JPS63126217A - Liquid growth method - Google Patents

Liquid growth method

Info

Publication number
JPS63126217A
JPS63126217A JP27250186A JP27250186A JPS63126217A JP S63126217 A JPS63126217 A JP S63126217A JP 27250186 A JP27250186 A JP 27250186A JP 27250186 A JP27250186 A JP 27250186A JP S63126217 A JPS63126217 A JP S63126217A
Authority
JP
Japan
Prior art keywords
substrate
solution
growth
holder
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27250186A
Other languages
Japanese (ja)
Inventor
Yoichi Sasai
佐々井 洋一
Masato Ishino
正人 石野
Minoru Kubo
実 久保
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27250186A priority Critical patent/JPS63126217A/en
Publication of JPS63126217A publication Critical patent/JPS63126217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prevent the scratches on the epitaxial surface generated due to loosening of a substrate when a growing method is conducted and also to prevent the mixing of carbon grains by a method wherein the solvent of a growing solution is coated on the circumference of the substrate hole provided in a slider, the substrate is fixed by placing it in the substrate hole. CONSTITUTION:A substrate holder 2 in which a substrate 5 is placed, and a solution holder 3 in which a solution is contained are provided, and a compound semiconductor is liquid-grown using a growing boat in which the substrate holder 2 and the solution holder 3 can be slidingly moved in a relative manner. At that time, the solution containing the solvent or the solute of a growing solution 4 is adhered to the circumference of the substrate 5, the substrate 5 is placed in the holder 2, and a liquid growth method is performed. As a result, a grown layer 12 is buried in a gap 10 by a saturated growing solution, and the substrate 5 is completely fixed to a substrate hole 6. Consequently, the scratches on the epitaxial surface generated by loosening of the substrate 5 when the growth method is performed and the mixing of carbon grains can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液相成長方法に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a liquid phase growth method.

従来の技術 従来より、化合物半導体、とりわけGaAs、InP等
の■−v族半導体の作製はカーボン製のスライド式ポー
トを用いた液相成長法で行なわれてきた。
BACKGROUND OF THE INVENTION Conventionally, compound semiconductors, particularly 1-V group semiconductors such as GaAs and InP, have been manufactured by a liquid phase growth method using a sliding port made of carbon.

しかしながら、成長表面は往々にして、カーボン粒を含
んだり、すり傷が見られ、結晶分留りを悪くしている。
However, the growth surface often contains carbon grains or has scratches, which impairs crystal fractionation.

これは、基板または溶液ホルダーのスライド時に基板が
成長溶液にくっついて基板が浮き、溶液ホルダーの底面
と基板表面とが接触して、基板表面に傷が入るためと考
えられている。
This is thought to be because when the substrate or solution holder slides, the substrate sticks to the growth solution and floats, and the bottom of the solution holder comes into contact with the substrate surface, causing scratches on the substrate surface.

それで基板の浮きの対策として通常とられている方法を
第4図を用いて説明する。第4図aは通常のスライド式
ポートの断面図、第4図すは上面図である。1はポート
台、2は基板6を具備しスライド可能なスライダー、3
は成長溶液4を収納する溶液ホルダー、6は基板を収納
する基板穴である。連続的に多層膜を成長する場合矢印
7の方向にスライダー2をスライドさせて基板6を動か
し、各成長溶液4と接触させて行なっている。ここで基
板のスライド時に発生する基板の浮きを防ぐため、基板
6の幅Wgを溶液穴70幅wbよりも大きくとって、基
板6で成長溶液4と接触しない部分9を基板の両端部に
設け、基板の浮きを抑えるようにしている。しかしなが
ら、成長層が厚い場合、基板内で成長する領域と成長さ
せない領域9の間で厚み差が大きくなって、基板表面の
すり傷が顕著になってくるという欠点が生じる。第5図
にすり傷の起きたエビ基板表面の模式図を示す。
Therefore, a method commonly used as a countermeasure against floating of the substrate will be explained with reference to FIG. FIG. 4a is a sectional view of a conventional sliding port, and FIG. 4a is a top view. 1 is a port stand, 2 is a slidable slider equipped with a board 6, 3
is a solution holder that accommodates the growth solution 4, and 6 is a substrate hole that accommodates the substrate. When growing a multilayer film continuously, the substrate 6 is moved by sliding the slider 2 in the direction of the arrow 7 and brought into contact with each growth solution 4. In order to prevent the substrate from floating when it slides, the width Wg of the substrate 6 is set larger than the width wb of the solution hole 70, and portions 9 of the substrate 6 that do not come into contact with the growth solution 4 are provided at both ends of the substrate. , to suppress floating of the board. However, if the growth layer is thick, the difference in thickness between the growing region and the non-growing region 9 within the substrate becomes large, resulting in a drawback that scratches on the substrate surface become noticeable. FIG. 5 shows a schematic diagram of the shrimp substrate surface with scratches.

発明が解決しようとする問題点 上記の如〈従来の方法では基板スライド時に基板表面に
発生するすり傷を、特に成長層が厚い場合防止すること
が出来ないという問題点があった。
Problems to be Solved by the Invention As mentioned above, the conventional method has the problem that scratches generated on the substrate surface when the substrate slides cannot be prevented, especially when the growth layer is thick.

本発明は、基板のスライド時に起きる基板の浮きによる
基板表面のすり傷を簡単に無くす方法を提供するもので
ある。
The present invention provides a method for easily eliminating scratches on the surface of a substrate due to lifting of the substrate when the substrate slides.

問題点を解決するための手段 上記の問題点を解決するため、スライダー内に設けた基
板穴の周囲に成長溶液の溶媒をつけ、そして基板を収納
し、基板を固定するようにした。
Means for Solving the Problems In order to solve the above problems, the solvent of the growth solution was applied around the substrate hole provided in the slider, the substrate was housed, and the substrate was fixed.

作  用 上記手段にもとすく作用は以下の通りである。For production The effects of the above means are as follows.

すなわち、成長溶液を高温で溶かし込み中に基板穴に設
置した溶媒が溶けて基板周囲をメルトバックするが、そ
れによって溶媒中に基板からの溶質が溶は込んで飽和化
する。そして基板周囲に成長が起き成長層が生える。さ
らに基板穴と基板の間の間隙を前記成長層が埋めて基板
穴中の基板が完全に固定され、基板のスライド時に起き
る基板の浮きが防止される。
That is, while the growth solution is being dissolved at a high temperature, the solvent placed in the hole in the substrate melts and melts back around the substrate, and as a result, the solute from the substrate dissolves into the solvent and becomes saturated. Then, growth occurs around the substrate, forming a growth layer. Furthermore, the grown layer fills the gap between the substrate hole and the substrate, and the substrate in the substrate hole is completely fixed, thereby preventing the substrate from floating when the substrate slides.

実施例 以下に本発明の一実施例を第1図を用いて説明する。な
お、第1図中、第4図と同一構成部分には同一番号を付
して説明を省略する。また、説明を簡単にするためIn
P基板上のInPの形成例について示す。第1図は本発
明のスライダー2内の基板穴eにInP基板5を収納す
る方法の一例を示す。
EXAMPLE An example of the present invention will be described below with reference to FIG. In FIG. 1, the same components as those in FIG. 4 are designated by the same numbers and their explanations will be omitted. Also, to simplify the explanation, In
An example of forming InP on a P substrate will be shown. FIG. 1 shows an example of a method for storing an InP substrate 5 in a substrate hole e in a slider 2 according to the present invention.

基板6を固定するため本実施例では基板5と基板穴6の
間の間隙10内に成長溶液の溶媒に用いるインジウム金
属11を設置する。一方、溶液ホルダーに成長溶液を納
めて炉芯管内に入れて、水素ガス雰囲気中で670’C
まで昇温し、溶液の溶かし込みを行なう。するとインジ
ウム金属11も同時に溶けて液化し、InP基板6端部
はインジウム金属11によって溶は込み(メルトバック
)、リンを亀り込んでインジウム金属11はInPの飽
和成長溶液となる。その後、一定速度(0,6℃/分)
でポートを冷却し成長温度640°Cに達するとスライ
ダー2を動かして基板6と成長溶液4と接触させて成長
を行なうわけだが、成長温度に到るまでに基板5端部は
インジウム金属11が変化した飽和成長溶液によってI
nP成長層が生える。このようすを第2,3図を用いて
説明する。第2図はスライダー2中の基板穴e付近の上
面図で、第3図は成長ポートのスライド方向から見た断
面図を示す。第2図のように飽和成長溶液によってIn
P成長層12が間隙10中に埋まり基板5は基板穴6の
中で完全に固定される。また第3図のように断面方向か
ら見てやるとよりはつきりする。ここで実際の寸法とし
て基板の大きさは長さL 15111111 x幅W 
20 mmに対して間隙10の大きさWは0.1〜0.
2mmにとっている。間隙1oが埋め込まれる理由は、
基板端部のためエツジグロースの効果で基板角部の成長
は基板平坦部に比べ格段に成長が速く大きく成長層が生
えるためと考えられる。また設置するインジウム金属1
1の形状は間隙11の大きさが小さいため薄膜状に加工
したものを使うと設置しやすい。また、基板端部9の設
置するインジウム金属11によりメルトバックされ基板
寸法の目減りが起きるわけだが、その量を抑えたい場合
は、あらかじめリンを添加したインジウム金属を用いる
のも同様の効果がある。
In order to fix the substrate 6, in this embodiment, an indium metal 11 used as a solvent for the growth solution is placed in the gap 10 between the substrate 5 and the substrate hole 6. On the other hand, store the growth solution in a solution holder, put it into the furnace core tube, and heat it at 677'C in a hydrogen gas atmosphere.
and dissolve the solution. Then, the indium metal 11 is also melted and liquefied at the same time, and the end portion of the InP substrate 6 is melted back by the indium metal 11, and phosphorus is absorbed, so that the indium metal 11 becomes a saturated InP growth solution. Then constant speed (0,6℃/min)
When the port is cooled and the growth temperature reaches 640°C, the slider 2 is moved to bring the substrate 6 into contact with the growth solution 4 for growth. I by changing the saturated growth solution
An nP growth layer grows. This situation will be explained using FIGS. 2 and 3. FIG. 2 is a top view of the vicinity of the substrate hole e in the slider 2, and FIG. 3 is a cross-sectional view of the growth port viewed from the sliding direction. As shown in Figure 2, In is grown by a saturated growth solution.
The P growth layer 12 is filled in the gap 10 and the substrate 5 is completely fixed in the substrate hole 6. Moreover, it becomes even more clear when viewed from the cross-sectional direction as shown in FIG. Here, the actual dimensions of the board are length L 15111111 x width W
The size W of the gap 10 is 0.1 to 0.20 mm.
It is set to 2mm. The reason why gap 1o is filled is
This is thought to be due to the edge growth effect at the edges of the substrate, which causes the growth at the corners of the substrate to be much faster than at the flat portions of the substrate, resulting in a larger growth layer. Also installed indium metal 1
Since the size of the gap 11 in the shape 1 is small, it is easier to install it if the shape is processed into a thin film. In addition, the indium metal 11 installed on the substrate end 9 melts back, causing a reduction in the substrate dimensions, but if you want to suppress the amount, using indium metal to which phosphorus has been added in advance has the same effect.

ここで設置するインジウム金属もしくはリンを添加した
インジウム金属は成長溶液に接触しない基板端部9近傍
に設けるため成長溶液に混入することは無く成長に悪影
響を及ぼさないことは言うまでもない。また、該両イン
ジウム金属を間隙10内に設置の際、金属の大きさが大
きいためスライダー2の表面より高く飛び出る場合があ
るが、溶液の溶かし込み時に該インジウム金属は液化し
て間隙10底面に納まり、スライダー2のスライドにも
支障は無い。
Needless to say, the indium metal or the indium metal added with phosphorus is provided near the substrate end 9, which does not come into contact with the growth solution, so that it will not be mixed into the growth solution and will not have an adverse effect on the growth. Furthermore, when installing both indium metals in the gap 10, the metals are large and may protrude higher than the surface of the slider 2, but when the solution is dissolved, the indium metals liquefy and reach the bottom surface of the gap 10. It fits well and there is no problem with slider 2 sliding.

このようにして間隙1oに成長層12で埋めてやれば基
板6と基板穴6との間隙1oは精度良く埋まって基板6
は完全に固定される。したがって基板6のスライド時に
起きる基板の浮きは無くなり成長後に見られるエビ表面
のすり傷やカーボン粒の混入は激減し良好な成長が可能
となる。
If the gap 1o is filled with the growth layer 12 in this way, the gap 1o between the substrate 6 and the substrate hole 6 will be filled with high precision and the substrate 6
is completely fixed. Therefore, the floating of the substrate 6 that occurs when the substrate 6 slides is eliminated, and scratches on the surface of the shrimp and inclusion of carbon grains, which are observed after growth, are drastically reduced, and good growth is possible.

発明の効果 以上のように、本発明によれば化合物半導体の液相成長
において、成長時に発生する基板の浮きによるエビ表面
のすり傷やカーボン粒の混入を防ぐことが可能となり、
その実用性は極めて犬である。また、実施例ではInP
系材料を取り上げたが、G a A s系、A3GaA
s系、GaP系等の他の材料系でも同様の効果が期待で
きる。
Effects of the Invention As described above, according to the present invention, in the liquid phase growth of compound semiconductors, it is possible to prevent scratches on the surface of the shrimp and the incorporation of carbon particles due to floating of the substrate that occurs during growth.
Its practicality is quite a dog. In addition, in the example, InP
We have taken up GaAs-based materials, A3GaA
Similar effects can be expected with other material systems such as s-based and GaP-based.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における液相成長法に用いる
基板穴に収納する溶媒金属の配置を示すら 平面図、第2図は本実施例によってもたゞされる基板火
中の基板の形状を示す平面図、第3図は同基板穴付近の
断面図、第4図a、bは従来からの成長ポート概略構成
を示す側面断面図及び平面断面図、第5図は従来の成長
方法で作製したエビ表面の模式図である。 2・・・・・・スライダー、4・・・・・・成長溶液、
6・・・・・・基板、6・・・・・・基板穴、11・・
・・・・溶媒、12・・・・・・成長層。 第2図 12トム功
FIG. 1 is a plan view showing the arrangement of the solvent metal stored in the substrate holes used in the liquid phase growth method in one embodiment of the present invention, and FIG. 3 is a cross-sectional view of the vicinity of the hole in the same substrate, FIG. It is a schematic diagram of the shrimp surface produced by this method. 2...Slider, 4...Growth solution,
6... Board, 6... Board hole, 11...
...Solvent, 12...Growth layer. Figure 2 12 Tom Gong

Claims (1)

【特許請求の範囲】[Claims] 基板を収納する基板ホルダーと、溶液を収納する溶液ホ
ルダーを有し、前記基板ホルダーと前記溶液ホルダーが
相対的に摺動可能な成長ポートを用いて化合物半導体を
液相成長するに際し、前記基板の周囲に成長溶液の溶媒
または溶質を含む溶液を付着させて前記基板ホルダーに
収納し、成長を行なうようにしてなる液相成長方法。
A substrate holder for storing a substrate and a solution holder for storing a solution are provided, and when performing liquid phase growth of a compound semiconductor using a growth port in which the substrate holder and the solution holder are relatively slidable, A liquid phase growth method, in which a solution containing a solvent or a solute of a growth solution is attached around the substrate holder, and growth is performed by storing the solution in the substrate holder.
JP27250186A 1986-11-14 1986-11-14 Liquid growth method Pending JPS63126217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27250186A JPS63126217A (en) 1986-11-14 1986-11-14 Liquid growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27250186A JPS63126217A (en) 1986-11-14 1986-11-14 Liquid growth method

Publications (1)

Publication Number Publication Date
JPS63126217A true JPS63126217A (en) 1988-05-30

Family

ID=17514786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27250186A Pending JPS63126217A (en) 1986-11-14 1986-11-14 Liquid growth method

Country Status (1)

Country Link
JP (1) JPS63126217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308186A (en) * 2007-06-14 2008-12-25 Lintec Corp Sheet affixing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308186A (en) * 2007-06-14 2008-12-25 Lintec Corp Sheet affixing device

Similar Documents

Publication Publication Date Title
US4585493A (en) Grain-driven zone-melting of silicon films on insulating substrates
Baliga Morphology of silicon epitaxial layers grown by undercooling of a saturated tin melt
JPS63126217A (en) Liquid growth method
Glass Growth of thick single-crystal layers of yttrium iron garnet by liquid phase epitaxy
US4261770A (en) Process for producing epitaxial semiconductor material layers on monocrystalline substrates via liquid phase shift epitaxy
JPS61500291A (en) Liquid phase epitaxial growth on Group 3-5 compound semiconductor substrate containing phosphorus
US4263064A (en) Method of liquid phase epitaxial growth
JPS58127320A (en) Device for liquid-phase epitaxial growth
JPS626338B2 (en)
JPS5925216A (en) Method for prevention of thermal deformation on compound semiconductor
JPS5918644A (en) Liquid phase epitaxial growth apparatus
JPS57106599A (en) Liquid phase growth device
JPS565396A (en) Liquid phase epitaxial growth
JP3151277B2 (en) Liquid phase epitaxial growth method
JPH0763052B2 (en) Semiconductor crystal growth method
JPS5816524A (en) Liquid phase epitaxial growth
JPS61256994A (en) Liquid-phase epitaxial growth method
IE35057B1 (en) Methods of growing multilayer semiconductor crystals
JPS5478377A (en) Method and apparatus for growing semiconductor crystal
JPH04254321A (en) Liquid phase epitaxial growth method
JPS55157228A (en) Method of growing epitaxially in liquid phase
Jacobs et al. LPE‐growth of InP on GaAs
JPS6027127A (en) Method of liquid phase epitaxial growth
JPH0551963U (en) Substrate holder for liquid phase epitaxial growth
JPS6018914A (en) Liquid phase growth apparatus