JPH03295460A - Rotary electrode and concentration measuring method - Google Patents

Rotary electrode and concentration measuring method

Info

Publication number
JPH03295460A
JPH03295460A JP2098376A JP9837690A JPH03295460A JP H03295460 A JPH03295460 A JP H03295460A JP 2098376 A JP2098376 A JP 2098376A JP 9837690 A JP9837690 A JP 9837690A JP H03295460 A JPH03295460 A JP H03295460A
Authority
JP
Japan
Prior art keywords
electrode
rotating
cathode
anode
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2098376A
Other languages
Japanese (ja)
Other versions
JPH087175B2 (en
Inventor
Osamu Hamamoto
修 浜本
Yuji Uchiyama
裕治 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2098376A priority Critical patent/JPH087175B2/en
Publication of JPH03295460A publication Critical patent/JPH03295460A/en
Publication of JPH087175B2 publication Critical patent/JPH087175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To easily measure the concentration of a material to be electrolyzed with high accuracy by providing a pair of a cathode and an anode to a rotary terminal in parallel at an interval of <=1mm and connecting them to a power source and a measurement part. CONSTITUTION:The pair of the cathode 1 and anode 2 which are provided in parallel at the interval of <=1mm are fixed to the rotary terminal and only their tip parts are exposed. Further, the electrode consists of an insulation part 3A which is insulated from other constitution parts, a current collection brush 5 which connects the cathode 1 and anode 2 to the power source and measurement part, and an electric feeding ring 4. When the interval between the electrodes 1 and 2 is set to <=1mm, the measurement accuracy is improved. When the interval is set to 0.5 - 0.3mm, the influence of dust, etc., in the sample is eliminated and noise generation is prevented. Then the concentration of the material to be measured in a slurry, a high-viscosity solution, a colloid solution, etc., which are hardly obtained in a uniform diffusion tank can continuously be measured with high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野] 本発明は回転電極および濃度測定法に関し、さらに詳し
くはスラリー、コロイド溶液、高粘性溶液などに含有す
る被電解物質の濃度を測定するのに好適な回転電極およ
びこれを用いた濃度測定法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a rotating electrode and a concentration measuring method, and more specifically to measuring the concentration of an electrolyte contained in a slurry, colloidal solution, high viscosity solution, etc. This invention relates to a suitable rotating electrode and a concentration measurement method using the same.

〔従来の技術] 回転電極は、電極を回転駆動装置に連結し、被測定液中
で回転させ、作用極と対極との間に被測定液の電解電流
を発生させるものである。回転電極を利用した溶液中の
溶質濃度の測定法は、溶液中の被定量物質の拡散層の厚
さを均一化して被定量物質の濃度に比例した安定した電
解電流(限界拡散電流)を得ることができるため、電気
化学分析において重要な地位を占めている。
[Prior Art] A rotating electrode is one in which the electrode is connected to a rotation drive device and rotated in a liquid to be measured to generate an electrolytic current in the liquid to be measured between a working electrode and a counter electrode. The method of measuring solute concentration in a solution using a rotating electrode equalizes the thickness of the diffusion layer of the analyte in the solution and obtains a stable electrolytic current (limiting diffusion current) proportional to the concentration of the analyte. Therefore, it occupies an important position in electrochemical analysis.

この回転電極として、回転ワイヤー電極、回転ディスク
電極、回転リング・ディスク電極などが知られている。
As this rotating electrode, a rotating wire electrode, a rotating disk electrode, a rotating ring/disk electrode, etc. are known.

第6図は、従来の回転電極を用いた定量法の説明図であ
り、陰極または陽極のいずれかを単極(作用極)とした
回転極20の他に、対極として固定極21が必要である
。例えば回転リング・ディスク電極は、第6A図に示す
ように、回転極20の中心にディスク極24およびその
同心円状にリング極23を作用極として有し、回転極2
0の回転によって電解液22がディスク極から外側のリ
ング極へ流れ、ディスク極24で電解生成した電気化学
的に活性な物質をリング極23で捕捉して検出する。
FIG. 6 is an explanatory diagram of a conventional quantitative method using a rotating electrode, which requires a fixed electrode 21 as a counter electrode in addition to a rotating electrode 20 with either a cathode or an anode as a single pole (working electrode). be. For example, as shown in FIG. 6A, a rotating ring-disk electrode has a disk pole 24 at the center of a rotating pole 20 and a ring pole 23 concentrically therewith as a working pole.
The electrolytic solution 22 flows from the disk electrode to the outer ring electrode by the rotation of the disk electrode 24, and the electrochemically active substance electrolytically produced at the disk electrode 24 is captured and detected by the ring electrode 23.

また電極を回転させたり、溶液を動かずことなく電解液
を3次元に近い状態に拡散し7て定常的な拡散電流を得
ることができる電極として、マイクロくし形電極等の超
微小電極が知られている。
In addition, ultra-fine electrodes such as micro-comb electrodes are used as electrodes that can diffuse the electrolyte in a nearly three-dimensional state without rotating the electrode or moving the solution7 to obtain a steady diffusion current. Are known.

しかしながら、上記回転電極や超微小電極では、均一な
被測定@lj質の拡散層を得る必要があるため、拡散層
が得られやすい試料の測定に制約され、拡散層が得にく
いスラリ、高粘性溶液、コロイド溶液などに含まれる被
測定物質の濃度を精度よく測定することができないとい
う問題があった。
However, with the above-mentioned rotating electrodes and ultra-microelectrodes, it is necessary to obtain a uniform diffusion layer of the measured @lj quality, which limits the measurement of samples in which a diffusion layer is easy to obtain. There has been a problem in that the concentration of a substance to be measured contained in a viscous solution, colloidal solution, etc. cannot be accurately measured.

〔発明が解決しようとする課題] 本発明の目的は、上記従来技術の問題点を解決し、スラ
リ、高粘性溶液、コロイド溶液などに含まれる被電解物
質の濃度をも簡単な装置で高精度に測定することができ
る回転電極およびこれを用いた濃度測定法を従供するこ
とにある。
[Problems to be Solved by the Invention] An object of the present invention is to solve the problems of the prior art described above, and to measure the concentration of an electrolyte contained in slurry, high viscosity solution, colloidal solution, etc. with high precision using a simple device. An object of the present invention is to provide a rotating electrode capable of measuring concentration and a concentration measuring method using the same.

〔課題を解決するだめの手段] 本発明は、電源および計測部にそれぞれ接続された少な
くとも1対の陰極および陽極が、IIII[11以下の
間隔で平行に回転端子に設けられていることを特徴とす
る回転電極、およびこの回転電極を試料に浸漬または接
触させて回転し、該試料中の被電解物質濃度を測定する
濃度測定法に関する。
[Means for Solving the Problems] The present invention is characterized in that at least one pair of cathodes and anodes connected to a power source and a measuring section, respectively, are provided on a rotating terminal in parallel with an interval of 11 or less. The present invention relates to a rotating electrode, and a concentration measuring method in which the rotating electrode is immersed in or in contact with a sample and rotated to measure the concentration of an electrolyte in the sample.

[作用] 陰極と陽極を1薗以下の間隔で平行に回転端子に設ける
ことにより、試料中に固定極を設置することなく、また
拡散層が得られやすい試料に制約されることなく、試料
中の被電解物質の濃度を高精度に測定することができる
[Function] By arranging the cathode and anode parallel to each other at a spacing of less than 1 meter on the rotating terminal, it is possible to spread the light in the sample without installing a fixed pole in the sample, and without being limited to samples where it is easy to obtain a diffusion layer. The concentration of the electrolyte can be measured with high accuracy.

第1図は、本発明の一例を示す回転電極の斜視図である
。図において、回転電極3は、1閾以下の間隔で平行に
設けられた1対の陰極1および陽極2と、該陰極1およ
び陽極2を固定し、かつこれらの先端部のみを露出させ
、他の構成部から絶縁する絶縁部3Aと、上記陰極1お
よび陽極2をそれぞれ電源および計測部に接続する集電
ブラシ5および給電リング4とからなる。陰極1および
陽極2を構成する物質としては白金等の貴金属類が用い
られ、陰極には銅、SUSなどを用いることもできる。
FIG. 1 is a perspective view of a rotating electrode showing an example of the present invention. In the figure, the rotating electrode 3 includes a pair of cathode 1 and anode 2 that are arranged in parallel with an interval of one threshold or less, and the cathode 1 and anode 2 are fixed, with only their tips exposed, and the other The current collecting brush 5 and the power feeding ring 4 connect the cathode 1 and the anode 2 to a power source and a measuring section, respectively. Precious metals such as platinum are used as the material constituting the cathode 1 and the anode 2, and copper, SUS, etc. can also be used for the cathode.

陰極1および陽極2の露出位置は、回転電極3の底部で
も、第1A図に示すように側部でもよい。また絶縁部3
Aには、エポキシ樹脂、塩化ビニル樹脂、フェノール樹
脂等の樹脂類やセラミックスなどを用いることができる
The exposed position of the cathode 1 and the anode 2 may be at the bottom of the rotating electrode 3 or at the side as shown in FIG. 1A. Also, the insulation part 3
For A, resins such as epoxy resin, vinyl chloride resin, and phenol resin, ceramics, and the like can be used.

上記陰極1と陽極2は、測定精度の点からIIII[1
1以下の間隔で平行に設ける必要がある。電極の間隔が
狭いほど測定精度は向上するが、試料中のごみ等の影響
を受は安くなりノイズの発生率が太き(なるため、0.
75 mm 〜0.1 mmが好ましく、より好ましく
は0.5 mm0.3 mm程度である。混入物の少な
い均一な試料に対してはさらに狭い間隔の電極を用いて
より高精度の測定をすることが可能である。陰極と陽極
は少なくとも1対あればよいが、陰極と陽極を交互に配
列し、くし形電極として用いることもできる(第1B図
参照)。電極枚数は多いほど測定精度が高くなるが、多
ずぎると電極の一部が試料中からはみ出すことがあり、
取り扱い上注窓を要する。また電極の長さは測定精度の
点から短い方が好ましく、20皿〜10mm以下とする
のが好ましく、より好ましくは5皿程度である。
The above-mentioned cathode 1 and anode 2 are selected from III[1] in terms of measurement accuracy.
It is necessary to provide them in parallel with an interval of 1 or less. The narrower the spacing between the electrodes, the better the measurement accuracy, but it is less susceptible to the effects of dust in the sample and the noise generation rate increases.
It is preferably about 75 mm to 0.1 mm, more preferably about 0.5 mm to 0.3 mm. For homogeneous samples with few contaminants, it is possible to perform more accurate measurements by using electrodes with narrower spacing. Although at least one pair of cathode and anode is sufficient, the cathode and anode may be arranged alternately and used as a comb-shaped electrode (see FIG. 1B). The greater the number of electrodes, the higher the measurement accuracy, but if there are too many, some of the electrodes may protrude from the sample.
Requires a viewing window for handling. Further, the length of the electrode is preferably short from the viewpoint of measurement accuracy, and is preferably 20 plates to 10 mm or less, and more preferably about 5 plates.

第2図は、本発明の回転電極を用いた濃度測定装置の一
例を示す図である。
FIG. 2 is a diagram showing an example of a concentration measuring device using a rotating electrode of the present invention.

図において、架台12の−り部にはシンクロナスモータ
9が載置され、またその下部には台座13にスプリング
14を介して支持台8が設けられ、その上には試料6の
入った容器7が載置され、前記モータ9の回転軸に設置
された回転電極3が容器7内の試料6中に挿入されるよ
うになっている。
In the figure, a synchronous motor 9 is placed on the lower part of the pedestal 12, and a support 8 is provided below the pedestal 13 via a spring 14, and a container containing a sample 6 is placed on the pedestal 8. 7 is placed on the container 7, and the rotating electrode 3 installed on the rotating shaft of the motor 9 is inserted into the sample 6 in the container 7.

支持台8上の容器7に試料6を入れた後、回転電極3の
電極1.2を該試料中に浸漬または接触させてシンクロ
ナスモータ9により回転電極3を回転させる。回転速度
は通常100〜3000rpmである。回転電極3上部
に設けられた給電リング4は、定電圧電源10および記
録計11にそれぞれ接続した集電ブラシ5と接触して電
極1.2に電圧を供給する。電圧の印加により電極1.
2でで生じた電解電流は給電リング4および集電ブラシ
5を介して記録計114こ入力され、この電解電流値か
ら記録計6ご予め入力された検量線に基づき被電解物質
の濃度が算出される。算出の際には温度の影響をなくし
て測定精度を向上させるために温度補正を行うことが好
ましい。
After the sample 6 is placed in the container 7 on the support stand 8, the electrode 1.2 of the rotating electrode 3 is immersed in or in contact with the sample, and the rotating electrode 3 is rotated by the synchronous motor 9. The rotation speed is usually 100 to 3000 rpm. A power supply ring 4 provided above the rotating electrode 3 contacts a current collecting brush 5 connected to a constant voltage power source 10 and a recorder 11, respectively, to supply voltage to the electrode 1.2. By applying a voltage, electrode 1.
The electrolytic current generated in step 2 is input to the recorder 114 via the power supply ring 4 and the current collector brush 5, and from this electrolytic current value, the concentration of the electrolyte is calculated based on the calibration curve input in advance to the recorder 6. be done. During calculation, it is preferable to perform temperature correction in order to eliminate the influence of temperature and improve measurement accuracy.

電解電流の測定は、前記回転電極3を、例えばヘルドコ
ンベアなどで比較的一定な速度で移動する試料中に浸漬
することにより、連続して行うこともできる。この場合
、一定速度で移動する試料を測定するため、陰極におけ
る金属、金属水酸化物の析出は殆どなく、連続測定に支
障を起こすことがない。
The electrolytic current can also be measured continuously by immersing the rotating electrode 3 in a sample moving at a relatively constant speed, for example on a heald conveyor. In this case, since a sample moving at a constant speed is measured, there is almost no precipitation of metals or metal hydroxides at the cathode, which does not interfere with continuous measurement.

〔実施例〕〔Example〕

以下、本発明を実施例により詳しく説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1.2および比較例1.2 脱水汚泥の水分量を4段階に調製し、この脱水汚泥中の
含水率を、第1図および第1A図の回転電極を用いた第
2図の装置でそれぞれ測定し、この値を乾燥秤量法で測
定した値と比較して定量性を検討した。回転電極には厚
さ0.5 mm X長さ5鵬の白金プレート電極を用い
、回転速度600rpmで回転させ、常温で4■の電圧
を印加した。結果を第3図に示したが、良好な定量性を
示すことがわかった。
Example 1.2 and Comparative Example 1.2 The water content of dehydrated sludge was adjusted to four levels, and the water content in this dehydrated sludge was measured using the apparatus shown in FIG. 2 using the rotating electrodes shown in FIGS. 1 and 1A. Quantitative properties were examined by comparing these values with those measured by dry weighing. A platinum plate electrode with a thickness of 0.5 mm and a length of 5 mm was used as the rotating electrode, and the electrode was rotated at a rotation speed of 600 rpm, and a voltage of 4 mm was applied at room temperature. The results are shown in FIG. 3, and it was found that good quantitative properties were exhibited.

また比較例1.2として従来の回転ディスク電極および
回転ワイヤー電極をそれぞれ用いて上記と同様にして脱
水汚泥の含水率を測定したが、定量性は見られなかった
Further, as Comparative Examples 1 and 2, the water content of dehydrated sludge was measured in the same manner as above using a conventional rotating disk electrode and a rotating wire electrode, but no quantitative results were observed.

実施例3.4 デンプンスラリーにビタミンC(還元形!−アスコルビ
ン酸)を添加し、第1図および第1B図の回転電極を用
いた第2図の装置でビタミンCの濃度をそれぞれ測定し
、その定量性を検討した。
Example 3.4 Vitamin C (reduced form!-ascorbic acid) was added to starch slurry, and the concentration of vitamin C was measured using the apparatus shown in FIG. 2 using the rotating electrodes shown in FIGS. 1 and 1B, respectively. We examined its quantitative nature.

第1図の回転電極には実施例1と同様の電極を使用し、
第1B図のくし形電極としては3III11×3ffI
I11の面積に陰極4列と陽極3列を交互に配置したく
し形電極を用いた。また回転速度120Orpmで回転
させ、常温で2■の電圧を印加した。結果を第4図に示
したが、良好な定量性を示すことがわかった。
The same electrode as in Example 1 was used as the rotating electrode in FIG.
The comb-shaped electrode in Figure 1B is 3III11×3ffI
A comb-shaped electrode was used in which four rows of cathodes and three rows of anodes were alternately arranged in an area of I11. Further, it was rotated at a rotational speed of 120 rpm, and a voltage of 2 μ was applied at room temperature. The results are shown in FIG. 4, and it was found that good quantitative properties were exhibited.

実施例5 イソプロパツール100Idに水を100μβづつ添加
したときの電解電流を、第1図の回転電極を用いた第2
図の装置で連続して測定した。その結果を第5図に示し
たが、含水量に比例した電解電流が得られることがわか
った。
Example 5 The electrolytic current when 100μβ of water was added to isopropanol 100Id was measured using the rotating electrode shown in Fig. 1.
Continuous measurements were taken using the equipment shown in the figure. The results are shown in FIG. 5, and it was found that an electrolytic current proportional to the water content could be obtained.

実施例6.7 白金プレート電極の長さを7mmおよび5mmとして第
1図の回転電極を作製し、ヘルドコンベア上の脱水汚泥
中の含水率を回転速度6.0Orpm、印加電圧4■の
条件で連続して測定した。このときの測定精度は7−の
電極では0.5〜2%、5Mの電極では0.0〜1.0
%の範囲であった。
Example 6.7 The rotating electrodes shown in Fig. 1 were prepared with platinum plate electrode lengths of 7 mm and 5 mm, and the water content in the dehydrated sludge on the heald conveyor was determined at a rotation speed of 6.0 Orpm and an applied voltage of 4. Measured continuously. The measurement accuracy at this time is 0.5 to 2% for the 7-electrode and 0.0 to 1.0 for the 5M electrode.
% range.

測定精度は下記のようにして計算した。The measurement accuracy was calculated as follows.

〔発明の効果〕〔Effect of the invention〕

本発明の回転電極によれば、均一な拡散槽が得にくいス
ラリ、高粘性溶液、コロイド溶液などに含有する被測定
物質の濃度、例えば脱水汚泥中の含水率を簡単な装置で
連続的に高精度に測定することができる。
According to the rotating electrode of the present invention, the concentration of the substance to be measured contained in slurry, highly viscous solution, colloidal solution, etc. in which it is difficult to obtain a uniform diffusion tank, such as the water content in dehydrated sludge, can be continuously increased using a simple device. Can be measured with precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第1A図および第1B図は、本発明の一例を示
す回転電極の斜視図、第2図は、本発明の回転電極を用
いた濃度測定装置の一例を示す図、第3図は、本発明の
回転電極を用いて測定した脱水汚泥中の含水率と電解電
流の関係を示す図、第4図は、本発明の回転電極を用い
て測定したビタミンCの含有量と電解電流の関係を示す
図、第5図は、本発明の回転電極を用いて測定したイソ
プロパツール中の含水量と電解電流の関係を示す図、第
6図は、従来の回転電極による定量法の説明図、第6A
図は、回転リング・ディスク電極の構造を示す図である
。 1・・・陰極、2・・・陽極、3・・・回転電極、3A
・・・絶縁部、4・・・・・・給電リング、5・・・集
電ブラシ、6・・・試料、7・・・容器、8・・・支持
台、9・・・シンクロナスモータ、10・・・定電圧電
源、11・・・記録計、20・・・回転極、21・・・
固定極、22・・・電解液、23・・・リング極、24
・・・ディスク極。
1, 1A, and 1B are perspective views of a rotating electrode showing an example of the present invention, FIG. 2 is a diagram showing an example of a concentration measuring device using the rotating electrode of the present invention, and FIG. Figure 4 shows the relationship between the water content in dehydrated sludge and electrolytic current measured using the rotating electrode of the present invention, and Figure 4 shows the relationship between the vitamin C content and electrolytic current measured using the rotating electrode of the present invention. Figure 5 is a diagram showing the relationship between the water content in isopropanol and the electrolytic current measured using the rotating electrode of the present invention, and Figure 6 is a diagram showing the relationship between the electrolytic current and the water content in isopropanol measured using the rotating electrode of the present invention. Illustration, No. 6A
The figure shows the structure of a rotating ring-disk electrode. 1... Cathode, 2... Anode, 3... Rotating electrode, 3A
... Insulation section, 4 ... Power supply ring, 5 ... Current collection brush, 6 ... Sample, 7 ... Container, 8 ... Support stand, 9 ... Synchronous motor , 10... Constant voltage power supply, 11... Recorder, 20... Rotating pole, 21...
Fixed electrode, 22... Electrolyte, 23... Ring electrode, 24
...Disc pole.

Claims (2)

【特許請求の範囲】[Claims] (1)電源および計測部にそれぞれ接続された少なくと
も1対の陰極および陽極が、1mm以下の間隔で平行に
回転端子に設けられていることを特徴とする回転電極。
(1) A rotating electrode characterized in that at least one pair of a cathode and an anode, each connected to a power source and a measuring section, are provided on a rotating terminal in parallel with an interval of 1 mm or less.
(2)請求項(1)記載の回転電極を試料に浸漬または
接触させて回転し、該試料中の被電解物質濃度を測定す
る濃度測定法。
(2) A concentration measuring method in which the rotating electrode according to claim (1) is immersed in or in contact with a sample and rotated to measure the concentration of an electrolyte in the sample.
JP2098376A 1990-04-13 1990-04-13 Rotating electrode and concentration measurement method Expired - Lifetime JPH087175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2098376A JPH087175B2 (en) 1990-04-13 1990-04-13 Rotating electrode and concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098376A JPH087175B2 (en) 1990-04-13 1990-04-13 Rotating electrode and concentration measurement method

Publications (2)

Publication Number Publication Date
JPH03295460A true JPH03295460A (en) 1991-12-26
JPH087175B2 JPH087175B2 (en) 1996-01-29

Family

ID=14218162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098376A Expired - Lifetime JPH087175B2 (en) 1990-04-13 1990-04-13 Rotating electrode and concentration measurement method

Country Status (1)

Country Link
JP (1) JPH087175B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185678A (en) * 2009-02-10 2010-08-26 Dkk Toa Corp Oxidation-reduction current measuring device
CN102645466A (en) * 2011-02-16 2012-08-22 东亚Dkk株式会社 Electrolysis current measuring electrode
JP2013208609A (en) * 2012-03-02 2013-10-10 Mitsui Zosen Environment Engineering Corp Sludge treatment system, and sludge treatment method
JP2015052596A (en) * 2013-09-06 2015-03-19 ザ・ボーイング・カンパニーTheBoeing Company Device and method for determining fluid streaming potential field

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185678A (en) * 2009-02-10 2010-08-26 Dkk Toa Corp Oxidation-reduction current measuring device
CN102645466A (en) * 2011-02-16 2012-08-22 东亚Dkk株式会社 Electrolysis current measuring electrode
JP2012168110A (en) * 2011-02-16 2012-09-06 Dkk Toa Corp Electrolytic current measuring electrode
JP2013208609A (en) * 2012-03-02 2013-10-10 Mitsui Zosen Environment Engineering Corp Sludge treatment system, and sludge treatment method
JP2015052596A (en) * 2013-09-06 2015-03-19 ザ・ボーイング・カンパニーTheBoeing Company Device and method for determining fluid streaming potential field

Also Published As

Publication number Publication date
JPH087175B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
JPH05106100A (en) Cyclic voltammetry method for measuring the concentration of assistant component in plating solution additive mixture
Lord et al. Coulometric determination of submicrogram amounts of silver
US6682647B1 (en) Bismuth-based electrochemical stripping analysis
JPH03188371A (en) Method and apparatus for dynamic analysis of precious metal
US4083754A (en) Voltammetric apparatus and method
JPH03295460A (en) Rotary electrode and concentration measuring method
US2246981A (en) Apparatus and method for electrochemical analysis
EP0598380B1 (en) Method of monitoring constituents in plating baths
Abdelsalam et al. Detection of Hydroxide Ions in Aqueous Solutions by Steady‐State Voltammetry
EP0597475B1 (en) Method of monitoring major constituents in plating baths containing codepositing constituents
EP0626577B1 (en) Method of monitoring metal ion content in plating baths
US4072594A (en) Anodic stripping voltammetric apparatus
JPH0769300B2 (en) Moisture analyzer and method
US20030183539A1 (en) Method of measuring copper ion concentration in industrial electrolytes
Price et al. Chemical sensing of amine antioxidants in turbine lubricants
JP2783725B2 (en) Moisture measurement method
US2732335A (en) glass
Bond et al. Field-based identification of minerals using a battery-operated electrochemical measuring system with mechanical transfer of the solid to a graphite electrode
JP2873131B2 (en) Electrolytic analysis method
JPH0725689Y2 (en) Coulometric analyzer
Chreitzbeeg et al. The overpotential of the manganese dioxide electrode
JPH03274448A (en) Method for measuring concentration of substance to be electrolyzed
CN114076787B (en) Polymer voltammetric pH electrode and preparation method and application thereof
Luque et al. Performance tests and internal quality control activities for the routine analytical use of composite electrodes
RU2386124C1 (en) Method of determining concentration of ions in liquid electrolyte solutions