embodiment of a pH measuring device using the BDD-M electrode of the present invention.
In the electrolyte solution to be measured, a working electrode, a counter electrode, and a reference electrode composed of a BDD-M electrode are placed, and constant current electrolysis is performed by passing a constant current between the working electrode and the counter electrode. Means for measuring the electrode potential between the working electrode and the reference electrode.

本発明において、参照極に使用される材料は、電位を安定にするものならば何を用いても良いが、好ましくは、例えば可逆水素電極、銀・塩化銀電極、飽和カロメル電極等が用いられる。また、対極には、白金、グラッシーカーボン、ダイヤモンド等、高耐食性の材料が通常用いられる。
これらの各電極は、ポテンシオスタット、乾電池、直流電源等の装置により、一定電流を流すことができるように構成されている。
In the present invention, the material used for the reference electrode may be any material as long as it stabilizes the potential. Preferably, for example, a reversible hydrogen electrode, a silver / silver chloride electrode, a saturated calomel electrode, or the like is used. . For the counter electrode, a material having high corrosion resistance such as platinum, glassy carbon, diamond and the like is usually used.
Each of these electrodes is configured to allow a constant current to flow by a device such as a potentiostat, a dry cell, or a DC power source.

緩衝液とは、少量のHイオンあるいはOHイオンを加えたときに、被測定試料溶液のpHが大きく変化することに抵抗するような物質の混合溶液であるが、本発明においては、通常の衝液をそのまま用いることができ、具体的には、リン酸緩衝液(Phosphate buffer)、酢酸緩衝液(Acetate buffer)、ブリットンロビンソン広域緩衝液(Britton Robinson buffer)、ミラーゴールダー等イオン強度緩衝液(Millor
Golder buffer)等を用いることができる。
The buffer solution is a mixed solution of substances that resists a large change in pH of the sample solution to be measured when a small amount of H + ions or OH ions are added. In particular, ionic strength buffers such as phosphate buffer (acetate buffer), acetate buffer (Britton Robinson buffer), Miller Golder, etc. Liquid (Millor
Golder buffer) can be used.

以下、本発明について、実施例及び比較例を用いて説明するが、本発明は、これらに限定されるものではない。   Hereinafter, although the present invention is explained using an example and a comparative example, the present invention is not limited to these.

〈試料〉
実施例及び比較例においては、以下の試料を用いた。
(1)緩衝液
ブリットンロビンソン広域緩衝液(BRB)(HPO:CHCOOH:HNO=1:1:1)を用いた。
を用いた。
(2)被測定溶液
・CP法のとき
酸性の上記緩衝液BRBにNaOH又はKOHにてpHを調整した。
・LSV法のとき
KCl溶液にHClにてpHを調整した。
(3)被測定試料のpH測定
用いた被測定試料のpHは、ガラス電極を用いて測定した。
<sample>
In the examples and comparative examples, the following samples were used.
(1) Buffer Brit emissions Robinson broad buffer (BRB) (H 3 PO 4 : CH 3 COOH: HNO 3 = 1: 1: 1) was used.
Was used.
(2) Solution to be measured / CP method The pH of the acidic buffer solution BRB was adjusted with NaOH or KOH.
-At the time of LSV method pH was adjusted with HCl to KCl solution.
(3) Measurement of pH of sample to be measured The pH of the sample to be measured was measured using a glass electrode.

