JPS5957999A - Method for growing crystal - Google Patents

Method for growing crystal

Info

Publication number
JPS5957999A
JPS5957999A JP16845582A JP16845582A JPS5957999A JP S5957999 A JPS5957999 A JP S5957999A JP 16845582 A JP16845582 A JP 16845582A JP 16845582 A JP16845582 A JP 16845582A JP S5957999 A JPS5957999 A JP S5957999A
Authority
JP
Japan
Prior art keywords
substrate
vapor pressure
contg
crystal growth
growth method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16845582A
Other languages
Japanese (ja)
Other versions
JPH0214320B2 (en
Inventor
Kazuo Sakai
堺 和夫
Shigeyuki Akiba
重幸 秋葉
Katsuyuki Uko
宇高 勝之
Yuichi Matsushima
松島 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP16845582A priority Critical patent/JPS5957999A/en
Publication of JPS5957999A publication Critical patent/JPS5957999A/en
Publication of JPH0214320B2 publication Critical patent/JPH0214320B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate

Abstract

PURPOSE:To prevent the deformation and surface roughening of a substrate, by carrying out the epitaxial growth of a crystal on the substrate made of a semiconductor of a tertiary compound contg. a primary element having higher vapor pressure as one constituent element after holding the substrate in an atmosphere of a secondary element having lower saturation vapor pressure than the primary element. CONSTITUTION:A boat 7 is essentially provided with a substrate 8 made of a semiconductor of a tertiary compound contg. a primary element having higher vapor pressure such as P as one constituent element, e.g., an InP semiconductor and a carbon basket 5 filled with molten Sn 10 contg. solubilized InAs contg. As as a secondary element having lower vapor pressure than P. The boat 7 is put in a quartz tube and heated. As having lower saturation vapor pressure in the molten Sn 10 is first evaporated, and the substrate 8 is held in an atmosphere contg. As vapor.

Description

【発明の詳細な説明】 本発明は、蒸気圧の高い元素を構成元素として含む化合
物半導体を基板とするエビタキ7ヤル成長に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to epitaxial growth using a compound semiconductor containing an element having a high vapor pressure as a constituent element as a substrate.

InGaAsP系半導体は、光通信用発光受光素子の材
料として広く用いられている。こうした九九・受光素f
−は一般に液相または気相エビタキンヤル成長法にJ、
り結晶成長を行ってイ↓Jたウェノ・より作製すること
が多い。ところで、半導体レーザの発j辰光の4’71
i七−ドあるいld縦モード制御のために、1だ、受光
素子においてはフィルタ効果(波長選択性)をもたせる
ために1従来から様々な構造がjj、B案されている。
InGaAsP-based semiconductors are widely used as materials for light-emitting light-receiving elements for optical communications. These multiplication tables/light receiving element f
- is generally applied to liquid phase or vapor phase Evita Kinyal growth method.
It is often produced from I↓J by crystal growth. By the way, 4'71 of the emitted light of a semiconductor laser
Various structures have been proposed in the past in order to provide a filter effect (wavelength selectivity) in the light receiving element for controlling the i7-mode or the ld longitudinal mode.

このような素子の構造は、複雑に加工した基板」二に結
晶成長を行って得られるが、結晶成長の際、この基板は
メルトが充分に溶融する間市温斗に放置されることとな
る。この結味、InPあるいはInGaAsPを用いた
基板においては、特にP成分が解p;iA して基板の
表面が荒れたり、複雑に力1ビLされた部分が変形する
という問題があった。
The structure of such an element is obtained by performing crystal growth on a complexly processed substrate, but during crystal growth, this substrate is left in the city while the melt is sufficiently melted. . As a result, in a substrate using InP or InGaAsP, there is a problem that the P component in particular dissolves, resulting in roughening of the surface of the substrate and deformation of the portions subjected to complicated force.

