JPS6114560A - Ph sensor - Google Patents

Ph sensor

Info

Publication number
JPS6114560A
JPS6114560A JP59136336A JP13633684A JPS6114560A JP S6114560 A JPS6114560 A JP S6114560A JP 59136336 A JP59136336 A JP 59136336A JP 13633684 A JP13633684 A JP 13633684A JP S6114560 A JPS6114560 A JP S6114560A
Authority
JP
Japan
Prior art keywords
electrode
sensor
arom
compd
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59136336A
Other languages
Japanese (ja)
Inventor
Takeshi Shimomura
猛 下村
Norihiko Ushizawa
牛沢 典彦
Hideichiro Yamaguchi
秀一郎 山口
Noboru Koyama
昇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP59136336A priority Critical patent/JPS6114560A/en
Publication of JPS6114560A publication Critical patent/JPS6114560A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To reduce the size of a pH sensor which measures the hydrogen ion concn. in a soln. from the response in electrode potential by depositing directly a polymer film derived from an arom. compd. on the surface of a conductor. CONSTITUTION:The pH sensor is constituted by coating the periphery of the bar-shaped conductor 11 consisting of platinum, etc. with an insulator 13 consisting of polyolefin or ''Teflon'', etc. and depositing and fixing a polymer film 12 derived from a hydroxy polynuclear arom. compd., amino polynuclear arom. compd. and polynuclear arom. carboxylic acid compd., etc. having respective prescribed constitutional formulas on the surface of the exposed top end. The sample soln. 22 is put into a vessel 21 and the pH sensor 23 and a reference electrode 24 are dipped in the soln. 22. The potential difference of the sensor 23 relative to the electrode 24 is measured with a potentiometer 26, by which the pH value is known.

Description

【発明の詳細な説明】 ■9  発明の背景 〔技術分野〕 この発明は声センサーに係夛、特に、重合体膜全導電体
表面に直接被着したーセンサーであって溶液中の水素イ
オン濃度を電極電位応答で測定するものに関する。
[Detailed Description of the Invention] ■9 Background of the Invention [Technical Field] The present invention relates to a voice sensor, and in particular, to a sensor in which a polymer film is directly deposited on the entire conductor surface to measure the hydrogen ion concentration in a solution. Concerning what is measured by electrode potential response.

〔先行技術および問題点〕[Prior art and problems]

従来、溶液中の水素イオンの濃度を測定する電極として
水素電極やキンヒドロン電極が知られているが、今日、
適用範囲の広さ、精確さという点でガラス電極が広く用
いられるようになりてきている。このガラス電極による
一測定の原理は一方を基準液とする水素イオン濃度の異
なる二つの溶液を薄いガラス膜で分離し、このガラス膜
の両側に生じた電位差を測定することからなる。
Conventionally, hydrogen electrodes and quinhydrone electrodes have been known as electrodes for measuring the concentration of hydrogen ions in solutions, but today,
Glass electrodes are becoming widely used because of their wide range of application and accuracy. The principle of one measurement using this glass electrode consists of separating two solutions with different hydrogen ion concentrations, one of which is a reference solution, by a thin glass membrane, and measuring the potential difference generated on both sides of this glass membrane.

すなわち、ガラス電極では基準液室を設ける必要があシ
、したがって微小化が困難である。
That is, with a glass electrode, it is necessary to provide a reference liquid chamber, and therefore miniaturization is difficult.

また、粘着性物質を含む溶液中ではガラス膜上に粘着性
物質が付着し、声の測定が困難であったシ、電極電位応
答の再現性が悪くなったシする。また、ガラス電極のガ
ラス膜の抵抗は10〜100MΩと大きく、声の測定に
は普通の電位差計を単独で用いることができず、高入力
インピーダンスの増幅器が必要となる。
In addition, in a solution containing a sticky substance, the sticky substance adheres to the glass membrane, making it difficult to measure voice and worsening the reproducibility of electrode potential response. Further, the resistance of the glass membrane of the glass electrode is as large as 10 to 100 MΩ, and an ordinary potentiometer cannot be used alone for voice measurement, and an amplifier with high input impedance is required.

また、膜被覆電極を利用したーセンサーは溶液中の妨害
イオン(例えはハロゲンイオン等の微小イオン)の透過
を阻止し難く一測定に影響を受ける。
In addition, sensors using membrane-coated electrodes are difficult to prevent the permeation of interfering ions (for example, minute ions such as halogen ions) in the solution, and are therefore affected by measurements.