〈BDD平板電極の製造〉
BDD電極は、図1の概要図に示す成膜装置として、ASTeX社製のマイクロ波CVD成膜装置を用い、以下に示すようにマイクロ波プラズマアシストCVD法により作製した。
まず、前記導電性基板としてシリコン基板(Si(100))を用い、そのシリコン基板表面をテクスチャー処理(例えば、0.5μmのダイヤモンド粉により研磨)した後、前記シリコン基板を成膜装置のホルダーに固定した。成膜用ソースとしては、トリメトシキボランとアセトンの混合物(液体の混合比(体積)4:50を用い、B/C比で10,000ppmとなる量を溶解したもの)を用いた。
そして、前記成膜用ソースは、その成膜用ソースに対しキャリアガスとして純Hガスを通してからチャンバー内に導入した。前記チャンバー内は、予め別ラインから水素を流量300sscmで流すことにより、120Torrとなるように調整した。その後、前記チャンバー内にて、2.45GHzのマイクロ波電力により放電させ、その電力が5kWとなるように調整した。
前記電力が安定した後、前記成膜用ソースにキャリアガスとして純Hガスを流し、成膜速度1〜4μm/hで成膜を行った。そして、反応時間約8hで厚さ約15μmの膜(電極面積が1cm未満)から成る導電性ダイヤモンド電極を得た。基板の温度は定常状態で約850〜950℃であった。
得られたBDD電極をSEMを用いて観察した。図7はそのSEM写真である。
<Manufacture of BDD flat plate electrode>
The BDD electrode was manufactured by a microwave plasma assisted CVD method as shown below using a microwave CVD film forming apparatus manufactured by ASTeX as the film forming apparatus shown in the schematic diagram of FIG.
First, a silicon substrate (Si (100)) is used as the conductive substrate, the surface of the silicon substrate is textured (for example, polished with 0.5 μm diamond powder), and then the silicon substrate is used as a holder of a film forming apparatus. Fixed. As a film-forming source, a mixture of trimethoxyborane and acetone (liquid mixture ratio (volume) 4:50 dissolved in an amount of 10,000 ppm in B / C ratio) was used.
The film formation source was introduced into the chamber after passing pure H 2 gas as a carrier gas to the film formation source. The inside of the chamber was adjusted to 120 Torr by flowing hydrogen from a separate line at a flow rate of 300 sscm in advance. Then, it discharged with the microwave electric power of 2.45 GHz in the said chamber, and adjusted so that the electric power might be set to 5 kW.
After the power was stabilized, pure H 2 gas was allowed to flow as a carrier gas to the film formation source, and film formation was performed at a film formation speed of 1 to 4 μm / h. Then, a conductive diamond electrode composed of a film (electrode area of less than 1 cm 2 ) having a thickness of about 15 μm was obtained with a reaction time of about 8 hours. The temperature of the substrate was about 850 to 950 ° C. in a steady state.
The obtained BDD electrode was observed using SEM. FIG. 7 is an SEM photograph thereof.

〈BDD−M電極の製造〉
図2の概要図に示すように、タングステンワイヤを用い、圧力を60Torr、電力を2.5kW、成膜時間を3hとした以外は、前述と同様な条件にて作製した。
得られたBDD−M電極を、SEMを用いて観察した。図8は、そのSEM写真である。
<Manufacture of BDD-M electrodes>
As shown in the schematic diagram of FIG. 2, a tungsten wire was used under the same conditions as described above except that the pressure was 60 Torr, the power was 2.5 kW, and the film formation time was 3 h.
The obtained BDD-M electrode was observed using SEM. FIG. 8 is an SEM photograph thereof.

〈装置〉
図4及び図5に示す装置を用いた。
対極としてはPt電極、参照極としては、[Ag/AgCl]電極を用いた。
<apparatus>
The apparatus shown in FIGS. 4 and 5 was used.
A Pt electrode was used as the counter electrode, and an [Ag / AgCl] electrode was used as the reference electrode.

(実施例1:BDD電極とGC電極の比較)
CP法による水素発生電位について、BDD電極を用いた場合と、市販のグラッシーカーボン(GC)電極(東海カーボン社製)を用いた場合とを比較した。
緩衝液には、0.1MBRBを使用し、−1μAの電流を20秒間流した。
図9は、BDD電極を用いた場合を示すものであり、(a)図は、一定電流を流した場合のBDD電極と参照電極間の電位の時間経過による変化を表したものであり、(b)図は、(a)図の10秒におけるpHと電位の関係を示すものである。
図10は、グラッシーカーボン(GC)電極を用いた場合を示すものであり、(a)図は、一定電流を流した場合のグラッシーカーボン(GC)電極と参照電極間の電位の時間経過による変化を表したものであり、(b)図は、(a)図の10秒におけるpHと電位の関係を示すものである。
(Example 1: Comparison of BDD electrode and GC electrode)
Regarding the hydrogen generation potential by the CP method, a case where a BDD electrode was used was compared with a case where a commercially available glassy carbon (GC) electrode (manufactured by Tokai Carbon Co., Ltd.) was used.
As the buffer, 0.1 MBRB was used, and a current of −1 μA was passed for 20 seconds.
FIG. 9 shows a case where a BDD electrode is used, and FIG. 9A shows a change with time of the potential between the BDD electrode and the reference electrode when a constant current is passed. b) The figure shows the relationship between pH and potential at 10 seconds of (a) figure.
FIG. 10 shows a case where a glassy carbon (GC) electrode is used, and FIG. 10A shows a change in potential between the glassy carbon (GC) electrode and the reference electrode over time when a constant current is passed. (B) The figure shows the relationship between pH and electric potential in 10 seconds of (a) figure.