例えば、分イ1i帰遠型レーザ(以後DF’Bレーザと
略す〕では、縦モードの単一化を達成するのに発光層又
C1元光層に近接した層に周Jυ1的凹凸を光の進’N
力向VC沿って形成し、この凹凸により発振波長の選択
性を持たせている。具体的に述べると、n1iiすIn
P基板上に周期2360A、 Aさ約1000Aの周期
的凹凸を形成し、この」−にn型1nGaAsP層(λ
g−13μm、λg:禁制帯幅に対比、する波長)を厚
さ0.1 pm 、非ドープInGaAsP層(λg=
1..55μm)を0.1μm、非ドープInGaAs
PJW (λg=1.3μm)を0.1μm、p型In
P層を約2μm形成したウェハを用いてレーザを作製し
、電流を注入すれば1.55μlηでルー縦モード発振
するレーザが得られる。この発振の閾値は主として凹凸
の高さに依存するか、結晶成長の際に高温下に約1時間
放置しておく為に、この凹凸の表面が荒れたり、変形し
たり、最悪時は凹凸が消滅してし捷う事が多かった。こ
れは、P成分を十分に含む暮囲気中に放置しても同様の
ことが起ることから、表面からPが解uiltするとい
う現象たけでなく、凹凸のある部分の表面エネルギーを
最小にするような固相−気相ドでの反応が起って、画部
分のIn 、 Pが凹部分に移動するという現象も同時
に起っているものと考えられる。
For example, in a 1i return type laser (hereinafter abbreviated as DF'B laser), in order to achieve a single longitudinal mode, the light emitting layer or a layer close to the C1 source light layer is provided with circumferential Jυ1 irregularities. Shin'N
It is formed along the force direction VC, and the unevenness provides selectivity of the oscillation wavelength. To be specific, n1iisuIn
Periodic unevenness with a period of 2360A and a diameter of about 1000A is formed on a P substrate, and an n-type 1nGaAsP layer (λ
g - 13 μm, λg: wavelength relative to the forbidden band width) with a thickness of 0.1 pm, an undoped InGaAsP layer (λg =
1. .. 55 μm) to 0.1 μm, undoped InGaAs
PJW (λg=1.3μm) is 0.1μm, p-type In
If a laser is manufactured using a wafer on which a P layer is formed to a thickness of about 2 μm and a current is injected, a laser that oscillates in the Roux longitudinal mode at 1.55 μlη can be obtained. The threshold of this oscillation mainly depends on the height of the unevenness, or because the uneven surface is left for about an hour at a high temperature during crystal growth, the uneven surface may become rough or deformed, or in the worst case, the unevenness may disappear. It often disappeared and disappeared. The same thing happens even when left in ambient air containing sufficient P components, so this not only causes P to be released from the surface, but also minimizes the surface energy of uneven parts. It is thought that the phenomenon in which such a reaction between the solid phase and the gas phase occurs and the In and P in the image area move to the concave area is also occurring at the same time.

捷だ、前述した受光素子についても同様の問題が起って
いた。
Unfortunately, a similar problem occurred with the light receiving element mentioned above.

従来は、上述の問題を防ぐため、PI(3ガスを使用し
たり、あるいはf n P結晶をシ(2板へのカッくと
して用いたりしていたが、微細加」−シた基板の変形を
出現+′Jよ< I)jぐことは困難でめった。
Conventionally, in order to prevent the above-mentioned problems, PI (3 gas) was used or f n P crystal was used as a cut into two plates. It is difficult and rare to find +'J< I)j.

本発明は、」二記固相−気相下での横送現象を抑え、結
晶開始)1.l」にも微細加工した部分の変形が起らぬ
ようにした結晶成長方法を提供するものである。
The present invention has the following advantages: (2) Suppressing cross-travel phenomenon under solid phase-gas phase and starting crystallization) 1. The purpose of the present invention is to provide a crystal growth method that prevents deformation of the microfabricated portion even in the case of "1".

本発明の特徴は、蒸気圧の高い第1の元素を一つの構成
元素とする第3の化合物半導体の基板上に所望の′−1
〈導体層を成長させるエピタキ/ヤル結晶成長法におい
て、結晶成長開始前に前記第3の1じ合物半導体の基&
を前記第1の元素より飽和蒸気圧の低い第2の元素を含
む雰囲気中に収容しておくことにある。
A feature of the present invention is that a desired '-1
<In the epitaxial/dial crystal growth method for growing a conductor layer, the third compound semiconductor base &
is housed in an atmosphere containing a second element having a lower saturated vapor pressure than the first element.

以−ト、上記第1の元素をPとするInP化合化合物体
畳体板を例にとり、寸だ第2の元素としてはAsとし本
発明を詳細に説明する。
Hereinafter, the present invention will be explained in detail by taking as an example an InP compound matte board in which P is the first element, and As is the second element.

