JPS63126277A - Field effect thin film transistor - Google Patents

Field effect thin film transistor

Info

Publication number
JPS63126277A
JPS63126277A JP16748486A JP16748486A JPS63126277A JP S63126277 A JPS63126277 A JP S63126277A JP 16748486 A JP16748486 A JP 16748486A JP 16748486 A JP16748486 A JP 16748486A JP S63126277 A JPS63126277 A JP S63126277A
Authority
JP
Japan
Prior art keywords
film
electrode
insulating film
amorphous silicon
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16748486A
Other languages
Japanese (ja)
Inventor
Noboru Motai
罍 昇
Kazunori Saito
和則 斉藤
Michio Usui
薄井 三千夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Precision Circuits Inc
Seikosha KK
Original Assignee
Nippon Precision Circuits Inc
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Precision Circuits Inc, Seikosha KK filed Critical Nippon Precision Circuits Inc
Priority to JP16748486A priority Critical patent/JPS63126277A/en
Publication of JPS63126277A publication Critical patent/JPS63126277A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To decrease the generation of pin holes, and improve the yield, by forming a gate insulating film in the form of a two-layer structure applying different methods. CONSTITUTION:An electrode 21 is formed on a substrate 20. Aqueous solution of citric acid 22 is made, and filled between a gate electrode as a positive electrode and a platinum plate 23 as a negative electrode. Thus a first insulative film 24 applying in anode oxide film is formed on the gate electrode 21, and then a second insulative film 25 is formed. Further, an intrinsic amorphous silicon layer 26 and an N-type amorphous silicon layer 27 are formed. Next, a source.drain electrode, a transparent electrode, a passivation film, a light shielding film and a liquid crystal orientation film, etc., are formed, and a liquid crystal panel provided with a thin film transistor is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は電界効果型薄膜トランジスタに関するもので
、とりわけ電界効果型薄膜トランジスタにおけるゲート
絶縁物の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to field effect thin film transistors, and more particularly to improvements in gate insulators in field effect thin film transistors.

(従来の技術) 従来技術として液晶表示パネルにおけるアモルファスシ
リコン型の電界効果型薄膜トランジスタを例にとると、
第5図において、ガラス、石英などの基板1上にゲート
電極2を形成する。ついでプラズマCVD法によりゲー
ト絶縁膜3としてシリコン窒化膜またはシリコン酸化膜
を形成後、イントリンシックアモルファスシリコン膜4
、リンをドーピングしたn型アモルファスシリコン膜5
をそれぞれ連続で成膜させる。そして上記イントリンシ
ックアモルファスシリコン膜4およびn型アモルファス
シリコン膜5をエツチングして必要な部分のみを残す(
第6図)。この上にアルミニウム金属によりソース電極
6、ドレイン電極7を形成する(第7図)。 この基板
は液晶セルに用いられるもので、この上に液晶駆動用電
極としてITO膜8を形成する(第8図)。パシベーシ
ョン膜9としてシリコン酸化膜またはシリコン窒化膜を
プラズマエツチングで形成する。さらにアルミニウムに
より光シールド膜10を形成し、その上を全体をおおっ
て、ポリイミド系の樹脂やシリコン酸化物により液晶配
向膜11を形成している(第9図)。
(Prior art) Taking an example of an amorphous silicon field effect thin film transistor in a liquid crystal display panel as a conventional technology,
In FIG. 5, a gate electrode 2 is formed on a substrate 1 made of glass, quartz, or the like. Next, after forming a silicon nitride film or a silicon oxide film as the gate insulating film 3 by plasma CVD method, an intrinsic amorphous silicon film 4 is formed.
, phosphorus-doped n-type amorphous silicon film 5
are successively deposited. Then, the intrinsic amorphous silicon film 4 and the n-type amorphous silicon film 5 are etched to leave only the necessary portions (
Figure 6). A source electrode 6 and a drain electrode 7 are formed thereon using aluminum metal (FIG. 7). This substrate is used for a liquid crystal cell, and an ITO film 8 is formed thereon as a liquid crystal driving electrode (FIG. 8). A silicon oxide film or a silicon nitride film is formed as the passivation film 9 by plasma etching. Further, a light shielding film 10 is formed of aluminum, and a liquid crystal alignment film 11 is formed of polyimide resin or silicon oxide covering the entire surface thereof (FIG. 9).

(発明が解決しようとする問題点) 上述の従来例における基板をマトリックス型液晶表示装
置等に用いる場合、トランジスタの数が、数十個から数
百万個必要となり、その欠陥数が歩留に影響する。この
欠陥の発生する箇所の多くはゲート電極2とソース電極
6、ドレイン電極7の交叉部分である。その原因はシリ
コン窒化膜またはシリコン酸化膜よりなるゲート絶縁物
3のフレークやゴミ等によるピンホールによりソース電
極6、ドレイン電極7とゲート電極2にリーク電流が流
れるためである。
(Problems to be Solved by the Invention) When the above-mentioned conventional substrate is used in a matrix type liquid crystal display device, etc., the number of transistors is required from several tens to several million, and the number of defects affects the yield. Affect. Many of the locations where this defect occurs are at the intersections of the gate electrode 2, source electrode 6, and drain electrode 7. The reason for this is that a leakage current flows through the source electrode 6, drain electrode 7, and gate electrode 2 due to pinholes caused by flakes, dust, etc. in the gate insulator 3 made of a silicon nitride film or a silicon oxide film.

[問題点を解決するための手段] この発明は、このような従来例における欠点を解決する
ためのものでゲート絶縁膜を異なる方法で2層に成膜す
ることにより、ピンホールの発生を低減させる″ように
したものである。
[Means for Solving the Problems] This invention is intended to solve the drawbacks of the conventional example, and reduces the occurrence of pinholes by forming the gate insulating film in two layers using different methods. It was designed so that the

(実施例) 実施例1 つぎに本発明の実施例について説明する。(Example) Example 1 Next, embodiments of the present invention will be described.

第1図において、ガラスなどよりなる基板20上にゲー
ト電極21を形成する。ゲート電極21の材料としては
タンタル、アルミニウムなどの陽極酸化可能な金属でし
かも酸化物の絶縁性のよいものを用いる。陽極酸化膜の
形成方法としては、ゲート電極21をパターニングした
後、第2図示のように、0.01〜0.1%のクエン酸
水溶液22をつくり、ゲート電極21を正電極に、白金
板23を負電極としてこの中に入れる。ゲート電極21
としてタンタルを用いた場合にはTaOが形成されるが
、これは2OA/IV位の成膜速度があり、その比誘電
率は22位である。またAl2O3膜の比誘電率は8位
であり、いずれも5t02の比誘電率の345〜3.9
より大きいので膜厚を厚くとれる。ゲート電極21上に
陽極酸化膜による第1の絶縁膜24を形成した後、プラ
ズマCVD法によりシリコン窒化膜またはシリコン酸化
膜により第2の絶縁膜25を形成し、さらに真空度を落
さず連続して、イントリンシックアモルファスシリコン
26、n型アモルファスシリコン27の各層を成膜する
(第3図)。これ以降は従来方法と同じ工程でソース・
ドレイン電極、透明電極、パシベーション膜、光シール
ド膜、液晶配向膜などを形成して、薄膜トランジスタを
設けた液晶パネルを形成する。 この実施例ではゲト絶
縁膜は陽極酸化膜の第1の絶縁膜24とシリコン窒化物
またはシリコン酸化物による第2の絶縁膜25の2層に
より構成されることになる。
In FIG. 1, a gate electrode 21 is formed on a substrate 20 made of glass or the like. As the material for the gate electrode 21, a metal that can be anodized, such as tantalum or aluminum, and is an oxide with good insulation properties is used. As for the method of forming the anodic oxide film, after patterning the gate electrode 21, as shown in the second figure, a 0.01 to 0.1% citric acid aqueous solution 22 is prepared, and a platinum plate is formed using the gate electrode 21 as a positive electrode. 23 is placed in this as a negative electrode. Gate electrode 21
When tantalum is used as the material, TaO is formed, which has a film formation rate of about 2OA/IV and a dielectric constant of about 22nd. In addition, the dielectric constant of the Al2O3 film is 8th place, which is 345 to 3.9 of the dielectric constant of 5t02.
Since it is larger, the film thickness can be increased. After forming a first insulating film 24 made of an anodic oxide film on the gate electrode 21, a second insulating film 25 made of a silicon nitride film or a silicon oxide film is formed by a plasma CVD method, and then the second insulating film 25 is formed continuously without reducing the degree of vacuum. Then, layers of intrinsic amorphous silicon 26 and n-type amorphous silicon 27 are formed (FIG. 3). From this point onwards, follow the same process as the conventional method to prepare the sauce.
A drain electrode, a transparent electrode, a passivation film, a light shield film, a liquid crystal alignment film, etc. are formed to form a liquid crystal panel provided with thin film transistors. In this embodiment, the gate insulating film is composed of two layers: a first insulating film 24 of an anodic oxide film and a second insulating film 25 of silicon nitride or silicon oxide.

なお第1の絶縁膜24の陽極酸化膜は、第2の絶縁膜2
5を形成後、陽極化成して形成することも可能である。
Note that the anodized film of the first insulating film 24 is different from that of the second insulating film 2.
It is also possible to perform anodization after forming 5.

また第1の絶縁膜24の陽極酸化膜は第2の絶縁膜25
で覆った後連続してアモルファスシリコン層を形成後陽
極化成することも可能である。さらに第1の絶縁膜24
はゲート電極を高温中で酸化して形成してもよい。
Further, the anodized film of the first insulating film 24 is the anodized film of the second insulating film 25.
It is also possible to continuously form an amorphous silicon layer and then anodize it. Furthermore, the first insulating film 24
may be formed by oxidizing the gate electrode at high temperature.

実施例2 第4図において、基板30上にゲート電極31を形成後
シリコン窒化膜やシリコン酸化膜による第1の絶縁膜3
2をプラズマCVD法以外のCVD法、すなわち常圧C
VD法、減圧CVD法、光CVD法などで形成し、その
後節2の絶縁膜33としとてプラズマCVD法によりシ
リコン窒化膜やシリコン酸化膜を形成する。つぎに連続
して、真空度を落さず、イントリンシックアモルファス
シリコン34、n型アモルファスシリコン35の各層を
成膜し、これ以降は従来方法と同じ工程で薄膜トランジ
スタを形成する。
Embodiment 2 In FIG. 4, after forming a gate electrode 31 on a substrate 30, a first insulating film 3 made of a silicon nitride film or a silicon oxide film is formed.
2 by CVD method other than plasma CVD method, that is, normal pressure C
It is formed by a VD method, a low pressure CVD method, a photo-CVD method, etc., and then a silicon nitride film or a silicon oxide film is formed by a plasma CVD method as the insulating film 33 of Section 2. Next, each layer of intrinsic amorphous silicon 34 and n-type amorphous silicon 35 is successively formed without lowering the degree of vacuum, and thereafter a thin film transistor is formed using the same steps as the conventional method.

この実施例ではゲート絶縁膜はプラズマCVD法以外の
CVD法による第1の絶縁膜32とプラズマCVD法に
よる第2の絶縁膜33の2層により形成されることにな
る。
In this embodiment, the gate insulating film is formed of two layers: a first insulating film 32 formed by a CVD method other than the plasma CVD method, and a second insulating film 33 formed by a plasma CVD method.

なおこの実施例におけるゲート絶縁膜の2種類の絶縁膜
32.33は逆にして形成してもよい。
Note that the two types of insulating films 32 and 33 of the gate insulating film in this embodiment may be reversely formed.

以上要するに、ゲート絶縁膜を異なる成膜方法で2層に
形成すればよい。
In short, the gate insulating film may be formed in two layers using different film formation methods.

[発明の効果] この発明によれば、ゲート絶縁膜が異なる方法により形
成された2層の絶縁膜で構成されるので、ピンホールを
低減することができ歩留を向上させることができる。
[Effects of the Invention] According to the present invention, since the gate insulating film is composed of two layers of insulating films formed by different methods, pinholes can be reduced and yield can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例のトランジスタの一製造段階
における断面図、第2図は陽極酸化処理槽の斜視図、第
3図はさらに他の製造段階における断面図、第4図はこ
の発明の他の実施例の製造工程における断面図、第5図
〜第9図は従来例を製造工程を追って示す断面図である
。 24・・・第1の絶縁膜 25・・・第2の絶縁膜 32・・・第1の絶縁膜 33・・・第2の絶縁膜 以上
Fig. 1 is a sectional view of a transistor according to an embodiment of the present invention at one manufacturing stage, Fig. 2 is a perspective view of an anodizing tank, Fig. 3 is a sectional view at another manufacturing stage, and Fig. 4 is a sectional view of the invention. 5 to 9 are cross-sectional views showing the manufacturing process of the conventional example. 24...First insulating film 25...Second insulating film 32...First insulating film 33...Second insulating film or higher

Claims (1)

【特許請求の範囲】[Claims] ゲート絶縁膜が異なる方法により形成された2層の絶縁
層よりなることを特徴とする電界効果型薄膜トランジス
タ。
A field effect thin film transistor characterized in that a gate insulating film is composed of two insulating layers formed by different methods.
JP16748486A 1986-07-16 1986-07-16 Field effect thin film transistor Pending JPS63126277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16748486A JPS63126277A (en) 1986-07-16 1986-07-16 Field effect thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16748486A JPS63126277A (en) 1986-07-16 1986-07-16 Field effect thin film transistor

Publications (1)

Publication Number Publication Date
JPS63126277A true JPS63126277A (en) 1988-05-30

Family

ID=15850537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16748486A Pending JPS63126277A (en) 1986-07-16 1986-07-16 Field effect thin film transistor

Country Status (1)

Country Link
JP (1) JPS63126277A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147375A (en) * 1992-02-05 2000-11-14 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
US6331723B1 (en) 1991-08-26 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having at least two transistors having LDD region in one pixel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153427A (en) * 1981-03-17 1982-09-22 Fujitsu Ltd Manufacture of thin film device
JPS58147069A (en) * 1982-02-25 1983-09-01 Sharp Corp Thin film transistor
JPS58182270A (en) * 1982-04-16 1983-10-25 Sanyo Electric Co Ltd Manufacture of transistor
JPS598376A (en) * 1982-07-06 1984-01-17 Sanyo Electric Co Ltd Manufacture of transistor
JPS5986266A (en) * 1982-11-09 1984-05-18 Ise Electronics Corp Thin film transistor and manufacture thereof
JPS59100572A (en) * 1982-11-30 1984-06-09 Sharp Corp Thin film transistor
JPS6086863A (en) * 1983-10-19 1985-05-16 Fujitsu Ltd Insulating gate type thin film transistor
JPS60244071A (en) * 1984-05-18 1985-12-03 Fujitsu Ltd Manufacture of matrix array

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153427A (en) * 1981-03-17 1982-09-22 Fujitsu Ltd Manufacture of thin film device
JPS58147069A (en) * 1982-02-25 1983-09-01 Sharp Corp Thin film transistor
JPS58182270A (en) * 1982-04-16 1983-10-25 Sanyo Electric Co Ltd Manufacture of transistor
JPS598376A (en) * 1982-07-06 1984-01-17 Sanyo Electric Co Ltd Manufacture of transistor
JPS5986266A (en) * 1982-11-09 1984-05-18 Ise Electronics Corp Thin film transistor and manufacture thereof
JPS59100572A (en) * 1982-11-30 1984-06-09 Sharp Corp Thin film transistor
JPS6086863A (en) * 1983-10-19 1985-05-16 Fujitsu Ltd Insulating gate type thin film transistor
JPS60244071A (en) * 1984-05-18 1985-12-03 Fujitsu Ltd Manufacture of matrix array

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331723B1 (en) 1991-08-26 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having at least two transistors having LDD region in one pixel
US6147375A (en) * 1992-02-05 2000-11-14 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
US6476447B1 (en) 1992-02-05 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device including a transistor

Similar Documents

Publication Publication Date Title
US5060036A (en) Thin film transistor of active matrix liquid crystal display
KR19990023185A (en) Gate structure and manufacturing method thereof, thin film transistor structure and manufacturing method thereof, inverted transistor structure
JPH03161938A (en) Manufacture of thin-film transistor
JPH1048664A (en) Liquid crystal display device and its production
JPH1082997A (en) Production of active matrix liquid crystal display device and active matrix liquid crystal display device
JPS63126277A (en) Field effect thin film transistor
JP3175225B2 (en) Method for manufacturing thin film transistor
JPH0774360A (en) Preparation of vertical thin film transistor
JP3265622B2 (en) Manufacturing method of liquid crystal display device
JPH06160905A (en) Liquid crystal display device and its production
JP3116295B2 (en) Active matrix substrate manufacturing method
JP2996025B2 (en) Method of manufacturing insulating film and thin film transistor device using the same
JPH0815733A (en) Thin film transistor panel and its production
JPH0334045B2 (en)
JPS63164A (en) Thin-film transistor
JPH0697197A (en) Thin film transistor and manufacture thereof
JPH01248136A (en) Production of thin film transistor for liquid crystal display
JPS61164267A (en) Manufacture of thin film transistor
JP3047363B2 (en) Semiconductor device and manufacturing method thereof
JPS62221159A (en) Formation of thin film transistor matrix
JPH05249490A (en) Production of tft array substrate
JPS61147574A (en) Thin film transistor
JP2594114B2 (en) Method for manufacturing electrode substrate for liquid crystal display panel
JP2716106B2 (en) Active matrix substrate manufacturing method
JPH0548102A (en) Manufacture of thin film transistor