図9及び図10から明らかなように、BDD電極を用いた場合には、作用電極と参照電極間の電位は、時間が経緯しても安定しており、pHと電位の間に明瞭な相関関係が得られるが、グラッシーカーボン(GC)電極を用いた場合には、作用電極と参照電極間の電位は、時間の経緯途とも変化し不安定であり、pHと電位の間に明瞭な関係が得られないことがわかる。
このことから、本発明において、BDD電極を用いることと、CP法を採用することに、密接な技術的意義があることが理解される。
As is apparent from FIGS. 9 and 10, when the BDD electrode is used, the potential between the working electrode and the reference electrode is stable over time, and there is a clear correlation between pH and potential. The relationship is obtained, but when a glassy carbon (GC) electrode is used, the potential between the working electrode and the reference electrode changes with the passage of time and is unstable, and there is a clear relationship between pH and potential. It can be seen that cannot be obtained.
From this, it is understood that there is a close technical significance in using the BDD electrode and adopting the CP method in the present invention.

(実施例2:緩衝能の影響について)
BDD平板電極を用いた場合とBDD−M電極を用いた場合のそれぞれについて、緩衝能の影響を0.01MBRBとO.1MBRBとを用いて調べた。
電流は−1μAの電流を20秒間流した。
図11は、BDD平板電極を用いた場合の10秒におけるpHと電位の関係を示すものであり、図12は、BDD−M電極を用いた場合の10秒におけるpHと電位の関係を示すものである。
(Example 2: Influence of buffer capacity)
For each of the case where the BDD flat electrode is used and the case where the BDD-M electrode is used, the influence of buffer capacity is 0.01 MBRB and O.D. It investigated using 1MBRB.
A current of -1 μA was applied for 20 seconds.
FIG. 11 shows the relationship between pH and potential at 10 seconds when a BDD flat electrode is used, and FIG. 12 shows the relationship between pH and potential at 10 seconds when a BDD-M electrode is used. It is.

図11から明らかなように、BDD平板電極を用いた場合、O.1MBRBを用いた場合には、高い緩衝能が得られるが、0.01MBRBを用いた場合には、緩衝能が低いことがわかる。
一方、図12のBDD−M電極を用いた場合、O.1MBRBを用いても、或いは、0.01MBRBを用いても、同様に高い緩衝能が得られることがわかる。
このことから、MDD−M電極によるpH測定は、用いる緩衝液が影響しないことが明らかであり、支持電解質を用いずとも測定が可能であることを示している。
As apparent from FIG. 11, when the BDD plate electrode is used, O.D. It can be seen that when 1 MBRB is used, a high buffer capacity is obtained, but when 0.01 MBRB is used, the buffer capacity is low.
On the other hand, when the BDD-M electrode of FIG. It can be seen that even when 1 MBRB is used or 0.01 MBRB is used, a high buffer capacity is obtained.
From this, it is clear that the pH measurement using the MDD-M electrode does not affect the buffer used, and it is possible to measure without using the supporting electrolyte.

(実施例3:共存イオンの影響について)
共存イオンの影響を調べるために、0.1M BRB・0.01M BRB Na、0.1M BRB・0.01MBRB K、及び0.1M BRB・1MBRB Kの3種の試料溶液を調製し、作用極にBDD−M電極を用いて、CP法を適用して、pHを測定した。測定には、−1μAの電流を20秒間流した。
図13は、その結果を示すものであり、縦軸が電圧、横軸がpH値である。
図から明らかなように、三種の試料間で、傾きに差があることが分かる。また、Kは、イオン半径が大きいことが分かる。
このことは、被測定試料中に共存するイオンがある場合、共存イオンの種類及び共存イオンの濃度が影響することを意味している。
また、未知試料のpH測定は、イオン半径の大きいKを過剰に含む系でBDD−M電極を用いて測定すればよいことを意味している。
(Example 3: Influence of coexisting ions)
In order to investigate the influence of coexisting ions, three sample solutions of 0.1M BRB · 0.01M BRB Na + , 0.1M BRB · 0.01MBRB K + , and 0.1M BRB · 1MBRB K + were prepared. The pH was measured by applying the CP method using a BDD-M electrode as the working electrode. For measurement, a current of -1 μA was passed for 20 seconds.
FIG. 13 shows the results, with the vertical axis representing voltage and the horizontal axis representing pH value.
As can be seen from the figure, there is a difference in inclination among the three types of samples. It can also be seen that K + has a large ion radius.
This means that when there are coexisting ions in the sample to be measured, the type of coexisting ions and the concentration of the coexisting ions are affected.
Moreover, the pH measurement of an unknown sample means that the measurement may be performed using a BDD-M electrode in a system containing excessive K + having a large ionic radius.