図は結晶成長用黒鉛ボートの助凹を示したものである。The figure shows the recesses of a graphite boat for crystal growth.

ボー1−はメルト溜め1,2,3.4及びJ↓(部に旧
−什05〜l朋φの孔を多数有するカーΣj・ン・)(
スケ、1・5を収容する空洞6か形成されたボート本体
7と、InP基板8を収容しボート本体7と’8:着し
てスライド可能な基板ホルダ9より成る。ここでカーボ
ッ・バスケット5にはInP及びInAst溶けこませ
たSn融液10を入れる。各成分は、例えばSn5gに
対し、InP 150mg + InAs50mgとす
る0又、メル) ?dlめ1,2,3.4には成長組成
に応じ/(融液を仕込む。例えば、11はn型InGa
AsP層(λg−]、、3 pm )用の融液、12は
非ドーグInGaAsP層(λg = ]−,55μm
 )用の融液、13は非ドープInGaAsP層(2g
−1,3μm)用の融液、14はp型InP層用の融i
<tである。さて、実際の結晶成長プロセスでは、基板
、融液等を全てボートに仕込んだ後、これを石英管内に
入れ、H2ガスを流しながら温度を約620℃に上げて
30分間程放置し、融v<iiu〜14が十分に均一に
なった後温度を降汗させ、基板8を融液と順次接触させ
て所望の成分、膜厚の結晶1ノ’1.長を行う。さて、
基板と融液が接触する前は、基板8はカーボン・バスケ
ット5の下に保持されている。Sn融液10から蒸発し
たP成分は、ノζスケ、1・下部の孔をノ用って基板ホ
ルダ9に達しInP基板表面からP成分が散逸してしま
うのを保護する役を果す。更に、同じ8n融液からAs
成分も蒸発しているが、このAs成分は基板表面にIn
、P、Asより成るt:す膜を形成させ、これてよって
同相−気相下ての反応による曲部分のIn、Pの凹部分
への移動といった現象を妨げている。
Bow 1- has melt reservoirs 1, 2, 3.4 and J
It consists of a boat body 7 in which a cavity 6 is formed for accommodating scales 1 and 5, and a substrate holder 9 that accommodates an InP substrate 8 and is slidable when attached to the boat body 7. Here, a Sn melt 10 in which InP and InAs are dissolved is put into the carb basket 5. Each component is, for example, 5 g of Sn, 150 mg of InP + 50 mg of InAs, or 5 g of Sn. dl 1, 2, and 3.4 are filled with melt depending on the growth composition. For example, 11 is n-type InGa.
Melt for AsP layer (λg-], 3 pm), 12 is non-Dog InGaAsP layer (λg = ]-, 55 μm
), 13 is an undoped InGaAsP layer (2 g
14 is a melt for p-type InP layer.
<t. Now, in the actual crystal growth process, after the substrate, melt, etc. are all placed in a boat, it is put into a quartz tube, the temperature is raised to about 620°C while H2 gas is flowing, and the temperature is left for about 30 minutes. After <iiu~14 becomes sufficiently uniform, the temperature is allowed to drop, and the substrate 8 is sequentially brought into contact with the melt to form crystals of desired composition and film thickness. Do long. Now,
Prior to contact between the substrate and the melt, the substrate 8 is held under the carbon basket 5. The P component evaporated from the Sn melt 10 reaches the substrate holder 9 through the holes at the bottom, and serves to protect the P component from dissipating from the InP substrate surface. Furthermore, As from the same 8n melt
The As component has also evaporated, but this As component has formed an Indium component on the substrate surface.
, P, and As, and this prevents a phenomenon such as migration of In and P in the curved portion to the concave portion due to the reaction under the in-phase gas phase.

Jソ土のように、高温にInP基板を放置する際に、■
)成分に加えて蒸気圧の若干低いAs成分も含む雰11
」(気を用いることにより、基板表面の保護を良好に行
うことかできる。As成分による基板表面の保護膜は極
(薄ぐ、又基板へ直接成長する層はAsを含んでいるた
め、結晶成長の際に再配列が行われるので、この11ψ
が成長層全体に与える影響はほとんどない。こうした基
板の保護は、P成分たけ或1iAs成分だけで(は十分
に行うことはできず、P及びAsの両成分を用いること
により、・はじめてoJ能となるものである。
When leaving an InP substrate at a high temperature, such as with JSO soil, ■
) component and also contains an As component with a slightly lower vapor pressure.
(The protective film on the substrate surface made of As components is extremely thin, and the layer that grows directly on the substrate contains As, so the surface of the substrate can be well protected.) Because rearrangement occurs during growth, this 11ψ
has little effect on the growth layer as a whole. Such protection of the substrate cannot be achieved sufficiently with only the P component or the 1iAs component, and the oJ function can only be achieved by using both the P and As components.

例えば、作さsoo A 、周期2400^の回折格子
を形成したInP基板を用いて上記実験を行った場合、
As成分がない場合如は深さが50X以十に変形してし
まったが、As成分を加えて行った場合には深さ300
A程度の回折格子が舟状性よくイqられた。
For example, if the above experiment is performed using an InP substrate on which a diffraction grating of soo A and a period of 2400^ is formed,
When there was no As component, the depth was deformed to more than 50X, but when the As component was added, the depth was 300X.
The diffraction grating of grade A was well-equipped with a boat-like shape.

以上の実施例では、As及びP成分をSn融液中に溶解
さぜ/こが、Sn以外の金属、例えば、In又はGa又
はpb又はB1又はCd又はZn或はこれ等を絹み合わ
せた金槙の融液を用い、この中にAs及びP成分を溶解
させて用いてもよい。
In the above examples, the As and P components were dissolved in the Sn melt, and metals other than Sn, such as In, Ga, PB, B1, Cd, Zn, etc. The As and P components may be dissolved in a melt of Kinmaki and used.

又、溶液中から蒸発してくるAs及びP成分を用いる代
りに、InPxAsl−x或はIn1−y GayPx
AJ−x等の単結晶ウェハを基板のカバとして用いれば
、このカバ用結晶からAs及びP成分が解離してぐるの
で、上記金属融液を用いたのと同様の効果が得られる。
Also, instead of using As and P components that evaporate from the solution, InPx Asl-x or In1-y GayPx
If a single crystal wafer such as AJ-x is used as a cover for the substrate, the As and P components will be dissociated from this cover crystal, so that the same effect as when using the metal melt described above can be obtained.

更に別の一方法としては、As或はPの化合物ガス、例
えばAsH3r PH3等のガスを用いてもよい。
As yet another method, a compound gas of As or P, such as AsH3r PH3, may be used.

この場合にl′1AsH3+ P H3は高温で分解し
、AS4゜P4等を発生するので、同様の効果か得られ
る。
In this case, l'1AsH3+PH3 decomposes at high temperatures and generates AS4°P4, etc., so a similar effect can be obtained.

Claims (5)

【特許請求の範囲】[Claims] (1)蒸気圧の高い第1の元素を一つの構成元素とする
第3の化合物半導体の基板」二へのエビタキ/ヤル結晶
成長を行う工程の前に、前記第1の元素よりは飽和蒸気
圧の低い第2の元素を含む雰囲気中に前記基板を収容し
ておく工程を有する結晶成長方法。
(1) A substrate of a third compound semiconductor containing the first element having a high vapor pressure as one of its constituent elements. A crystal growth method comprising the step of housing the substrate in an atmosphere containing a second element at low pressure.
(2)前記第2の元素を含む雰囲気は、第2の元素をS
n + In + Ga + P b + Bi+ C
dもしくはZn又はこれらの組合せの金属融液中に溶解
させ、該溶液から蒸発してくる第2の元素を用いて形成
されることfc特徴とする特許請求の範囲第1項記載の
AiI”、晶成長方法。
(2) The atmosphere containing the second element contains S
n + In + Ga + P b + Bi + C
AiI” according to claim 1, characterized in that it is formed using a second element that is dissolved in a metal melt of d or Zn or a combination thereof and evaporated from the solution; Crystal growth method.
(3)[11J記第2の元素を含む雰囲気は、前記第3
の化合切半、4体の構成元素のうち第1の元素の少くと
も一部分を第2の元素で置侠した第4の化合物半導体か
らの解離による第2の元素を用いて形成されることを特
徴とする特許請求の範囲第1項記載の結晶成長方法。
(3) [The atmosphere containing the second element in Section 11J is
The compound semiconductor is formed using a second element by dissociation from a fourth compound semiconductor in which at least a part of the first element is replaced by the second element among the four constituent elements. A crystal growth method according to claim 1, characterized in that:
(4)前記第2の元素を含む雰囲気は、第2の元素を含
む化合物ガスから分解してくる第2の元素を用いて形成
されることを特徴とする特許請求の範囲第1項記載の結
晶成長方法。
(4) The atmosphere containing the second element is formed using the second element decomposed from a compound gas containing the second element. Crystal growth method.
(5)前記第1の元素がP、前記第2の元素がAs。 前記第3の化合物半導体がIn1−xGaxA5yPl
−F(但し、042y≦χ≦o、soy、かつ0≦y〈
工)であることを特徴とする特許請求の範囲第1項。 第2項、第3項または第4項に記載の結晶成長方法。
(5) The first element is P, and the second element is As. The third compound semiconductor is In1-xGaxA5yPl
-F (however, 042y≦χ≦o, soy, and 0≦y〈
Claim 1, characterized in that: The crystal growth method according to item 2, 3, or 4.
JP16845582A 1982-09-29 1982-09-29 Method for growing crystal Granted JPS5957999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16845582A JPS5957999A (en) 1982-09-29 1982-09-29 Method for growing crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16845582A JPS5957999A (en) 1982-09-29 1982-09-29 Method for growing crystal

Publications (2)

Publication Number Publication Date
JPS5957999A true JPS5957999A (en) 1984-04-03
JPH0214320B2 JPH0214320B2 (en) 1990-04-06

Family

ID=15868422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16845582A Granted JPS5957999A (en) 1982-09-29 1982-09-29 Method for growing crystal

Country Status (1)

Country Link
JP (1) JPS5957999A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190299A (en) * 1983-04-07 1984-10-29 Agency Of Ind Science & Technol Method for preventing thermal deformation of indium phosphide crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559716A (en) * 1978-10-30 1980-05-06 Nec Corp Liquid phase growing method of 3-5 group compound semiconductor
JPS571888A (en) * 1980-05-31 1982-01-07 Bridgestone Tire Co Ltd Fiber reinforced hose and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559716A (en) * 1978-10-30 1980-05-06 Nec Corp Liquid phase growing method of 3-5 group compound semiconductor
JPS571888A (en) * 1980-05-31 1982-01-07 Bridgestone Tire Co Ltd Fiber reinforced hose and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190299A (en) * 1983-04-07 1984-10-29 Agency Of Ind Science & Technol Method for preventing thermal deformation of indium phosphide crystal

Also Published As

Publication number Publication date
JPH0214320B2 (en) 1990-04-06

Similar Documents

Publication Publication Date Title
US4116733A (en) Vapor phase growth technique of III-V compounds utilizing a preheating step
US4215319A (en) Single filament semiconductor laser
CA1086431A (en) Etching of iii-v semiconductor materials in the preparation of heterodiodes
JPS607720A (en) Epitaxial growing method
Mil'vidskii et al. Creation of defects during the growth of semiconductor single crystals and films
Turley et al. LPE growth on structured {100} InP substrates and their fabrication by preferential etching
US3747016A (en) Semiconductor injection laser
US4355396A (en) Semiconductor laser diode and method of making the same
Matsumoto Diffusion of Cd and Zn into InP and InGaAsP (Eg= 0.95-1.35 eV)
US4073676A (en) GaAs-GaAlAs semiconductor having a periodic corrugation at an interface
JPS5957999A (en) Method for growing crystal
Panish et al. GaInAsP/InP heterostructure lasers emitting at 1.5 μm and grown by gas source molecular beam epitaxy
US4227962A (en) Prevention of decomposition of phosphorous containing substrates during an epitaxial growth sequence
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
JPS62237722A (en) Method of keeping surface structure on semiconductor surface
Oe et al. Liquid phase epitaxial growth of GaInP/AlGaAs double heterostructures for visible lasers
Nannichi Recent progress in semiconductor lasers
GB2062949A (en) Single filament semiconductor laser with large emitting area
JPS57183091A (en) Manufacture of optical integrated circuit
Itaya et al. 1.6 µm wavelength GaInAsP/InP lasers prepared by two-phase solution technique
KR940007591B1 (en) Manufacturing method of photo-electron device using compound semiconductor
JPH0136689B2 (en)
JPH0330288B2 (en)
Peev Liquid phase epitaxy of GaAs and AlGaAs
Shahar et al. PbSnTe-PbTeSe lattice matched single heterostructure diode lasers grown by LPE on a (110) oriented PbSnTe substrates