■1発明の目的 したがって、この発明の目的は溶液中の水素イオン濃度
を測定する≠センサーであって基準液室を設ける必要が
なく、従って微小化を計ることのできる、しかも溶液中
のハロゲンイオンに影響されずに声を測定できるセンサ
ーを提供することにある。
■1 Purpose of the Invention Therefore, the purpose of the present invention is to provide a ≠ sensor for measuring the concentration of hydrogen ions in a solution, which does not require a reference liquid chamber, and therefore can be miniaturized. The goal is to provide a sensor that can measure voices without being influenced by

この発明の声センサーは、導電体の表面に芳香族化合物
から誘導された重合体膜を直接被着してなるものである
The voice sensor of the present invention is made by directly depositing a polymer film derived from an aromatic compound on the surface of a conductor.

なお、この明細書で用いられている重合体という語は単
独重合体および相互重合体(例えば、共重合体、三元共
重合体等)の双方を含む。
Note that the term polymer used in this specification includes both homopolymers and interpolymers (eg, copolymers, terpolymers, etc.).

■0発明の詳細な説明 以下、この発明を添付の図面に沿って詳しく説明する。■Detailed explanation of 0 invention The present invention will be described in detail below with reference to the accompanying drawings.

第1図に示すようにこの発明の声センサーは任意形状例
えば棒状の導電体11の周囲をポリオレフィンやテフロ
ン等の絶縁体13で被覆し、露出先端表面に所定の重合
体膜12を被着・固定してなるものである。導電体1ノ
は導電性材料で構成され、白金等が好ましい。
As shown in FIG. 1, the voice sensor of the present invention has a conductor 11 having an arbitrary shape, for example, a rod shape, whose periphery is coated with an insulator 13 such as polyolefin or Teflon, and a predetermined polymer film 12 is coated on the exposed tip surface. It is fixed. The conductor 1 is made of a conductive material, preferably platinum or the like.

導電体11の表面に被着されている重合体膜12は多核
式芳香族化合物から誘導された重合体よシなる。このよ
うな多核式芳香族化合物には例えば式 (ここで、aおよびbは0〜5の整数であってa+bは
1ないし10、Cは1またはO,Xはヒドロキシ多核式
芳香族化合物(例えは、ビスフェノールA、 2.2’
、4.4’−ジヒドロキシベンゾフェノン)、式 (ここで、&+b+QおよびXは既述の通p)で示され
るアミン系多核式芳香族化合物(例えハ、4.4’−ジ
フェニルノアミノエーテル)、および式 (ここで、Xは既述の通))で示される多核芳香族カル
デン酸系化合物(例えば、3 、3’、 4 、4’−
ペンゾフェノンテトラカルゴン酸無水物)が含まれる。
The polymer film 12 deposited on the surface of the conductor 11 is a polymer derived from a polynuclear aromatic compound. Such polynuclear aromatic compounds include, for example, the formula (where a and b are integers of 0 to 5, a+b is 1 to 10, C is 1 or O, and X is a hydroxy polynuclear aromatic compound (e.g. is bisphenol A, 2.2'
, 4.4'-dihydroxybenzophenone), an amine-based polynuclear aromatic compound (e.g., 4.4'-diphenylnoamino ether) represented by the formula (where &+b+Q and and a polynuclear aromatic caldenic acid compound (for example, 3, 3', 4, 4'-
(penzophenone tetracargonic anhydride).

上に述べた通シ、この発明の重合体は、上記いずれかの
多核式芳香族化合物の単独重合体、それらの相互重合体
めるいはそれらの少なくとも1種と他の芳香族化合物(
例えば、1,2−ジアミノベンゼンのような単核式窒累
含有芳香族化合物並びにフェノールのような単核式ヒド
ロキシ芳香族化合物)の少なくともlfiとの共重合体
を含むものである。
In line with the above, the polymer of the present invention is a homopolymer of any of the above polynuclear aromatic compounds, a copolymer thereof, or at least one thereof and another aromatic compound (
For example, it includes a copolymer of mononuclear nitrogen-containing aromatic compounds such as 1,2-diaminobenzene and mononuclear hydroxyaromatic compounds such as phenol with at least lfi.

なお、上記多核式芳香族以外でも、反応によって重合体
が多核式芳香族化合物を形成し、妨害イオン(例えばハ
ロダンイオンなどの微小イオン)の透過を阻止する効果
を有する膜も含まれる。例えば、フェノール単量体と1
,2−ジアミノベンゼンのようなヒドロキシ芳香族化合
物とアミノ芳香族化合物の組合である。
In addition to the above-mentioned polynuclear aromatic compounds, membranes in which a polymer forms a polynuclear aromatic compound through reaction and have the effect of blocking the permeation of interfering ions (for example, minute ions such as halodane ions) are also included. For example, phenol monomer and 1
, 2-diaminobenzene, and an aminoaromatic compound.

以上述べた多核式芳香族化合物から誘導された重合体膜
を導電体11表面上に被着するためには、多核式芳香族
化合物またはそれを含有する芳香族化合物混合物を電解
酸化重合法によって導電体11表面上で重合させる方法
、予め合成された重合体を溶媒に溶かし、この溶液を浸
漬・塗布および乾燥により導電体表面に固定する方法、
さらには重合体膜を化学的処理、物理的処理もしくは照
射処理によって導電体表面に直接固定する方法を採るこ
とができる。
In order to deposit the polymer film derived from the polynuclear aromatic compound described above on the surface of the conductor 11, the polynuclear aromatic compound or an aromatic compound mixture containing the same is applied to the conductive material by electrolytic oxidation polymerization. A method of polymerizing on the surface of the conductor 11, a method of dissolving a pre-synthesized polymer in a solvent, and fixing the solution on the surface of the conductor by dipping/coating and drying.
Furthermore, a method can be adopted in which the polymer film is directly fixed onto the conductor surface by chemical treatment, physical treatment, or irradiation treatment.

上記被着方法のうち最も好都合な方法は電解酸化重合法
による方法である。この電解酸化重合は適当な溶媒(例
えばアルカリ性のメタノール)中で上記芳香族化合物を
電解酸化重合させ、動作電極としての所望導電体11の
表面に重合体膜を被着するものである。
The most convenient of the above deposition methods is by electrolytic oxidative polymerization. In this electrolytic oxidative polymerization, the above-mentioned aromatic compound is electrolytically oxidized and polymerized in a suitable solvent (for example, alkaline methanol), and a polymer film is deposited on the surface of the desired conductor 11 as a working electrode.

電解酸化重合によって被着した重合体膜は被着安定性が
極めてよく、また膜表面も滑らかである。
The polymer film deposited by electrolytic oxidation polymerization has extremely good adhesion stability and has a smooth film surface.

重合体膜の厚さに特に制限はないが0.01μないし1
μ程度が適当である。
There is no particular limit to the thickness of the polymer film, but it is between 0.01μ and 1μ.
Approximately μ is appropriate.

■0発明の具体的作用 第1図のイオンセンサーを用いて試料溶液の−を測定す
るには、第2図に示すように、槽21中に声を測定すべ
き試料溶液22を入れ、この溶液にこの発明の声センサ
ー23および参照電極24としての銀−塩化銀電極、カ
ロメル電極等を浸漬する。そして参照電極24に対する
イオンセンサー23の電位差(起電力)を電位差計26
で測定する。このとき、試料溶液22を攪拌機25で攪
拌するとよい。そしてあらかじめ作製しておいた起電力
と声との相関図から試料溶液の声を読み取る。なお、気
体を吹き込む場合、気体吹き込み管22を用いる。
■0Specific operation of the invention To measure - of a sample solution using the ion sensor shown in Fig. 1, as shown in Fig. 2, the sample solution 22 whose voice is to be measured is placed in a tank 21, and this The voice sensor 23 of the present invention and a silver-silver chloride electrode, a calomel electrode, etc. as a reference electrode 24 are immersed in the solution. Then, the potential difference (electromotive force) of the ion sensor 23 with respect to the reference electrode 24 is measured using a potentiometer 26.
Measure with. At this time, it is preferable to stir the sample solution 22 with a stirrer 25. Then, the voice of the sample solution is read from a correlation diagram between electromotive force and voice prepared in advance. Note that when blowing gas, a gas blowing pipe 22 is used.

この発明のイオンセンサーによる起電力と−との関係は
広範囲の声領域で直線関係を示し、式 %式% (ここで、Eは起電力(mv)、Eoは一定電位(mV
 )、Rはガス定数、Tは絶対温度、Fはファラデ一定
数、〔H+〕は水素イオン濃度)で示されるネルンスト
の式をほぼ満足する。
The relationship between the electromotive force and - by the ion sensor of this invention shows a linear relationship in a wide range of vocal regions, and is expressed by the formula % (where E is the electromotive force (mv) and Eo is a constant potential (mV).
), R is a gas constant, T is an absolute temperature, F is a Faraday constant, and [H+] is a hydrogen ion concentration).

以下、この発明の実施例を記す。Examples of this invention will be described below.

実施例 1 電極被覆膜作成のために、電解セルとして通常の3電極
式H型セル全使用し、対極として白金鋼、基準電極とし
て飽和カロメル電極を使用し、動作電極として被覆固体
電極用のステンレス線(直径1■)の周囲をテフロンで
絶縁したものを用い、電極表面は研摩(シリコーンカー
バイト紙およびアルミナ粉末(0,3Mm ) ) し
て平滑にし、スパッタリング法によシ白金薄膜を被覆(
200μm膜厚)した。次に、これ全蒸留水で洗浄後、
電解重合法によって、高分子膜を被覆した。電解液は、
メタノール溶媒中で、5城フエノールと5mM1.2−
ジアミノベンゼンと30mMの水酸化ナトリウムを含み
、電解前にアルゴンガスで十分に脱酸素した。印加電圧
を0.0テルトから+1.0ボルトまで走査させ、この
単量体の高分子反応が白金電極表面上で生起しているこ
とを確認したのち、印加電圧’t1.0ボルト(対飽和
カロメル電極)で止め、3分間定電位電解し白金電極表
面に酸化重合生成物全被覆させた。第3図は、この重合
反応のサイクリックがルタモグラムを示す。比較例に示
した1・2−ジアミノベンゼンの酸化反応のピークは十
〇、 4 yl?ルト(対5SCE )にあるが、本発
明の場合には+0.2カルトと+0.5?ルト(フェノ
ールの酸化重合反応ピークは+0.5?ルト(対88C
E ) )である。第2走査波のピークは減少している
。これは、白金電極表面に高分子膜が被着していること
に起因するものである。なお、電位走査I速度は100
 mV/秒である。
Example 1 To create an electrode coating film, a normal three-electrode H-type cell was used as an electrolytic cell, platinum steel was used as the counter electrode, a saturated calomel electrode was used as the reference electrode, and a coated solid electrode was used as the working electrode. A stainless steel wire (diameter 1 mm) insulated with Teflon was used, and the electrode surface was smoothed by polishing (silicone carbide paper and alumina powder (0.3 mm)) and coated with a thin platinum film by sputtering. (
200 μm film thickness). Next, after washing with distilled water,
The polymer membrane was coated by electrolytic polymerization. The electrolyte is
In methanol solvent, 5mM phenol and 5mM 1.2-
It contained diaminobenzene and 30mM sodium hydroxide, and was sufficiently deoxidized with argon gas before electrolysis. After scanning the applied voltage from 0.0 telts to +1.0 volts and confirming that the polymer reaction of this monomer is occurring on the surface of the platinum electrode, the applied voltage 't1.0 volts (relative to saturation) (calomel electrode), and constant potential electrolysis was carried out for 3 minutes to completely coat the surface of the platinum electrode with the oxidized polymerization product. FIG. 3 shows a cyclic rutamogram of this polymerization reaction. The peak of the oxidation reaction of 1,2-diaminobenzene shown in the comparative example is 10,4 yl? (vs. 5SCE), but in the case of the present invention, +0.2 cult and +0.5? root (the oxidative polymerization reaction peak of phenol is +0.5? root (vs. 88C)
E)). The peak of the second scanning wave is decreasing. This is due to the fact that a polymer film is attached to the surface of the platinum electrode. Note that the potential scanning I speed is 100
mV/sec.

−測定を0.05Mの全リン酸緩衝液を用い、水酸化ナ
トリウムおよび過塩素酸で溶液のpH’t−3,00か
ら10.0の範囲に調整して測定した。
- Measurements were carried out using a 0.05M total phosphate buffer and adjusting the pH of the solution in the range from -3.00 to 10.0 with sodium hydroxide and perchloric acid.

この試料溶液に被覆膜電極を浸し、飽和塩化ナトリウム
カロメル電極(5SCE )を基準電極として起電力を
測定した。この被覆膜電極の測定起電力と市販ガラス電
極で測定した2値とをプロットしたものを第4図に白丸
で示す。この直線の勾配は広範囲の声領域で59 mV
/pH(37℃±0.1)で、ネルンスト式を満足する
。この場合、一般に高入力インピーダンスが内臓されて
いるイオンメーター(オリオンリサーチ社製701A型
)で測定した。次に、ディジタルゲルトメーター(タケ
ダ理研社製TR6841型)を用い同様の検討を行った
場合も、第4図に示す黒丸のようになシ、上述のO印の
結果(イオンメーター使用の場合)とはソ同じであった
。このことから、本発明の高分子被覆電極は膜抵抗が低
いと思われる。また、ディノボルトメーターを使用する
ことによって省力化が出来ることは大きな特徴になる。
The coated membrane electrode was immersed in this sample solution, and the electromotive force was measured using a saturated sodium chloride calomel electrode (5SCE) as a reference electrode. A plot of the measured electromotive force of this coated membrane electrode and the binary values measured with a commercially available glass electrode is shown in white circles in FIG. The slope of this line is 59 mV over a wide vocal range.
/pH (37°C±0.1), satisfying the Nernst equation. In this case, the measurement was performed using an ion meter (Model 701A manufactured by Orion Research), which generally has a built-in high input impedance. Next, when a similar study was conducted using a digital gel meter (TR6841 model manufactured by Takeda Riken Co., Ltd.), the results were as shown in the black circles shown in Figure 4, and the result was marked O as described above (when using an ion meter). It was the same. From this, it seems that the polymer-coated electrode of the present invention has low membrane resistance. Another major feature is that labor can be saved by using the Dino Voltmeter.

標準血清(General Giagotics De
r Werner−Lamb e r を社製Vass
atol)中での平衡電位と声値(あらかじめ市販ガラ
ス声メーターで測定)の間の関係は第4図x印で示すよ
うに、電位がおよそ100mV減少するがpH4,80
から6.86の間の測定ではネルンストの式を満足する
直線関係を示す。兎の頚静脈中の連続声測定では+16
0mV (pH7,4)の一定電位を約1時間にわたっ
て示す。標準血清の+160 mVはpH7,4に相当
する。したがって、標準血清を検量線に使用してEx−
vivo (動物実験)中のμ値を算出することが可能
である。
Standard serum
r Werner-Lamb e r manufactured by Vass
Atol), the relationship between the equilibrium potential and the voice value (measured in advance with a commercially available glass voice meter) is as shown by the x mark in Figure 4.
Measurements between and 6.86 show a linear relationship that satisfies Nernst's equation. +16 in continuous voice measurement in rabbit jugular vein
A constant potential of 0 mV (pH 7,4) is shown for approximately 1 hour. +160 mV of standard serum corresponds to pH 7.4. Therefore, using standard serum as a calibration curve, Ex-
It is possible to calculate μ values in vivo (animal experiments).

実施例 2 単量体として2.2−ビス(4′−ヒドロキシフェニル
)fロパン(ビスフェノールA)および、4.4′−ジ
アミノジフェニルエーテル(DADPE)もしくは1,
2−ジアミノベンゼン(DAB) ’i実施例rrM 
 、   mM 1と同様に5 .5  の割合で混ぜ、30mM水酸化
ナトリウム−メタノール溶液の電解液とした。この電解
液中で実施例1と同様の方法で、電解酸化重合反応を白
金電極表面上でおこない高分子膜被覆電極を作製した。
Example 2 2,2-bis(4'-hydroxyphenyl)f-lopane (bisphenol A) and 4,4'-diaminodiphenyl ether (DADPE) or 1,
2-Diaminobenzene (DAB) 'i Example rrM
, 5.mM as well as 1. The mixture was mixed in a ratio of 5 to 5 to form an electrolytic solution of 30mM sodium hydroxide-methanol solution. In this electrolytic solution, an electrolytic oxidation polymerization reaction was carried out on the surface of the platinum electrode in the same manner as in Example 1 to produce a polymer membrane-covered electrode.

この時のサイクリツメボルタモダラムは実施例1と同様
に第1走査波は2つの酸化反応ピークを示し、第2走査
波のそれではピークは1つとなシ、このピーク電流値は
減少している。したがりて、実施例1と同様に、白金電
極表面に高分子膜が被覆されたと考えられる。全リン酸
緩衝液中のネルンストの関係式は第6図に示す白丸印(
ビスフェノールA −DADPE混成膜)、黒丸印(ビ
スフェノールA −DAB混成膜)のいずれもPH3〜
9の広い声領域にわたってネルンストの関係を満足する
電位値−一の相関を示し、この直線の勾配から62mV
/ pH(37℃±091)が得られた。
The cyclic voltage modalum at this time shows two oxidation reaction peaks in the first scanning wave, as in Example 1, and one peak in the second scanning wave, and this peak current value is decreasing. . Therefore, as in Example 1, it is considered that the surface of the platinum electrode was coated with a polymer film. The Nernst relation in total phosphate buffer is indicated by the white circle (
Bisphenol A-DADPE hybrid film) and black circle (bisphenol A-DAB hybrid film) both have a pH of 3~
It shows a potential value - 1 correlation that satisfies the Nernst relationship over a wide vocal range of 9, and from the slope of this straight line, 62 mV
/ pH (37°C ± 091) was obtained.

共存イオンの影響について、Ct″″イオン濃度を変化
させ、このときの電極電位変化を測定した。(第5図参
照)。この結果、(ビスフェノールA −DADPE 
)混成膜よシなる高分子膜被覆電極を用い、Ct−イオ
ン10−1M濃度変化させたpH6,861Jン酸緩衝
液中における測定では、電位変化はほとんど少ないこと
が明らかとなった。この高分子膜は水素イオンは透過す
るが、ct’″イオンの透過を阻止することが出来る。
Regarding the influence of coexisting ions, the Ct″″ ion concentration was changed and the change in electrode potential at this time was measured. (See Figure 5). As a result, (bisphenol A-DADPE
) Measurements in pH 6,861J acid buffer with varying concentrations of Ct- ions of 10-1M using a polymer membrane-coated electrode such as a hybrid membrane revealed that the potential change was almost small. This polymer membrane allows hydrogen ions to permeate, but can block the permeation of ct''' ions.

したがって、高水素イオン選択透過膜として使用できる
。また、膜厚は2001以下と非常に薄いため水素イオ
ン透過が迅速であり、白金表面での水素イオン応答も速
い結果がえられている。
Therefore, it can be used as a high hydrogen ion selectively permeable membrane. In addition, since the film thickness is very thin at 200 mm or less, hydrogen ions permeate quickly, and the hydrogen ion response on the platinum surface is also fast.

したがって、本発明の膜被覆電極は−センサーとして適
している。
The membrane-coated electrode according to the invention is therefore suitable as a sensor.

(ビスフェノールAとDAB )混成膜電極ではCt−
イオンによって平衡電位は影響を受けた。
(Bisphenol A and DAB) Ct-
The equilibrium potential was affected by the ions.

実施例 3 3 、3’、 4 、4’−ベンゾフェノンテトラカル
ボン酸二無水物(BptCDiAn )とDADPE 
全実施例1と同様にs mM :s mMの割合で混ぜ
、30 mM水酸化ナトリウム−メタノール溶液中で、
白金薄膜電極表面に高分子膜を被覆した。この電極を用
いて、標準緩衝液中の声変化に対する応答電位を調べた
ところ、第7図に示すような−の広い範囲(p)13.
0から9.0まで)に亘ってネルンストの直線関係が成
立し、この直線の勾配から53m■/p)l (37℃
±0.1)’に得た。
Example 3 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BptCDiAn) and DADPE
Mix in the same manner as in Example 1 at a ratio of smM:smM in a 30mM sodium hydroxide-methanol solution.
A polymer film was coated on the surface of the platinum thin film electrode. Using this electrode, we investigated the response potential to voice changes in a standard buffer solution, and found that - as shown in Figure 7, there was a wide range of - (p) 13.
0 to 9.0), and the slope of this straight line is 53m/p)l (37℃
±0.1)'.

なお、上記電解酸化重合時のサイクリックホルタモグラ
ムは第1走査波の酸化波ピークは+0.5V(対5SC
E) 1本である。
In addition, in the cyclic holtammogram during the above electrolytic oxidation polymerization, the oxidation wave peak of the first scanning wave is +0.5V (vs. 5SC).
E) There is one.

実施例 4 無水環を開環した2 、 2 、4 、4’−テトラヒ
ドロキシベンゾフェノン10 mM f 、30 mM
水酸化ナトリウム−メタノール溶液中で実施例1と同様
に電解酸化重合を行わせ、白金電極表面に被覆した。こ
の時のサイクリックホルタモグラムは第1走査波におい
て+0.3ボルト(対5SCE )にピークがちシ、そ
の比0.4ボルトから0.8ボルトの範囲でも電流ピー
クが高い現象が観測された。
Example 4 2,2,4,4'-tetrahydroxybenzophenone with opened anhydride ring 10 mM f, 30 mM
Electrolytic oxidation polymerization was performed in a sodium hydroxide-methanol solution in the same manner as in Example 1, and the surface of the platinum electrode was coated. The cyclic holtammogram at this time tended to peak at +0.3 volts (vs. 5SCE) in the first scanning wave, and a phenomenon in which the current peak was high even in the range of 0.4 volts to 0.8 volts was observed. .

このことはベンゾフェノン骨格とOH基の酸化反応に基
因するものと思われる。第2走査波の電流ピークは減少
しているので、白金電極表面に高分子膜が被覆している
。この膜電極の一応答はpH2から9.0までの広い範
囲にわたってネルンストの関係を満足する直線関係が成
立している。そして、この直線の勾配から59 mV 
/ p+((37°±0.1℃)を得た。(第8図参照
)。
This seems to be due to the oxidation reaction between the benzophenone skeleton and the OH group. Since the current peak of the second scanning wave is reduced, the surface of the platinum electrode is covered with a polymer film. The response of this membrane electrode has a linear relationship that satisfies the Nernst relationship over a wide range of pH from 2 to 9.0. And from the slope of this straight line, 59 mV
/p+((37°±0.1°C)) was obtained (see Figure 8).

Ct−イオン濃度をIMまで標準緩衝液中に添加しても
平衡電位値は変化せず水素イオンのみを高選択できる高
分子膜である(第9図参照)。
Even if the Ct-ion concentration is added to the standard buffer solution up to IM, the equilibrium potential value does not change, and this polymer membrane can highly select only hydrogen ions (see Fig. 9).

以上、述べたように、この発明の一センサーは以下に列
挙する効果を奏する。
As described above, one sensor of the present invention has the effects listed below.

1)高分子膜が多核芳香族化合物を骨格とした構造の化
合物を用いている。このことから導電性表面に強固な膜
が出来る。
1) The polymer membrane uses a compound with a structure having a polynuclear aromatic compound as its skeleton. This creates a strong film on the conductive surface.

2)そしてこの膜被覆電極は一測定司能範囲がpH3〜
lOばかシでなく、強酸pH1,0附近、強アルカIJ
(pH10’i越える範囲)での−測定に好適である。
2) This membrane-covered electrode has a measurement range of pH 3 to
Not 1O stupid, strong acid pH around 1.0, strong alkali IJ
(pH range exceeding 10'i) - Suitable for measurement.

3)  C1−イオン濃度に対する影響は1 mol/
J?Ct−イオン濃度範囲まで一測定が可能でCt−イ
オンの影響を受けない。
3) The influence on C1- ion concentration is 1 mol/
J? Measurement is possible up to the Ct- ion concentration range and is not affected by Ct- ions.

4)電位応答速度も比較的速い。4) Potential response speed is also relatively fast.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一センサーの拡大断面部分図、第2
図はこの発明の声センサーによる声測定方法を示す概略
図、第3図ないし第9図はこの発明のp[(センサーの
特性を示すグラフ図。 11・・・導電体、12・・・重合体膜、13・・・絶
縁体層、22・・・測定液、23・・・声センサー、2
4・・・参照電極。
FIG. 1 is an enlarged partial cross-sectional view of one sensor of the present invention, and FIG.
The figure is a schematic diagram showing a voice measurement method using the voice sensor of the present invention, and Figures 3 to 9 are graphs showing the characteristics of the p[(sensor) of the present invention. 11... conductor, 12... heavy Combined film, 13... Insulator layer, 22... Measurement liquid, 23... Voice sensor, 2
4...Reference electrode.

Claims (1)

【特許請求の範囲】[Claims] 溶液中の水素イオン濃度を電極電位応答で測定するpH
センサーであって、導電体の表面に芳香族化合物から誘
導された重合体膜を直接的に被着してなることを特徴と
するpHセンサー。
pH, which measures the hydrogen ion concentration in a solution by electrode potential response
A pH sensor comprising a polymer film derived from an aromatic compound directly deposited on the surface of a conductor.
JP59136336A 1984-06-30 1984-06-30 Ph sensor Pending JPS6114560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59136336A JPS6114560A (en) 1984-06-30 1984-06-30 Ph sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59136336A JPS6114560A (en) 1984-06-30 1984-06-30 Ph sensor

Publications (1)

Publication Number Publication Date
JPS6114560A true JPS6114560A (en) 1986-01-22

Family

ID=15172830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59136336A Pending JPS6114560A (en) 1984-06-30 1984-06-30 Ph sensor

Country Status (1)

Country Link
JP (1) JPS6114560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213661A (en) * 1985-03-19 1986-09-22 Terumo Corp Ph sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118153A (en) * 1981-01-14 1982-07-22 Terumo Corp Ph sensor
JPS5832155A (en) * 1981-08-19 1983-02-25 Terumo Corp Ion sensor
JPS5852556A (en) * 1981-09-24 1983-03-28 Terumo Corp Ion selective permeable film and ion sensor
JPS58172541A (en) * 1982-04-02 1983-10-11 Terumo Corp Ion electrode substrate and ion electrode
JPS58223054A (en) * 1982-06-18 1983-12-24 Terumo Corp Base body for ion electrode and ion electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118153A (en) * 1981-01-14 1982-07-22 Terumo Corp Ph sensor
JPS5832155A (en) * 1981-08-19 1983-02-25 Terumo Corp Ion sensor
JPS5852556A (en) * 1981-09-24 1983-03-28 Terumo Corp Ion selective permeable film and ion sensor
JPS58172541A (en) * 1982-04-02 1983-10-11 Terumo Corp Ion electrode substrate and ion electrode
JPS58223054A (en) * 1982-06-18 1983-12-24 Terumo Corp Base body for ion electrode and ion electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213661A (en) * 1985-03-19 1986-09-22 Terumo Corp Ph sensor

Similar Documents

Publication Publication Date Title
EP0100988B1 (en) Reference electrode
JPS5529940A (en) Method and apparatus for determining activity of microorganism
JPS6114562A (en) Ph measuring instrument
JPS6114565A (en) Instrument for measuring concentration of hydrogen ion
Milczarek et al. 2, 2‐bis (3‐amino‐4‐hydroxyphenyl) hexafluoropropane modified glassy carbon electrodes as selective and sensitive voltammetric sensors. Selective detection of dopamine and uric acid
JPS6313148B2 (en)
Griffith et al. Probing enzyme polymer biosensors using X-ray photoelectron spectroscopy: Determination of glucose oxidase in electropolymerised films
JPS6114560A (en) Ph sensor
JPS59211854A (en) Metallic oxide electrode
WO1997041427A1 (en) Sensor for detecting low concentrations of polyions
JPS6364740B2 (en)
EP0614082A2 (en) Procedure and apparatus for the determination of concentration of ammonia, and a procedure for the manufacturing of a detector
Espenscheid et al. Ion exchange voltammetry with electroactive ionomers
Mizutani et al. Amperometric measurement of nitric oxide (NO) using an electrode coated with polydimethylsiloxane
Hrnčı́řová et al. Effect of gas humidity on the potential of pseudoreference Pt/air electrode in amperometric solid-state gas sensors
RU2412433C1 (en) Method of voltammetre detection of tin in aqueous solutions
Van den Berg et al. A universal on-wafer fabrication technique for diffusion-limiting membranes for use in microelectrochemical amperometric sensors
JPS58172541A (en) Ion electrode substrate and ion electrode
JP3650919B2 (en) Electrochemical sensor
JPS5852556A (en) Ion selective permeable film and ion sensor
JPH0367220B2 (en)
JPH0375552A (en) Enzyme electrode
RU2362156C2 (en) Method of differential voltammetry of aqueous solutions and device to this end
SU989390A1 (en) Material oxygen permeability determination method
JPS6221054A (en) Chlorine ion sensor