JPS63128566A - Solid electrolyte fuel battery and manufacture thereof - Google Patents

Solid electrolyte fuel battery and manufacture thereof

Info

Publication number
JPS63128566A
JPS63128566A JP61274323A JP27432386A JPS63128566A JP S63128566 A JPS63128566 A JP S63128566A JP 61274323 A JP61274323 A JP 61274323A JP 27432386 A JP27432386 A JP 27432386A JP S63128566 A JPS63128566 A JP S63128566A
Authority
JP
Japan
Prior art keywords
solid electrolyte
film
yttria
electrode
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61274323A
Other languages
Japanese (ja)
Inventor
Yuichiro Murakami
勇一郎 村上
Shoji Morita
章二 森田
Koichi Sakamoto
康一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61274323A priority Critical patent/JPS63128566A/en
Publication of JPS63128566A publication Critical patent/JPS63128566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To keep air tightness and obtain a dense solid electrolyte by constituting a fine particle film comprising yttria-stabilized zirconia fine particles and a superfine particle film comprising yttria-stabilized zirconia superfine particles and allocating the fine particle film at the porous substrate side. CONSTITUTION:An about 500 mum-thick porous LaCO3 film (air electrode) 2 is formed on a porous ceramics substrate 11. A flame coating film (fine particle film) 3 of YSZ (yttriastabilized zirconia) with an average particle size of 44 mum is formed on the air electrode 2, and, furthermore, a superfine particle solid electrolyte thin film (superfine particle film) 4 is formed on the flame coating film 3. An about 150 mum-thick fuel electrode 5 comprising NiO is formed on the electrolyte thin film 4. By the arrangement, a solid electrolyte fuel battery comprising a thin film with excellent characteristics is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、固体電解質燃料電池及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid electrolyte fuel cell and a method for manufacturing the same.

[従来の技術] 周知の如く、固体電解質燃料電池は電解質の両端に生じ
た酸素濃度の差により起電力を生じるものであるが、電
池の電気抵抗を低くするために固体電解質を薄膜化する
必要がある。このため、従来固体電解質は溶射法又は電
気化学蓋@(EVD)法により成膜されていた。
[Prior Art] As is well known, solid electrolyte fuel cells generate electromotive force due to the difference in oxygen concentration between the two ends of the electrolyte, but it is necessary to make the solid electrolyte a thin film in order to lower the electrical resistance of the battery. There is. For this reason, solid electrolytes have conventionally been deposited by thermal spraying or electrochemical vapor deposition (EVD).

[発明が解決しようとする問題点] しかしながら、従来技術によれば以下に述べる問題点を
有する。
[Problems to be Solved by the Invention] However, the prior art has the following problems.

(1)溶射法の場合;成膜速度が速いが、得られた躾は
ち密でなく通気性がある。従って、燃料に用いる水素ガ
スなどの透過を押えるために厚さ200〜300mの厚
い膜をつける必要があった。
(1) In the case of thermal spraying; the film formation rate is fast, but the resulting film is not dense and has air permeability. Therefore, it was necessary to provide a thick membrane with a thickness of 200 to 300 m in order to suppress the permeation of hydrogen gas used as fuel.

(2>EVD法;ち密な膜ができるが、成膜速度は遅く
、高温で長時間基体管を一本づつ処理しなければならな
い等量産性に欠ける。
(2>EVD method: Although a dense film can be produced, the film formation rate is slow, and it lacks mass productivity, as it requires processing one substrate tube at a time at high temperatures for a long time.

本発明は上記事情に鑑みてなされたもので、溶射法の欠
点であるガス透過性を抑制するため固体電解′14溶射
膜の上にセラミックス超微粒子からなるち密な固体電解
質膜をスラリー法で形成させ、封孔処理することにより
従来の溶射法よりは薄い膜厚で使用でき、燃料電池用の
固体電解質膜としても優れた特性を有した固体電解質燃
料電池及びその製造方法を提供することを目的とする。
The present invention was made in view of the above circumstances, and in order to suppress gas permeability, which is a drawback of the thermal spraying method, a dense solid electrolyte membrane made of ultrafine ceramic particles is formed by a slurry method on a solid electrolyte '14 thermally sprayed membrane. The purpose of the present invention is to provide a solid electrolyte fuel cell and a method for manufacturing the same, which can be used with a thinner film thickness than conventional thermal spraying by sealing and sealing, and which has excellent properties as a solid electrolyte membrane for fuel cells. shall be.

[問題点を解決するための手段と作用]本願筒1の発明
は、多孔質基材上に空気極、固体電解質膜及び燃料極を
形成してなる固体電解質燃料電池において、上記固体電
解質膜をイツトリア安定化ジルコニアの微粒子で形成さ
れる微粒子膜とイツトリア安定化ジルコニアの超微粒子
で形成される超微粒子膜とで構成し、かつ上記微粒子膜
を上記多孔質基材側に配設したことを要旨とする。
[Means and effects for solving the problems] The invention of the present application No. 1 provides a solid electrolyte fuel cell in which an air electrode, a solid electrolyte membrane, and a fuel electrode are formed on a porous base material. It is composed of a fine particle membrane formed of fine particles of yttria-stabilized zirconia and an ultrafine particle membrane formed of ultrafine particles of yttria-stabilized zirconia, and the fine particle membrane is disposed on the porous base material side. shall be.

本願筒2の発明は、多孔質基材の上に空気極又は燃料極
を成膜する工程と、上記空気極又は燃料極の上にイツト
リア安定化ジルコニアの微粒子を用いて微粒子膜を形成
する工程と、この微粒子膜上にイツトリア安定化ジルコ
ニア超微粒子に結合剤と解膠剤と水とを混合して救った
スラリーを塗布、乾燥、焼成して超微粒子膜を形成する
工程と、この超微粒子膜上に上記燃料極又は空気極の残
りの一方を積層する工程とを具備することを要旨とする
The invention of the present application tube 2 includes a step of forming an air electrode or a fuel electrode on a porous base material, and a step of forming a fine particle film using fine particles of ittria-stabilized zirconia on the air electrode or fuel electrode. Then, on this fine particle film, a slurry made by mixing yttria-stabilized zirconia ultrafine particles with a binder, a deflocculant, and water is applied, dried, and fired to form an ultrafine particle film, and this ultrafine particle The method further comprises the step of laminating the remaining one of the fuel electrode and the air electrode on the membrane.

なお、本願発明の詳細は以下に記述する通りである。The details of the present invention are as described below.

即ち、平均粒径1uI11以下のYSZ超微粒子は焼結
速度が早いので1400℃以下の温度でも焼成でき、ま
た粒径が小さいので溶射膜表面の細孔にまで浸入し、付
着性が良く、溶射膜の封、孔処理をしながらち密な固体
電解質膜を形成できる。また、全てを溶射法で成膜した
場合に比較して固体電解質の全ての膜厚を薄く保つこと
ができ、これにより燃料電池の内部抵抗を低下させる効
果を生ずる。
In other words, the YSZ ultrafine particles with an average particle size of 1 uI11 or less have a fast sintering rate, so they can be fired at temperatures below 1400°C, and their small particle size allows them to penetrate into the pores on the surface of the sprayed film, resulting in good adhesion. A dense solid electrolyte membrane can be formed while sealing the membrane and treating pores. In addition, the thickness of all the solid electrolyte films can be kept thinner than when all the films are formed by thermal spraying, which has the effect of lowering the internal resistance of the fuel cell.

また、固体電解質溶射条件は、次のようにすることが好
ましい。
Further, the solid electrolyte spraying conditions are preferably as follows.

■YSZ粒子の平均粒径は5〜70虜とする。(2) The average particle size of the YSZ particles is 5 to 70 mm.

ここで、平均粒径が5−未満の場合、粉末の流動性が悪
く溶射装置に送給することが困難となる。
Here, if the average particle size is less than 5, the fluidity of the powder is poor and it becomes difficult to feed it to a thermal spraying device.

また、70umを越えると、溶射膜の膜質が不均一とな
り、良質な膜とならない。
Moreover, if it exceeds 70 um, the quality of the sprayed film will become non-uniform and the film will not be of good quality.

■溶射膜の膜厚を10〜150IImとする。(2) The thickness of the sprayed film is 10 to 150 IIm.

ここで、溶射膜の膜厚が10−よりも薄い場合、塗布し
たスラリーが下部の多孔質電極にまで浸入する欠点があ
る。また、膜厚が150−よりも厚い場合、電気抵抗も
増し、コストの低減にもならない。
Here, if the thickness of the sprayed film is thinner than 10 -, there is a drawback that the applied slurry penetrates into the porous electrode at the bottom. Moreover, if the film thickness is thicker than 150 mm, the electrical resistance will increase and the cost will not be reduced.

次に、スラリーの調合、焼成条件は次のようにする。Next, the slurry preparation and firing conditions are as follows.

■YSZ超微粒子の平均粒径を111!を以下とする。■The average particle size of YSZ ultrafine particles is 111! is as follows.

ここで、YSZ超微粒子の粒径が1−よりも大きくなる
と、燻結瀾度の低温化や溶射膜へのスラリーの浸入など
の効果が出す、ち密な膜を製造できない。
Here, if the particle size of the YSZ ultrafine particles is larger than 1-, it is impossible to produce a dense film that produces effects such as lowering the degree of smoldering and infiltration of slurry into the sprayed film.

■結合剤として水溶性アクリル樹脂を0.01〜3重一
部とする。
(2) Use 0.01 to 3 parts of water-soluble acrylic resin as a binder.

ここで、水溶性アクリル樹脂はスラリーの粘性などの特
性が良く、できたスラリーが塗布しやすいので、結合剤
として優れている。また、混合量が0.011重部未満
では効果がなく、3重量部を越えると焼成時にひび割れ
を生じる。
Here, the water-soluble acrylic resin is excellent as a binder because it has good properties such as slurry viscosity and the resulting slurry is easy to apply. Further, if the amount mixed is less than 0.011 parts by weight, there is no effect, and if it exceeds 3 parts by weight, cracks will occur during firing.

■解膠剤を0.01〜2重量部加える。■ Add 0.01 to 2 parts by weight of deflocculant.

ここで、解膠剤としてはアルコールまたは界面活性剤が
適当であるが、その添加層が0.01重量部未満ではス
ラリー中に沈澱が生じる。また、2重量部を越えるでも
効果は増加しないので、0.01〜2重量部の範囲が良
い。
Here, alcohol or a surfactant is suitable as the deflocculant, but if the added layer is less than 0.01 part by weight, precipitation will occur in the slurry. Further, since the effect does not increase even if the amount exceeds 2 parts by weight, a range of 0.01 to 2 parts by weight is preferable.

■水の混合量を20〜60重量部とする。(2) The amount of water mixed is 20 to 60 parts by weight.

ここで、水の混合量が20重量部未満では、スラリーの
粘性が大きく、塗布が困難である。また、60重量部を
越えると、スラリーの流動性が大きく、できた膜が薄く
なりすぎる欠点を有する。
If the amount of water mixed is less than 20 parts by weight, the slurry will have a high viscosity and will be difficult to coat. On the other hand, if the amount exceeds 60 parts by weight, the fluidity of the slurry is high and the formed film becomes too thin.

■スラリーの焼成条件としては1000〜1400℃の
温度で0.1〜20時間焼成することとする。
(2) The slurry is fired at a temperature of 1000 to 1400°C for 0.1 to 20 hours.

YSZ超微粒子の焼成速度は粒子の平均粒径によっても
ことなるが、1400℃の温度では0゜1〜5時間、1
ooo℃の温度では10〜20時間必要である。焼成温
度が1400℃を越えると、すでに形成させた他の多孔
質電極の熱応力による割れなどの問題を生じるとともに
、コスト高にもなる。また、焼成温度が1000℃より
も低い場合、焼成時間が非常に長くなる。更に、各温度
での焼成時間が短かすぎると焼結が十分でなく、長すぎ
るとコスト高となり運用上適切でない。
The firing rate of YSZ ultrafine particles varies depending on the average particle size of the particles, but at a temperature of 1400°C, the firing rate is 0° for 1 to 5 hours, 1
At a temperature of ooo<0>C, 10 to 20 hours are required. If the firing temperature exceeds 1,400° C., problems such as cracking of other porous electrodes already formed due to thermal stress will occur, and the cost will also increase. Furthermore, when the firing temperature is lower than 1000°C, the firing time becomes very long. Further, if the firing time at each temperature is too short, sintering will not be sufficient, and if the firing time is too long, the cost will increase and it is not appropriate for operation.

■YSZ超微粒子焼成固体電解質膜の厚さを10〜15
0−とする。
■The thickness of the YSZ ultrafine particle fired solid electrolyte membrane is 10 to 15
Set to 0-.

膜厚が10IjIItより薄い場合、膜が均一にならず
、封孔処理が十分でなくなる。また、膜厚が150譚を
越えると、ガス透過性は抑制されるが、電気抵抗が増す
ときにコスト高となり、利点が少なくなる。
If the film thickness is less than 10IjIIt, the film will not be uniform and the sealing process will not be sufficient. Furthermore, if the film thickness exceeds 150 mm, the gas permeability is suppressed, but when the electrical resistance increases, the cost becomes high and the advantages are reduced.

[実施例] 以下、本発明の一実施例を図を参照して説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明に係る固体電解質燃料電池の断面図であ
る。
FIG. 1 is a sectional view of a solid electrolyte fuel cell according to the present invention.

図中の1は、多孔質セラミックス基材である。1 in the figure is a porous ceramic base material.

この基材1の上に厚さ約500−一の多孔質LaCO5
膜(空気極)2が形成されている。この空気極2上には
、平均粒径44−のYSZ(イツトリア安定化ジルコニ
ア)の溶射W!A(微粒子膜)3が形成されている。こ
の溶射!1II3の上には、超微粒子固体電解質薄膜(
超微粒子膿)4が形成されている。この電解質114は
、平均粒径0.02譚のYSZ超微粒子100重量部に
、結合剤として水溶性アクリル樹脂(商品名リカボード
5A203、中央理化(株)製)を1重量部、解膠剤と
してステアリルアルコール0.5重量部、水40!11
部を加え、スラリーを調合することにより形成した。前
記電解質1114上には、NiOからなる厚さ約150
−の燃料極5が形成されている。
On this base material 1, a porous layer of LaCO5 with a thickness of about 500-1 is placed.
A membrane (air electrode) 2 is formed. On this air electrode 2, YSZ (Ittria-stabilized zirconia) with an average particle size of 44 mm is sprayed W! A (fine particle film) 3 is formed. This thermal spraying! On top of 1II3, an ultrafine particle solid electrolyte thin film (
Ultrafine particle pus) 4 is formed. This electrolyte 114 consists of 100 parts by weight of YSZ ultrafine particles with an average particle size of 0.02 mm, 1 part by weight of a water-soluble acrylic resin (trade name: Ricaboard 5A203, manufactured by Chuo Rika Co., Ltd.) as a binder, and 1 part by weight of a water-soluble acrylic resin (trade name: Ricaboard 5A203, manufactured by Chuo Rika Co., Ltd.) as a peptizer. Stearyl alcohol 0.5 parts by weight, water 40!11
1.5% and prepared a slurry. On the electrolyte 1114 is a layer made of NiO having a thickness of approximately 150 mm.
− fuel electrode 5 is formed.

なお、図中の6は、前記多孔質セラミックス基材1の気
孔(模式的に示したもの)。しかるに、こうした構造の
固体電解質燃料電池を、切断し、断面を光学顕微鏡で観
察した結果、前記溶射膜3の厚さは約50譚、電解質薄
膜の厚さは約75譚であることが確認された。
Note that 6 in the figure indicates the pores (schematically shown) of the porous ceramic base material 1. However, as a result of cutting the solid electrolyte fuel cell having such a structure and observing the cross section with an optical microscope, it was confirmed that the thickness of the sprayed film 3 was about 50 mm, and the thickness of the electrolyte thin film was about 75 mm. Ta.

上記実施例によれば、次に述べる効果を有する。According to the above embodiment, the following effects are achieved.

即ち、多孔質セラミックス基材、空気極と溶射膜を成膜
しない場合、及びその上にち密な超微粒子固体電解質薄
膜をつけた場合のガス透過率を測定したところ、第2図
に示す結果を得た。但し、測定方法は基体管及び各種成
膜をした基体管の中にガス圧300mmHQ(am水中
)のN2ガススを導入した侵、ガスの導入を止め、その
後のガス圧が減少する様子を時間の関数としえ測定した
ものである。また、図中の(a)は多孔質アルミナ基体
管、(b)は空気極及び溶射膜を形成させた場合、(C
)は溶射膜の上に超微粒子固体電解質膜をスラリー法で
形成させた場合を夫々示す。同図より、YSzIB微粒
子スラリーの塗布、焼成により大幅にガス透過性が抑制
されていることが明らかである。従って、気密性を保つ
ことができる。また、固体電解質薄膜4の膜厚を薄くす
ることにより電気抵抗も低くなるので、燃料電池として
適切であるち密な固体電解質311114を得ることが
できる。
That is, when we measured the gas permeability of the porous ceramic substrate, the air electrode, and the case where no thermal sprayed film was formed, and the case where a dense ultrafine particle solid electrolyte thin film was attached thereon, we obtained the results shown in Figure 2. Obtained. However, the measurement method is to introduce N2 gas at a gas pressure of 300 mmHQ (in am water) into the substrate tube and the substrate tube on which various films have been formed, stop the gas introduction, and then observe the decrease in gas pressure over time. It was measured as a function. In addition, (a) in the figure is a porous alumina base tube, (b) is a case where an air electrode and a sprayed film are formed, (C
) show cases in which an ultrafine particle solid electrolyte membrane is formed on a thermally sprayed membrane by a slurry method. From the figure, it is clear that the gas permeability is significantly suppressed by coating and baking the YSzIB fine particle slurry. Therefore, airtightness can be maintained. Further, by reducing the thickness of the solid electrolyte thin film 4, the electrical resistance is also lowered, so that a dense solid electrolyte 311114 suitable for a fuel cell can be obtained.

次に、上記固体電解質燃料電池の製造方法について説明
する。
Next, a method for manufacturing the solid electrolyte fuel cell will be described.

■まず、多孔質セラミックス基材1の上に、多孔質La
CoO31112を溶射法で厚さ約500m形成し、そ
の上に平均粒径44−のYsZの溶1113を形成した
■First, on the porous ceramic base material 1, porous La
CoO31112 was formed to a thickness of about 500 m by a thermal spraying method, and YsZ melt 1113 having an average particle size of 44 was formed thereon.

■平均粒径0.02s11のYSZ超微粒子100重口
部に、結合剤として水溶性アクリル樹脂を1重量部、解
膠剤としてステアリルアルコール0.51量部、水40
重量部を加え、スラリーを調合した。
■100 parts by weight of YSZ ultrafine particles with an average particle size of 0.02s11, 1 part by weight of water-soluble acrylic resin as a binder, 0.51 part by weight of stearyl alcohol as a deflocculant, and 40 parts by weight of water.
Parts by weight were added to prepare a slurry.

■つづいて、上記溶射膜3の上にこのスラリーを塗布し
た後、1200℃で5時間焼成し、超微粒子固体電解質
膜4を得た。忌後に、その上にNiOからなる燃料極5
を溶射により約150虜成膜し、固体電解質燃料電池を
製造した。こうした固体電解質燃料電池の製造方法によ
れば、前述と同様、ガス透過性を抑制して気密性を保つ
ことができるとともに、ち密な固体電解質111114
を得ることができる。
(2) Subsequently, this slurry was applied onto the thermally sprayed film 3 and then baked at 1200° C. for 5 hours to obtain an ultrafine particle solid electrolyte film 4. After the death, a fuel electrode 5 made of NiO is placed on top of it.
A solid electrolyte fuel cell was manufactured by forming a film of about 150 cells by thermal spraying. According to this method of manufacturing a solid electrolyte fuel cell, as described above, it is possible to suppress gas permeability and maintain airtightness, and also to form a compact solid electrolyte 111114.
can be obtained.

なお、上記実施例では、多孔質セラミックス基材に空気
極がある場合を示したが、これに限らず、第3図に示す
如く多孔質セラミックス基材側に燃料極がある場合でも
同様な効果を期待できる。
In addition, although the above example shows the case where the air electrode is located on the porous ceramic base material, this is not limited to this, and the same effect can be obtained even when the fuel electrode is located on the porous ceramic base material side as shown in FIG. You can expect.

[発明の効果] 以上詳述した如く本発明によれば、ガス透過性を抑制し
て気密性を保つことができるとともに、ち密な固体電解
質膜が得られる固体電解質燃料電池及びその製造方法を
提供できる。
[Effects of the Invention] As detailed above, the present invention provides a solid electrolyte fuel cell that can suppress gas permeability to maintain airtightness and provide a dense solid electrolyte membrane, and a method for manufacturing the same. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る固体電解質燃料電池の
断面図、第2図はガス圧と時間との関係を示す特性図、
第3図は本発明の他の実施例に係る固体電解質燃料電池
の断面図である。 1・・・多孔質セラミックス基材、2・・・多孔質La
CoO3(空気極)、3・・・溶射膜 (微粒子模)、
4・・・超微粒子固体電解質薄膜 (超微粒子膜)、5
・・・燃料極、6・・・気孔。 出願人復代理人 弁理士 鈴江武彦 時 間(歓) 第2図 第3図 手続補正書 1、事件の表示 特願昭61−274323号 26発明の名称 固体電解質燃料電池及びその製造方法 3、補正をする者 事件との関係  特許出願人 (820)  三菱重工業株式会社 4、復代理人 東京都千代田区霞が関3丁目7番2号 UBEビル7、
補正の内容 (1)  明細書節6頁12行目において「越えるでも
」とあるを、「越えても」と訂正する。 (2)明細書節7頁17行目において「増すときに」と
あるを、「増すとともに」と訂正する。 (3)明細書箱9頁11行目において「mmHg(mm
水中)」とあるを、  rmmAq (mm水中)」と
訂正する。 (4)明細書同頁13行目において「関数としえ」とあ
るを、「関数として」と訂正する。 (5)第1図及び第3図を別紙の如く訂正する。 第1図 第3図
FIG. 1 is a cross-sectional view of a solid electrolyte fuel cell according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between gas pressure and time.
FIG. 3 is a sectional view of a solid electrolyte fuel cell according to another embodiment of the present invention. 1... Porous ceramic base material, 2... Porous La
CoO3 (air electrode), 3... thermal spray film (fine particle model),
4...Ultrafine particle solid electrolyte thin film (ultrafine particle membrane), 5
... fuel electrode, 6... pores. Applicant Sub-Attorney Patent Attorney Takehiko Suzue Time (Happy) Figure 2 Figure 3 Procedural Amendment 1, Case Description Patent Application No. 274323/1982 Title of Invention Solid Electrolyte Fuel Cell and Process for Manufacturing the Same 3, Amendment Patent applicant (820) Mitsubishi Heavy Industries, Ltd. 4, sub-agent UBE Building 7, 3-7-2 Kasumigaseki, Chiyoda-ku, Tokyo;
Contents of the amendment (1) In the specification section, page 6, line 12, the phrase "exceeding" is corrected to "exceeding". (2) In the specification section, page 7, line 17, the phrase "when increasing" is corrected to "as it increases." (3) On page 9, line 11 of the statement box, “mmHg (mm
Correct the text "rmmAq (mm underwater)" to "rmmAq (mm underwater)". (4) In line 13 of the same page of the specification, the phrase "as a function" is corrected to "as a function." (5) Figures 1 and 3 are corrected as shown in the attached sheet. Figure 1 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質基材上に空気極、固体電解質膜及び燃料極
を形成してなる固体電解質燃料電池において、上記固体
電解質膜をイットリア安定化ジルコニアの微粒子で形成
される微粒子膜とイットリア安定化ジルコニアの超微粒
子で形成される超微粒子膜とで構成し、かつ上記微粒子
膜を上記多孔質基材側に配設したことを特徴とする固体
電解質燃料電池。
(1) In a solid electrolyte fuel cell in which an air electrode, a solid electrolyte membrane, and a fuel electrode are formed on a porous base material, the solid electrolyte membrane is replaced with a fine particle membrane formed of fine particles of yttria-stabilized zirconia and yttria-stabilized zirconia. 1. A solid electrolyte fuel cell comprising an ultrafine particle membrane made of ultrafine zirconia particles, the fine particle membrane being disposed on the porous base material side.
(2)多孔質基材の上に空気極又は燃料極を成膜する工
程と、上記空気極又は燃料極の上にイットリア安定化ジ
ルコニアの微粒子を用いて微粒子膜を形成する工程と、
この微粒子膜上にイットリア安定化ジルコニア超微粒子
に結合材と解膠剤と水とを混合して作ったスラリーを塗
布、乾燥、焼成して超微粒子膜を形成する工程と、この
超微粒子膜上に上記燃料極又は空気極の残りの一方を積
層する工程とを具備することを特徴とする固体電解質燃
料電池の製造方法。
(2) a step of forming an air electrode or a fuel electrode on a porous base material; a step of forming a fine particle film using fine particles of yttria-stabilized zirconia on the air electrode or fuel electrode;
On this fine particle film, a slurry made by mixing yttria-stabilized zirconia ultrafine particles with a binder, a deflocculant, and water is applied, dried, and fired to form an ultrafine particle film; A method for producing a solid electrolyte fuel cell, comprising the steps of: laminating the remaining one of the fuel electrode or the air electrode.
JP61274323A 1986-11-18 1986-11-18 Solid electrolyte fuel battery and manufacture thereof Pending JPS63128566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61274323A JPS63128566A (en) 1986-11-18 1986-11-18 Solid electrolyte fuel battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61274323A JPS63128566A (en) 1986-11-18 1986-11-18 Solid electrolyte fuel battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63128566A true JPS63128566A (en) 1988-06-01

Family

ID=17540049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61274323A Pending JPS63128566A (en) 1986-11-18 1986-11-18 Solid electrolyte fuel battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63128566A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03203166A (en) * 1989-12-28 1991-09-04 Matsushita Electric Ind Co Ltd Manufacture of solid electrolyte membrane
US5358735A (en) * 1991-03-28 1994-10-25 Ngk Insulators, Ltd. Method for manufacturing solid oxide film and method for manufacturing solid oxide fuel cell using the solid oxide film
US5527633A (en) * 1992-09-17 1996-06-18 Ngk Insulators, Ltd. Solid oxide fuel cells, a process for producing solid electrolyte films and a process for producing solid oxide fuel cells
JP2013045772A (en) * 2011-08-25 2013-03-04 Robert Bosch Gmbh Inactive support type cylindrical fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03203166A (en) * 1989-12-28 1991-09-04 Matsushita Electric Ind Co Ltd Manufacture of solid electrolyte membrane
US5358735A (en) * 1991-03-28 1994-10-25 Ngk Insulators, Ltd. Method for manufacturing solid oxide film and method for manufacturing solid oxide fuel cell using the solid oxide film
US5527633A (en) * 1992-09-17 1996-06-18 Ngk Insulators, Ltd. Solid oxide fuel cells, a process for producing solid electrolyte films and a process for producing solid oxide fuel cells
JP2013045772A (en) * 2011-08-25 2013-03-04 Robert Bosch Gmbh Inactive support type cylindrical fuel cell

Similar Documents

Publication Publication Date Title
US5234722A (en) Solid electrolyte film, solid oxide fuel cell comprising such a solid electrolyte film, and processes for producing such film and solid oxide fuel cell
JPH09223508A (en) High temperature fuel cell having thin film electrolyte
US5968673A (en) Solid electrolyte thin film and method for producing the same
JPS63128566A (en) Solid electrolyte fuel battery and manufacture thereof
ATE179283T1 (en) FUEL CELL WITH CERAMIC COATED BIPOLAR PLATES AND THEIR PRODUCTION
JPH08185882A (en) Manufacture of solid electrolytic fuel cell
JPH07240217A (en) Electrolyte substrate and flat cell manufacturing method
JPH1079259A (en) Unit cell of cylindrical solid electrolyte fuel cell and manufacture of unit cell
JP3319136B2 (en) Solid electrolyte fuel cell
JPH07320757A (en) Solid electrolytic fuel cell interconnector, and its manufacture
JP2001023653A (en) Compact solid electrolyte film, solid electrolyte type fuel cell containing the same and manufacture thereof
JP3525601B2 (en) Method for forming dense ceramic thin film
USH1260H (en) Method for forming a solid oxide fuel cell
JP4232216B2 (en) Method for producing fuel electrode of solid oxide fuel cell
Pavzderin et al. Pore-Forming Agents for the Supporting Ni-Based SOFC Anode
JPH06283179A (en) Manufacture of electrolytic film for solid electrolytic fuel cell
JP3166333B2 (en) Ceramic coating method
JP3238086B2 (en) Solid oxide fuel cell
JPH09326258A (en) Manufacture of solid electrolyte film
JPH0456070A (en) Manufacture of solid electrolytic fuel battery tube cell
JP2002260677A (en) Cell of solid electrolyte fuel cell and fuel cell
JP2749916B2 (en) Method for manufacturing solid oxide fuel cell
JPH07130380A (en) Cylindrical lateral stripe type solid electrolyte electrolytic cell and manufacture thereof
JPH083714A (en) Production of laminante
JPH07135017A (en) Solid electrolyte fuel cell and its manufacture