JPS5925216A - Method for prevention of thermal deformation on compound semiconductor - Google Patents

Method for prevention of thermal deformation on compound semiconductor

Info

Publication number
JPS5925216A
JPS5925216A JP13476782A JP13476782A JPS5925216A JP S5925216 A JPS5925216 A JP S5925216A JP 13476782 A JP13476782 A JP 13476782A JP 13476782 A JP13476782 A JP 13476782A JP S5925216 A JPS5925216 A JP S5925216A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
thermal deformation
inp
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13476782A
Other languages
Japanese (ja)
Other versions
JPH0136689B2 (en
Inventor
Junichi Kinoshita
順一 木下
Hajime Okuda
肇 奥田
Yutaka Uematsu
豊 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13476782A priority Critical patent/JPS5925216A/en
Publication of JPS5925216A publication Critical patent/JPS5925216A/en
Publication of JPH0136689B2 publication Critical patent/JPH0136689B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent thermal deformation of the titled semiconductor when it is in a standby state in a high temperature by a method wherein the surface to be processed of a semiconductor substrate is coated with a material, containing no element of high vapor pressure, of the constituting elements of the substrate, and buffer space is provided thereon. CONSTITUTION:When a high temperature heat treatment is going to be performed after a configurational work has been performed on the surface of a compound semiconductor substrate 1, a buffer space 6 having prescribed cubage is formed between the surface to be processed of the semiconductor substrate and the material 5, of the constituting elements of the substrate, containing no element of high vapor pressure. Inp or InGaAsP is used for the semiconductor substrate 1, and GaAs or Si is usd for the coating material 5. Also, the region other than the surface to be processed of the semiconductor substrate 1 is protected by adhering a crystal or amorphous material on which thermal dissociation will hardly be generated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、蒸気圧の高い元素を含む化合物半導体基板表
面に形状的な加工を施したのちに高温熱処理するに際し
て、加工光1a1形状の熱変形を防止するようにした方
法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention is directed to thermal deformation of the shape of processing light 1a1 when performing high-temperature heat treatment after processing the surface of a compound semiconductor substrate containing an element with high vapor pressure into a shape. Concerning a method to prevent this.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

蒸気圧の高い元素を含む化合物半導体結晶、例えばIn
P基板」二に液相成長法等により結晶成長を行う場合、
結晶成長を行う前の高温待梯中に蒸気圧の高いPの熱解
離によってI n P基板の表面が荒れてしまう。これ
を防ぐ手法と1〜で従来、基板と同じInP結晶で基板
表面を覆う方法、フォスフイン(PJI3)を雰囲気中
に流す方法或いような問題があった。すなわち、表面に
V字状溝や回折格子等の加工を施した1nI)基板上に
結晶成長を行う場合、上述した燐庄を過剰に加える方法
な用いると、結晶成長以前の高温待機中に上記加工され
た表面形状が変形を氾)こし加工の411i′度が十分
に活かされないと云う問題がある。
Compound semiconductor crystals containing elements with high vapor pressure, such as In
When crystal growth is performed on the P substrate by liquid phase growth method etc.,
During high-temperature waiting before crystal growth, the surface of the InP substrate becomes rough due to thermal dissociation of P, which has a high vapor pressure. Conventionally, the methods 1 to 1 to prevent this problem include a method of covering the surface of the substrate with the same InP crystal as the substrate, and a method of flowing phosphine (PJI3) into the atmosphere. In other words, when growing crystals on a 1nI) substrate whose surface has been processed with V-shaped grooves, diffraction gratings, etc., if the above-mentioned method of adding too much phosphor is used, the above-mentioned There is a problem that the 411i' degree of straining is not fully utilized (the processed surface shape is prone to deformation).

例えば、第11シlの(a)に示す如(In1.’基板
2の表面−1−に周期zooo[D、深さ500 〔l
]の回折格子を形成したのち、InP基板20表面をI
IIP結晶で侠う方法音用いて水素雰囲気中610 C
℃)]、40分の高r/、−、’lpj機7a7 行−
) iコトコロ、In P 基14Fj、 1の表面が
同図(blに示すθ11り平111化する事実が判明し
た。そして、回折格子2の深さは1.00[i]以下と
なった。発振波長を制御する分布帰還型(+)FI3)
レーザ等の作製においては、回折格子を刻んだInP基
板−Lに結晶成長を行う必要があるが、この場合熱変形
による回折格子の平坦化のために回折格子による光帰還
が起こらなくなる八J1がある。このように従来、高調
、待(喪中における加工表面形状の熱変形が大きな問題
となっていた。
For example, as shown in (a) of the 11th sill (In1.' On the surface -1- of the substrate 2, there is a period zoooo [D, depth 500 [l
] After forming the diffraction grating, the surface of the InP substrate 20 is exposed to I
How to use IIP crystal in hydrogen atmosphere at 610C
℃)], 40 minutes high r/, -, 'lpj machine 7a7 line -
) It was found that the surface of the In P group 14Fj, 1 was flattened by θ11 shown in the same figure (bl), and the depth of the diffraction grating 2 was 1.00 [i] or less. Distributed feedback type (+) FI3) that controls the oscillation wavelength
In the production of lasers, etc., it is necessary to grow crystals on an InP substrate-L with a diffraction grating carved into it. be. As described above, thermal deformation of the machined surface shape during high pitch and machining has traditionally been a major problem.

一方、加工された基板表面に6102等の保護膜を形成
することにより加工表面の熱変形を防止することは可能
であるが、このJ、lp、合5102j摸上で結晶成長
が行われないので、結晶成長全必要とするプロセスには
適用できない6〔発明の目的〕 本発明の目的は、高温待機中におりるp9(変形を防止
することができ、化合物半導体基板の加工表面形状を損
うことなく所望の高温プロセスを行いイ(する化合物半
導体の熱変形同市方法含4’)11供することにある。
On the other hand, it is possible to prevent thermal deformation of the processed surface by forming a protective film such as 6102 on the surface of the processed substrate, but since crystal growth does not occur on this J, lp, 5102j model, 6 [Object of the Invention] The purpose of the present invention is to prevent p9 (deformation) that occurs during high-temperature standby, and to prevent damage to the processed surface shape of compound semiconductor substrates. The purpose is to perform the desired high-temperature process without any heat deformation and to provide a method for thermal deformation of compound semiconductors.

〔発明の概要〕[Summary of the invention]

熱変形の生じる原因に関しては明確にはその機構が解明
されていないが、熱解離を起こす元素の半導体基板に対
する分圧が熱変形に大きな影響を力えることは事実であ
る。前述し/C,I +1p基板上の回折格子の高温待
機中での熱変形(平坦化)現象を例にすると、前記第1
図(blに示す如く回折格子2の凹部にJnPの再結晶
化が起こることによってN′坦化が進行し、−Cいた。
Although the mechanism behind the occurrence of thermal deformation has not been clearly elucidated, it is a fact that the partial pressure of the element that causes thermal dissociation on the semiconductor substrate has a great influence on thermal deformation. Taking as an example the thermal deformation (flattening) phenomenon of the diffraction grating on the /C,I +1p substrate mentioned above during high temperature standby, the first
As shown in FIG. 1, recrystallization of JnP occurs in the concave portions of the diffraction grating 2, and N' planarization progresses, resulting in -C.

この再結晶化が気相中のPの分圧の介(1−によるもの
であるため、再結晶化を防止するには■r11’& 4
1<表面に対する雰囲気中の燐圧を11結晶化が進行す
る燐圧より小さく抑える必要がある。ぞして、本41ち
囲者等の鋭意研究によれば、上記燐圧な・内緒晶化75
X仇行する;7¥圧より僅かに小さくしたJJJ、合、
■)の解ぬ11によるInP基板表面の荒れがa′「容
できる4j1″度であること力場′(1めらil、た。
Since this recrystallization is due to the partial pressure (1-) of P in the gas phase, in order to prevent recrystallization,
1<It is necessary to suppress the phosphorus pressure in the atmosphere relative to the surface to be lower than the phosphorus pressure at which 11 crystallization proceeds. Therefore, according to the intensive research of book 41 and others, the secret crystallization of the phosphorus pressure 75
X revenge; JJJ slightly smaller than 7 yen pressure,
(2) The roughness of the InP substrate surface due to the unknown 11 is 4j1'' degrees which can be tolerated by the force field' (1 mera il, ta).

木発す11はこのような点に着目し、InPやInGn
AqP等の化合物半導体基板の表面に形状的な加工を施
したのち、この半導体基板に高温熱処理蒼・施すに際し
、上記半導体基板の加工表面を該基板の4i’Y成元緊
の中の蒸気圧の高い元素を含寸ない14イ11 、例え
ばGaAvやSlで被動すると共に、上記−!ILw休
基板体被覆旧料との間に前記/〜気圧の茜い元素の分圧
金制餌1するだめの緩衝?)2間′(r−設けるように
した方法である。
Kihasu 11 focuses on these points and develops InP and InGn.
After the surface of a compound semiconductor substrate such as AqP is processed into a shape, when performing high-temperature heat treatment on this semiconductor substrate, the processed surface of the semiconductor substrate is heated to the vapor pressure within the 4i'Y composition of the substrate. The above -! Is there a buffer between the ILw dormant substrate coating old material and the partial pressure of the red element of ~atmospheric pressure? ) 2' (r-).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基板表面と被覆材4:1との間の緩衝
空間により熱解離を起こす元素の分圧を制11il、つ
1り再結晶化が進行する分圧よシ小さく抑えることが可
能となる。このため、形状的な加工が施された基板表面
の熱変形な一最小に抑えることができ、加工形状を損う
ことなく結晶成長を含む次の高温プロセスを行うことが
できる。したがって、回折格子全必要とするDF Bレ
ーザ、その低基板表面に形状的な加工’lx:施す必要
のある各種の半導体素子の製造プロセスに適用して絶大
なる効果を発揮する。
According to the present invention, the partial pressure of elements that cause thermal dissociation can be suppressed by the buffer space between the substrate surface and the coating material at a ratio of 4:1, which is lower than the partial pressure at which recrystallization progresses. It becomes possible. Therefore, thermal deformation of the surface of the substrate which has been subjected to shape processing can be suppressed to a minimum, and the next high temperature process including crystal growth can be performed without damaging the processed shape. Therefore, it is extremely effective when applied to a DFB laser that requires a full diffraction grating, and to various semiconductor device manufacturing processes that require geometrical processing on the surface of its lower substrate.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を(100) In P基板」二に回折格
子を形成したのち、水素雰囲気中6 (10(℃)、4
0分の熱処理を行った場合の実例により説明する。
Hereinafter, after forming a diffraction grating on a (100) InP substrate according to the present invention, it was heated in a hydrogen atmosphere at 6 (10 (°C), 4
An example will be explained in which heat treatment is performed for 0 minutes.

なお、本実施例においては高温侍(戊の後に結晶成長以
前行いDFBレーザを作製する状況下で行ったものであ
る。
Note that this example was carried out under the condition that a DFB laser was fabricated at high temperature (after crystal growth and before crystal growth).

まず、InP基板10表面上に周期2oooc久〕、深
さs’oocX)の回折格子2を形成した。この回折格
子2の形成には2光束干渉法および湿式二[ッチング法
を用いた。次いで、上記InP基板1を第2図に示す如
くカーボングラフアイl−製(買増スライドボート3に
形成された四部4に収容し、その上にGRAs結晶カバ
ー5を被せた。このとき、InPノ・L板1とGa A
R結晶ツノバー5との間にUよ10(1[/l+nl程
Igiの間隙が存在しておシ、こJlらの間に緩(11
fl空間6が形成さ〕圭る。その後、水素雰囲気中(3
00C℃:J、40分の熱処理を行ったところ、InI
’基板)上の回折格子2の熱変形は殆んど生じなかった
。またInP基板1の表面荒iシは無視できる程小さい
ものであった。
First, on the surface of the InP substrate 10, a diffraction grating 2 with a period of 2ooocX) and a depth of s'ooocX) was formed. This diffraction grating 2 was formed using a two-beam interference method and a wet double-etching method. Next, as shown in FIG. 2, the InP substrate 1 was housed in the four parts 4 formed in the carbon graphite slide boat 3, and a GRAs crystal cover 5 was placed thereon. No. L plate 1 and Ga A
There is a gap of about Igi between U and 10 (1 [/l + nl) between R crystal horn bar 5, and a gap of about 1 [/l + nl] between Jl and others.
The fl space 6 is formed. After that, in a hydrogen atmosphere (3
00C℃:J, 40 minutes of heat treatment resulted in InI
There was almost no thermal deformation of the diffraction grating 2 on the substrate). Furthermore, the surface roughness of the InP substrate 1 was so small that it could be ignored.

一方、従来方法では前記Ga As結晶カバー5の代シ
にInP基板1からの燐の熱解離を防ぐ目的でInp結
晶カバーを用いているのであるが、この腸合本実施例と
同一条件下で高温放置を行ったところ、11)P基鈑1
上の回折格子2は■1】Pの711結晶化によって前記
第1図(b+に示す如く平坦化されるのが確認嘆れた。
On the other hand, in the conventional method, an InP crystal cover is used in place of the GaAs crystal cover 5 for the purpose of preventing thermal dissociation of phosphorus from the InP substrate 1, but under the same conditions as in this example, When left at high temperature, 11) P substrate 1
It was confirmed that the upper diffraction grating 2 was flattened as shown in FIG. 1 (b+) by the 711 crystallization of P.

このように本実施例によれば、]、nP基板1の構成元
素である蒸気圧の高いPを含寸ず、かつ処理温度で分解
しない安定な月別よりなるGaAs結晶カバー5を用い
、InP基板10表面ff:覆うと共に基板Jとカバー
5との間に緩衝空間6を形成しているので、基板1表面
におけるPの分圧をInPの再結晶化が進行する分El
−より(、’/、かに小さくすることがn」能である。
As described above, according to this embodiment, the GaAs crystal cover 5 is made of a stable material that does not contain P, which has a high vapor pressure and is a constituent element of the nP substrate 1, and does not decompose at the processing temperature. 10 surface ff: Since it is covered and a buffer space 6 is formed between the substrate J and the cover 5, the partial pressure of P on the surface of the substrate 1 is reduced by the amount El as recrystallization of InP progresses.
- can be made much smaller than (, '/, n').

したがっで 111P基板1上に再結晶化する元素の供
給源が基板1表面からのみとなり、緩衝空間6の体積に
」、ってInP基板2の表面の熱変形を極めて小づくす
ることができる。そして、本実施例のように続いて連続
多層結晶成長を行う場合、この結晶成長後も回折格子2
が保存されるので、回折格子2の光帰還が極めて強いD
FBレーザを作製することが可能である。寸だ、InP
基板1の表面を除く部分’i;r: 、+j  ) J
で密着保護しているので、基板2自身からの熱解離を最
小にすることができる等の効果を奏する。
Therefore, the source of the elements recrystallized on the 111P substrate 1 is only from the surface of the substrate 1, and thermal deformation of the surface of the InP substrate 2 can be extremely reduced in the volume of the buffer space 6. When successive multilayer crystal growth is performed as in this embodiment, the diffraction grating 2 is
is conserved, so the optical feedback of the diffraction grating 2 is extremely strong D
It is possible to create an FB laser. InP
Part 'i; r: , +j) J excluding the surface of substrate 1
Since the substrate 2 is closely protected, thermal dissociation from the substrate 2 itself can be minimized.

なお、本発明は上述した実施例に限定さり、るものでは
ない。例えば、前言己カバーはGa Asに限るもので
はなく Sl、その他基板の構成元素中の蒸気圧の高い
元素(実施例の場合P)を含−まず、処理温度で安定な
材料であhは用いることが可能である。また、高温放置
時の雰囲気としで°rルコ゛ンと水素との混合気体を用
いてもよい。
Note that the present invention is not limited to the embodiments described above. For example, the above-mentioned cover is not limited to GaAs, but also contains Sl and other elements with high vapor pressure among the constituent elements of the substrate (P in the example), and is a material that is stable at the processing temperature. Is possible. Further, a mixed gas of hydrogen and hydrogen may be used as the atmosphere when left at high temperature.

このJM 台、アルゴン原子がfP基板からのPの拡へ
々を抑えで熱1+t’(lζIF Y(防ぐため、より
一層効果的でを、る。さらに、回折格子の不必要な基板
懺面領域ン: 5in211’カ騙で?ト)着保護する
ことにより、InPからのPの熱sr rr+tcをよ
シ少なくすることが++J能である。また、InP基板
に限らずIn C1IA3四InSb、その他各挿の化
合物半導体に適用することが可能である。さらに、力1
ドI房し状も回折格子に限らずV半状!i’J、その他
の形状に適用することが「り能である。要するに本発明
tJ、その要旨を逸脱しない範囲で、(!11々変形し
て実施することができる。
In this JM stand, the argon atoms suppress the spread of P from the fP substrate, making it even more effective to prevent heat 1+t'(lζIF Y).In addition, unnecessary substrate surface area of the diffraction grating It is possible to reduce the P heat sr rr + tc from InP by protecting the 5in211' substrate.In addition, it is possible to reduce the heat srrr+tc of P from InP. It is possible to apply it to compound semiconductors such as
The de-I tufted shape is not limited to diffraction gratings, but is also V-shaped! i'J, it is possible to apply it to other shapes.In short, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al (b)はイメ〔来方法の問題点を説明す
るだめのもので(a)はInP基板上に回折格子を形成
した状態を示1断面図、(l])は上記InP基板ケ熱
処理し/こ陵の状態を示す断面図、第2図は本発明の一
実/1lti例を幌、明するためのものでボートの凹f
115に1++P基板を収各課持しその上部を(JRA
8結晶カバーで覆った状態を示す断面図である。
Figure 1 (al) (b) is an image [only used to explain the problems of the previous method, (a) is a cross-sectional view showing the state in which a diffraction grating is formed on an InP substrate, and (l) is a cross-sectional view of the above InP substrate. Figure 2 is a sectional view showing the condition of the board after heat treatment, and Fig. 2 is a cross-sectional view showing the state of the heat treatment of the board.
115 contains 1++P board and its upper part (JRA
FIG. 8 is a cross-sectional view showing a state covered with an 8-crystal cover.

Claims (3)

【特許請求の範囲】[Claims] (1)化合物−′1″導体基板の表面に形状的な加工を
施したのちこの半導体基板に高温熱処理を施すに際し、
」二記半導体基板の加工表面を該基板の構成元素の中の
蒸気圧の高い元素を含まない相別で被覆17、かつ上記
半導体基板と、被覆月利との間に所定体積の緩衝空間を
形成すること全特徴とする化合物半導体の熱変形防止方
法。
(1) When performing high-temperature heat treatment on the semiconductor substrate after processing the surface of the compound-'1'' conductor substrate into a shape,
``The processed surface of the semiconductor substrate described in item 2 is coated with a layer 17 that does not contain elements with high vapor pressure among the constituent elements of the substrate, and a buffer space of a predetermined volume is provided between the semiconductor substrate and the coating material. A method for preventing thermal deformation of a compound semiconductor.
(2)前記半導体基板は、その加工表面以外を熱解1’
ilt、 を起こしゃ)ICい結晶或いは非晶質で密着
保訛されることを特徴とする特許梢求の範囲第1項記載
の化合物半導体の熱変形防止力法。
(2) The semiconductor substrate is thermally decomposed except for its processed surface.
1. A method for preventing thermal deformation of a compound semiconductor according to item 1 of the patent application, characterized in that the IC is tightly secured with a crystalline or amorphous material.
(3)前記半導体基板としてInP 若しくはh+Gn
AsP f用い、前記被覆相ネ・1としてGnAs若し
くはSiを用いることIC特徴とする重訂iit’(求
の師、間第1項記載の化合物半導体の熱変形防止方法。
(3) InP or h+Gn as the semiconductor substrate
The method for preventing thermal deformation of a compound semiconductor as described in item 1 above, characterized in that the IC uses AsP f and GnAs or Si is used as the covering phase N1.
JP13476782A 1982-08-03 1982-08-03 Method for prevention of thermal deformation on compound semiconductor Granted JPS5925216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13476782A JPS5925216A (en) 1982-08-03 1982-08-03 Method for prevention of thermal deformation on compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13476782A JPS5925216A (en) 1982-08-03 1982-08-03 Method for prevention of thermal deformation on compound semiconductor

Publications (2)

Publication Number Publication Date
JPS5925216A true JPS5925216A (en) 1984-02-09
JPH0136689B2 JPH0136689B2 (en) 1989-08-02

Family

ID=15136082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13476782A Granted JPS5925216A (en) 1982-08-03 1982-08-03 Method for prevention of thermal deformation on compound semiconductor

Country Status (1)

Country Link
JP (1) JPS5925216A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234783A (en) * 1991-12-16 1993-08-10 Eastman Kodak Company Method of selectively glossing toner images
US5260753A (en) * 1990-11-14 1993-11-09 Konica Corporation Color image forming method
KR20140085560A (en) * 2011-10-27 2014-07-07 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Process for smoothing a surface via heat treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110271A (en) * 1973-02-21 1974-10-21
JPS5513909U (en) * 1978-07-07 1980-01-29

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2247351C3 (en) * 1972-09-27 1980-04-10 European Rotogravure Association, 8000 Muenchen Method and device for photoelectric measurement and adjustment of an ink layer on the forme cylinder of a rotogravure printing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110271A (en) * 1973-02-21 1974-10-21
JPS5513909U (en) * 1978-07-07 1980-01-29

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260753A (en) * 1990-11-14 1993-11-09 Konica Corporation Color image forming method
US5234783A (en) * 1991-12-16 1993-08-10 Eastman Kodak Company Method of selectively glossing toner images
KR20140085560A (en) * 2011-10-27 2014-07-07 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Process for smoothing a surface via heat treatment
JP2014535171A (en) * 2011-10-27 2014-12-25 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Process to smooth the surface by heat treatment

Also Published As

Publication number Publication date
JPH0136689B2 (en) 1989-08-02

Similar Documents

Publication Publication Date Title
JPS5925216A (en) Method for prevention of thermal deformation on compound semiconductor
US4482423A (en) Protection of semiconductor substrates during epitaxial growth processes
Besomi et al. Enhanced indium phosphide substrate protection for liquid phase epitaxy growth of indium‐gallium‐arsenide‐phosphide double heterostructure lasers
US4073676A (en) GaAs-GaAlAs semiconductor having a periodic corrugation at an interface
CA1292548C (en) Preservation of surface features on semiconductor surfaces
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
US4468258A (en) Method of controlling the partial pressure of at least one substance mixture or mixture of substances
JPS6154245B2 (en)
US4662983A (en) Multiple meltback procedure for LPE growth on InP
JPS58156598A (en) Method for crystal growth
EP1320914B1 (en) Method for passivating the resonator end faces of semiconductor lasers on the basis of iii-v semiconductor material
JP3114259B2 (en) GaAs crystal showing novel PL emission and method of manufacturing the same
JPS60166296A (en) Liquid-phase epitaxial growth apparatus
JPS5947729A (en) Manufacture of semiconductor device
JPS6216517A (en) Manufacture of compound semiconductor
Lourenco The effect of LPE growth atmosphere on thermal decompostion of< 100> S-InP substrates
JPS5957999A (en) Method for growing crystal
JPH0388324A (en) Method for forming compound semiconductor thin film
JPS5846628A (en) Liquid phase epitaxial growth method of semiconductor
JPS59190299A (en) Method for preventing thermal deformation of indium phosphide crystal
JPH04215422A (en) Liquid epitaxial growth of inp semiconductor
JPS6058618A (en) Vapor growth of compound semiconductor and apparatus for the same
GB1601739A (en) Method for producing compound semiconductor crystals
Logan Liquid‐phase‐epitaxial regrowth in the GaInAsP system
JPS6146018A (en) Liquid growthing method