(実施例4:未知試料のpH測定)
そこで、飽和KCl溶液:未知試料を1:5(容量比)で混合した場合の、pHと、対極及び参照極間の電圧との関係を調べた。測定には、−1μAの電流を20秒間流した。
図14は、その結果を示す図である。
図14から明らかなように、飽和KCl溶液の測定系で、BDD−M電極を用いてCP法に測定による、未知試料のpHの測定が可能であることがわかる。
(Example 4: pH measurement of unknown sample)
Therefore, the relationship between the pH and the voltage between the counter electrode and the reference electrode when a saturated KCl solution: unknown sample was mixed at 1: 5 (volume ratio) was examined. For measurement, a current of -1 μA was passed for 20 seconds.
FIG. 14 is a diagram showing the results.
As is clear from FIG. 14, it is understood that the pH of an unknown sample can be measured by the CP method using a BDD-M electrode in a saturated KCl solution measurement system.

Claims (6)

少なくとも、ホウ素ドープダイヤモンド電極からなる作用極、対極及び参照極を用意し、前記作用極と前記対電極と前記参照極を被測定試料に接触させ、前記作用極と前記対極との間に一定の電流を流し、所定時間経過後における前記作用極と前記参照極間の電圧値を測定し、得られた電圧値から前記試料中のpHを算出することを含んでなる、pH測定方法。   At least a working electrode composed of a boron-doped diamond electrode, a counter electrode, and a reference electrode are prepared. The working electrode, the counter electrode, and the reference electrode are brought into contact with a sample to be measured, and a constant distance is provided between the working electrode and the counter electrode. A pH measurement method comprising: passing a current, measuring a voltage value between the working electrode and the reference electrode after a predetermined time has elapsed, and calculating a pH in the sample from the obtained voltage value. 前記ホウ素ドープダイヤモンド電極からなる作用極が、マイクロ電極であることを特徴とする請求項1に記載のpH測定方法。   The pH measuring method according to claim 1, wherein the working electrode made of the boron-doped diamond electrode is a microelectrode. 緩衝液を用いないことを特徴とする請求項2に記載のpH測定方法。   The pH measurement method according to claim 2, wherein a buffer solution is not used. 飽和塩化カリウム溶液を含む系でおこなうことを特徴とする請求項2に記載のpH測定方法。   The pH measurement method according to claim 2, wherein the pH measurement is performed in a system containing a saturated potassium chloride solution. 被測定試料を収納する容器と、
該被測定試料と接触するように配置された、ホウ素ドープダイヤモンド電極からなる作用極、対極及び参照極と、
前記作用極と前記対極との間に一定の電流を流す手段、
一定電流を流してから所定時間経過後における前記作用極と前記参照極間の電圧値を測定する手段、及び
該電圧値から前記試料中のpH値を算出する手段
を少なくとも有するpH測定装置。
A container for storing a sample to be measured;
A working electrode, a counter electrode, and a reference electrode made of a boron-doped diamond electrode disposed so as to be in contact with the sample to be measured;
Means for causing a constant current to flow between the working electrode and the counter electrode;
A pH measuring device comprising at least means for measuring a voltage value between the working electrode and the reference electrode after a predetermined time has passed after passing a constant current, and means for calculating a pH value in the sample from the voltage value.
前記ホウ素ドープダイヤモンド電極からなる作用極が、マイクロ電極であることを特徴とする請求項5に記載のpH測定装置。   The pH measuring apparatus according to claim 5, wherein the working electrode composed of the boron-doped diamond electrode is a microelectrode.
JP2010039407A 2010-02-24 2010-02-24 Method and apparatus for measuring pH using boron-doped diamond electrode Expired - Fee Related JP5311501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039407A JP5311501B2 (en) 2010-02-24 2010-02-24 Method and apparatus for measuring pH using boron-doped diamond electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039407A JP5311501B2 (en) 2010-02-24 2010-02-24 Method and apparatus for measuring pH using boron-doped diamond electrode

Publications (2)

Publication Number Publication Date
JP2011174822A JP2011174822A (en) 2011-09-08
JP5311501B2 true JP5311501B2 (en) 2013-10-09

Family

ID=44687807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039407A Expired - Fee Related JP5311501B2 (en) 2010-02-24 2010-02-24 Method and apparatus for measuring pH using boron-doped diamond electrode

Country Status (1)

Country Link
JP (1) JP5311501B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6282820B2 (en) * 2013-08-22 2018-02-21 学校法人慶應義塾 In vivo pH measurement apparatus and method using diamond microelectrode
CN104730131B (en) * 2015-03-09 2017-08-22 浙江大学 A kind of pH measuring methods and device
JP6881018B2 (en) * 2017-05-18 2021-06-02 横河電機株式会社 pH sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502004006221D1 (en) * 2003-12-10 2008-03-27 High Q Laser Production Gmbh HIGH-RESPECTING LASER SYSTEM FOR GENERATING ULTRA-SHORT PULSES ACCORDING TO THE PRINCIPLE OF PULSE OUTPUT
JP4547548B2 (en) * 2004-06-22 2010-09-22 学校法人慶應義塾 Micro diamond electrode manufacturing method

Also Published As

Publication number Publication date
JP2011174822A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
Pingarrón et al. Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019)
Pauliukaitė et al. Characterization and applications of a bismuth bulk electrode
Krolicka et al. Study on catalytic adsorptive stripping voltammetry of trace cobalt at bismuth film electrodes
Monteiro et al. Mediator-free SECM for probing the diffusion layer pH with functionalized gold ultramicroelectrodes
Kondo et al. Direct determination of chemical oxygen demand by anodic decomposition of organic compounds at a diamond electrode
Mazloum-Ardakani et al. Simultaneous and selective voltammetric determination of epinephrine, acetaminophen and folic acid at a ZrO2 nanoparticles modified carbon paste electrode
Yosypchuk et al. Solid amalgam composite electrode as a new sensor for the determination of biologically active compounds
JP2007139725A (en) Residual chlorine measuring method and residual chlorine measuring instrument
Ni et al. Electrochemical oxidation of epinephrine and uric acid at a layered double hydroxide film modified glassy carbon electrode and its application
Dehghanzade et al. Voltammetric determination of diazepam using a bismuth modified pencil graphite electrode
Wang et al. Electrochemical oxidation behavior of colchicine on a graphene oxide-Nafion composite film modified glassy carbon electrode
Sairi et al. Chronoamperometric response at nanoscale liquid–liquid interface arrays
Ahmed et al. New voltammetric analysis of olanzapine in tablets and human urine samples using a modified carbon paste sensor electrode incorporating gold nanoparticles and glutamine in a micellar medium
WO2020091033A1 (en) Triple-pole electrode having electrically conductive diamond electrode as reference electrode, device, and electrochemical measuring method
JP5311501B2 (en) Method and apparatus for measuring pH using boron-doped diamond electrode
Huang et al. Sensitive determination of anticancer drug methotrexate using graphite oxide-nafion modified glassy carbon electrode
Navrátil et al. Voltammetry of lead cations on a new type of silver composite electrode in the presence of other cations
Han et al. Coulometric Response of H+‐Selective Solid‐Contact Ion‐Selective Electrodes and Its Application in Flexible Sensors
CN108291890B (en) Pulse potential gas sensor
Ghoreishi et al. Electrochemical study of a self-assembled monolayer of N, N′-bis [(E)-(1-pyridyl) methylidene]-1, 3-propanediamine formed on glassy carbon electrode: preparation, characterization and application
Devlin et al. Novel pH sensor based on anthraquinone–ferrocene modified free standing gold nanowire array electrode
Twomey et al. Characterisation of nanoporous gold for use in a dissolved oxygen sensing application
Wang et al. Substrate effect on charging of electrified graphene/water interfaces
Raj et al. Application of cobalt oxide nanostructured modified aluminium electrode for electrocatalytic oxidation of guanine and single-strand DNA
Xiao et al. Cathodic stripping determination of water in organic solvents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees