JP2749916B2 - Method for manufacturing solid oxide fuel cell - Google Patents

Method for manufacturing solid oxide fuel cell

Info

Publication number
JP2749916B2
JP2749916B2 JP1332852A JP33285289A JP2749916B2 JP 2749916 B2 JP2749916 B2 JP 2749916B2 JP 1332852 A JP1332852 A JP 1332852A JP 33285289 A JP33285289 A JP 33285289A JP 2749916 B2 JP2749916 B2 JP 2749916B2
Authority
JP
Japan
Prior art keywords
fuel cell
solid oxide
oxide fuel
manufacturing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1332852A
Other languages
Japanese (ja)
Other versions
JPH03194861A (en
Inventor
達郎 宮崎
信明 村上
洋 佃
達雄 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1332852A priority Critical patent/JP2749916B2/en
Publication of JPH03194861A publication Critical patent/JPH03194861A/en
Application granted granted Critical
Publication of JP2749916B2 publication Critical patent/JP2749916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は円筒型の固体電解質型燃料電池の製法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a cylindrical solid oxide fuel cell.

〔従来の技術〕 固体電解質型燃料電池(以下、SOFCと略称する)は燃
料に含有される化学エネルギーを燃焼による熱エネルギ
ーの形態を経由することなく電気化学的手段を利用して
等温下で連続的に電気エネルギーへ直接変換する装置で
カルソー効率の制約を受けないため本質的に高いエネル
ギー変換率を有し、更に良好な環境保全性が期待される
などの特徴を有している。
[Prior art] A solid oxide fuel cell (hereinafter abbreviated as SOFC) is a method that uses chemical means to continuously transfer chemical energy contained in fuel at isothermal temperature without using thermal energy generated by combustion. It is a device that directly converts to electrical energy, and has a characteristic that it has an essentially high energy conversion rate because it is not restricted by calsaw efficiency, and is expected to have better environmental conservation.

従来の円筒型SOFCの製造方法としては多孔質基体管の
上に溶射法により成膜する方法とCVD(Chemical Vapor
Deposition)法により成膜する方法がある。溶射法とは
タングステン電極等を用いてプラズマを発生させこれで
目的の酸化物を溶融させて基体管に付着させる方法であ
る。またCVD法とは塩化物を高温にて蒸発させ基体管上
に析出させ成膜する方法である。
Conventional cylindrical SOFC manufacturing methods include a method of forming a film on a porous substrate tube by a thermal spraying method and a method of CVD (Chemical Vapor).
Deposition) method. The thermal spraying method is a method in which plasma is generated using a tungsten electrode or the like, and the target oxide is melted by this to be attached to the base tube. The CVD method is a method in which chloride is evaporated at a high temperature to deposit on a substrate tube to form a film.

〔発明が解決しようとする課題〕 しかしながら、従来技術における溶射法によれば基体
管に原料粉が付着するだけでなく、その回りに飛散する
ために歩留りが悪い。また本質的に緻密な膜が得られな
い(SOFCの性能が上がらない。)などの欠点を有する。
また、CVD法は装置の大型化が難しく量産化に乏しい。
また、溶射法、CVD法ともにSOFC本体(性能)とは関係
ない不必要な基体管を使用するため製造コストが大き
い。
[Problems to be Solved by the Invention] However, according to the thermal spraying method in the prior art, not only the raw material powder adheres to the base tube, but also it scatters around it, so that the yield is low. In addition, there is a disadvantage that a dense film cannot be obtained essentially (the performance of SOFC does not increase).
In addition, it is difficult for the CVD method to increase the size of the apparatus, and mass production is poor.
In addition, both the thermal spraying method and the CVD method use an unnecessary base tube that is not related to the SOFC body (performance), so that the manufacturing cost is high.

本発明は上記事情に鑑み、装置化が容易であり、製造
時の原料の損失も少なく生産性、経済性に富み、また膜
の気孔率(緻密膜や多孔質膜)の制御も可能である性能
向上したSOFCを製造しうる方法を提供しようとするもの
である。
In view of the above circumstances, the present invention is easy to implement, has little loss of raw materials during production, is highly productive and economical, and can control the porosity (a dense film or a porous film) of the film. An object of the present invention is to provide a method capable of manufacturing an SOFC with improved performance.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は燃料極、電解質、空気極を積層して燃料極
側、空気極側の酸素分圧の差によって電力を得る固体電
解質型燃料電池の製造方法において、各構成材の原料粉
と有機バインダーからなる懸濁液を用いそれぞれの構成
材からなる3種類の柔軟性のある平板状の薄膜を成形
し、所定の形状に裁断した後、各膜を積層し、ロールで
加圧して3層構造の平板状薄膜とし、更に加熱加圧して
接着させた後、これを円筒型に成形・保持して焼結する
ことを特徴とする固体電解質型燃料電池の製造方法であ
る。
The present invention relates to a method for manufacturing a solid oxide fuel cell in which a fuel electrode, an electrolyte, and an air electrode are stacked to obtain electric power by a difference in oxygen partial pressure between the fuel electrode and the air electrode. Three types of flexible plate-like thin films made of the respective constituent materials are formed using a suspension composed of the following components, cut into a predetermined shape, and each film is laminated and pressed with a roll to form a three-layer structure. A solid-state fuel cell, characterized in that the flat thin film is further bonded by heating and pressing, and then molded and held in a cylindrical shape and sintered.

本発明を更に具体的に説明すると、歩留りあるいは生
産性を高めるために、本発明はSOFC原料粉と有機バイン
ダーを含む懸濁液(スラリー又はペースト状)を調製
し、従来、IC基盤の製造に用いられているような方法
(セラミックスの押し出し法、ドクターブレード法、カ
レンダーロール法等)によりそれぞれ燃料極、電解質及
び空気極の構成材からなる3種類の平板薄膜を成形す
る。次にこれを所定の大きさに裁断し、積層し、ロール
で加圧して3層構造の平板状薄膜とし、更に加熱加圧し
て接着させた後、これをまるめて円筒型とした後に一度
に焼結を行う方法である。
More specifically, the present invention prepares a suspension (slurry or paste) containing an SOFC raw material powder and an organic binder in order to increase the yield or productivity, and conventionally, it has been used in the production of IC substrates. Three types of flat thin films composed of components of the fuel electrode, the electrolyte, and the air electrode are formed by a method such as the one used (eg, a ceramic extrusion method, a doctor blade method, and a calendar roll method). Next, this is cut into a predetermined size, laminated, pressed with a roll to form a three-layer plate-shaped thin film, and further heated and pressed to be adhered. This is a method of performing sintering.

〔作 用〕(Operation)

本発明によれば一般に製造されているセラミックス平
板の製造方法を利用することにより量産が可能となる。
このようにして得られた平板(焼結前)は柔軟性に富み
加工が容易であり、種々の形状への裁断が可能となる。
According to the present invention, mass production becomes possible by using a method for manufacturing a generally manufactured ceramic flat plate.
The thus obtained flat plate (before sintering) is flexible and easy to process, and can be cut into various shapes.

また、所定の形状へ裁断、積層し、ロールで加圧し、
更に加熱加圧して接着させた後に円筒型にし、その状態
で一度に焼結を行うために基本管は不要となり、さらに
積層後にロールで加圧しているので各層間に気泡が残存
することがなく、各層間の接着状態もよいので良好な品
質のSOFCを得ることができる。
Also, cut into a predetermined shape, laminated, pressed with a roll,
Further, after bonding by heating and pressing, it is made into a cylindrical shape, and sintering is performed at once in that state, so that a basic tube is unnecessary, and since it is pressed with a roll after lamination, no bubbles remain between each layer Since the bonding state between the layers is good, a SOFC of good quality can be obtained.

更に、使用する原料粉の粒径を調節することにより各
構成膜に必要となる気孔率(緻密膜、多孔質膜)の制御
も可能となる。
Further, by controlling the particle size of the raw material powder to be used, the porosity (a dense film, a porous film) required for each constituent film can be controlled.

〔実施例〕〔Example〕

以下、本発明の一実施例をあげ、本発明を更に詳述す
る。
Hereinafter, the present invention will be described in more detail with reference to an embodiment of the present invention.

電解質{イットリア安定化ジルコニア(YSZ):粒径
0.1μm}、空気極(LaSrMnO3:粒径0.5〜2μm)、燃
料極(NiO/YSZ:粒径0.1〜1.0μm)、インタコネクタ
(LaCrMgO3:粒径0.1μm以下)を各々有機バインダーと
してポリメタクリル酸のエステル及び分散材としてアミ
ンとを混合し、懸濁液(スラリー、又はペースト状)を
得る。次に薄平板成膜機(例えばドクターブレード成膜
機)にて100〜800μmの薄膜を作る。この状態では原料
粉体と有機バインダーとが約1:3の割合で混合されてお
り、柔軟性に富む。これを各膜が要求される形状に裁断
した後に、第1図に示すように空気極膜6にまず電解質
膜5、インタクネクタ膜4、次に燃料極膜3を積み重
ね、端部よりロール1で気泡が残らないよう加圧して平
板状薄膜2を作る。
Electrolyte yttria stabilized zirconia (YSZ): particle size
0.1μm}, air electrode (LaSrMnO 3 : particle size 0.5-2μm), fuel electrode (NiO / YSZ: particle size 0.1-1.0μm), interconnector (LaCrMgO 3 : particle size 0.1μm or less) The ester of methacrylic acid and the amine as a dispersant are mixed to obtain a suspension (slurry or paste). Next, a thin film having a thickness of 100 to 800 μm is formed by a thin plate film forming machine (for example, a doctor blade film forming machine). In this state, the raw material powder and the organic binder are mixed at a ratio of about 1: 3, which is rich in flexibility. After this is cut into the required shape for each membrane, the electrolyte membrane 5, the interconnector membrane 4, and then the fuel electrode membrane 3 are stacked on the air electrode membrane 6 as shown in FIG. The flat thin film 2 is formed by applying pressure so that no air bubbles remain.

更に、上記平板状薄膜2を荷重20g/cm2で110℃で処理
して各膜を充分接着させた後、第2図に示すように所定
の直径をもった成形用円筒7を用いて端部より円筒型に
まるめ、一度に1300〜1400℃で焼結させ、第3図に示し
たような円筒型SOFCを得た。
Further, the flat thin film 2 was treated at 110 ° C. under a load of 20 g / cm 2 to sufficiently adhere the respective films, and then, as shown in FIG. 2, using a molding cylinder 7 having a predetermined diameter. The portion was rounded into a cylindrical shape and sintered at a time at 1300 to 1400 ° C. to obtain a cylindrical SOFC as shown in FIG.

〔発明の効果〕〔The invention's effect〕

本発明によれば従来と比べ特殊な装置を必要とせず生
産性、経済性に富み、熱応力緩和やガスシール性に優れ
た円筒型SOFCの製造方法が提供される。
According to the present invention, there is provided a method for producing a cylindrical SOFC which does not require a special device as compared with the conventional one, is highly productive and economical, and is excellent in thermal stress relaxation and gas sealing properties.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図は本発明の一実施例の円筒型SOFCの製造
工程を示す概略図、第3図は製造された円筒型SOFCの概
略図を示す。
FIG. 1 and FIG. 2 are schematic diagrams showing a manufacturing process of a cylindrical SOFC according to an embodiment of the present invention, and FIG. 3 is a schematic diagram of the manufactured cylindrical SOFC.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加幡 達雄 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (56)参考文献 特開 平1−315959(JP,A) 特開 平1−258364(JP,A) 特開 昭51−76537(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Tatsuo Kahata 1-1, Akunouramachi, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (56) References JP-A-1-315959 (JP, A) JP-A-1-258364 (JP, A) JP-A-51-76537 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料極、電解質、空気極を積層して燃料極
側、空気極側の酸素分圧の差によって電力を得る固体電
解質型燃料電池の製造方法において、各構成材の原料粉
と有機バインダーからなる懸濁液を用いてそれぞれの構
成材からなる3種類の柔軟性のある平板状の薄膜を成形
し、所定の形状に裁断した後、各膜を積層し、ロールで
加圧して3層構造の平板状薄膜とし、更に加熱加圧して
接着させた後、これを円筒型に成形・保持して焼結する
ことを特徴とする固体電解質型燃料電池の製造方法。
1. A method for manufacturing a solid oxide fuel cell in which a fuel electrode, an electrolyte, and an air electrode are laminated to obtain electric power by a difference in oxygen partial pressure between the fuel electrode and the air electrode. Using a suspension composed of an organic binder, three types of flexible flat thin films composed of the respective constituent materials are formed, cut into a predetermined shape, and then laminated, and pressed with a roll. A method for manufacturing a solid oxide fuel cell, comprising: forming a three-layer plate-shaped thin film, further bonding by heating and pressing, forming and holding this into a cylindrical shape, and sintering.
JP1332852A 1989-12-25 1989-12-25 Method for manufacturing solid oxide fuel cell Expired - Fee Related JP2749916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1332852A JP2749916B2 (en) 1989-12-25 1989-12-25 Method for manufacturing solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1332852A JP2749916B2 (en) 1989-12-25 1989-12-25 Method for manufacturing solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH03194861A JPH03194861A (en) 1991-08-26
JP2749916B2 true JP2749916B2 (en) 1998-05-13

Family

ID=18259522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1332852A Expired - Fee Related JP2749916B2 (en) 1989-12-25 1989-12-25 Method for manufacturing solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2749916B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315959A (en) * 1988-06-14 1989-12-20 Nkk Corp Solid electrolyte fuel cell

Also Published As

Publication number Publication date
JPH03194861A (en) 1991-08-26

Similar Documents

Publication Publication Date Title
US20080246194A1 (en) Method of producing a ceramic sintered body
JPH06103990A (en) Solid electrolytic type fuel cell and manufacture thereof
JP2001196069A (en) Fuel cell
EP0726609B1 (en) Solid electrolyte for a fuel cell and its manufacturing method
JP2001283877A (en) Unit cell for solid electrolytic fuel battery and its manufacturing method
JP2011124230A (en) Manufacturing method of unit cell for solid oxide fuel cell using transfer method
JPH08287926A (en) Manufacture of solid electrolyte fuel cell
JP3434883B2 (en) Method for manufacturing fuel cell
JP2002015754A (en) Solid electrolyte fuel cell and its manufacturing method
JP2749916B2 (en) Method for manufacturing solid oxide fuel cell
JP3643006B2 (en) Solid oxide fuel cell cell
JPH0652863A (en) Electrode body for solid electrolytic fuel cell and manufacture thereof
JP3339998B2 (en) Cylindrical fuel cell
JP2848551B2 (en) Method for producing electrolyte membrane for solid oxide fuel cell
JPH07282823A (en) Manufacture of cell of cylindrical fuel cell
JPH04101360A (en) Manufacture of solid electrolyte-type fuel cell
JPH07320757A (en) Solid electrolytic fuel cell interconnector, and its manufacture
JPS62268063A (en) Manufacture of solid electrolyte
JP3358640B2 (en) Manufacturing method of electrode substrate
JPH06283178A (en) Manufacture of electrolytic film for solid electrolytic fuel cell
US11335913B2 (en) Method for manufacturing solid oxide cell having three-dimensional ceramic composite interface structure
JPH06111835A (en) Manufacture of solid electrolyte type electrolysis cell
JPH05138620A (en) Production of hollow ceramics panel
JPH0950814A (en) Solid electrolyte-type fuel cell
JPH0969367A (en) Manufacture of cylindrical fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees