JPH0214320B2 - - Google Patents

Info

Publication number
JPH0214320B2
JPH0214320B2 JP57168455A JP16845582A JPH0214320B2 JP H0214320 B2 JPH0214320 B2 JP H0214320B2 JP 57168455 A JP57168455 A JP 57168455A JP 16845582 A JP16845582 A JP 16845582A JP H0214320 B2 JPH0214320 B2 JP H0214320B2
Authority
JP
Japan
Prior art keywords
substrate
melt
crystal growth
inp
atmosphere containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57168455A
Other languages
Japanese (ja)
Other versions
JPS5957999A (en
Inventor
Kazuo Sakai
Shigeyuki Akiba
Katsuyuki Uko
Juichi Matsushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP16845582A priority Critical patent/JPS5957999A/en
Publication of JPS5957999A publication Critical patent/JPS5957999A/en
Publication of JPH0214320B2 publication Critical patent/JPH0214320B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate

Description

【発明の詳細な説明】 本発明は、InPを基板とするエピタキシヤル成
長に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to epitaxial growth using InP as a substrate.

InGaAsP系半導体は、光通信用発光受光素子
の材料として広く用いられている。こうした発
光・受光素子は一般に液相または気相エピタキシ
ヤル成長法により結晶成長を行つて得たウエハよ
り作製することが多い。ところで、半導体レーザ
の発振光の横モードあるいは縦モード制御のため
に、また、受光素子においてはフイルタ効果(波
長選択性)をもたせるために、従来から様々な構
造が提案されている。このような素子の構造は、
複雑に加工した基板上に結晶成長を行つて得られ
るが、結晶成長の際、この基板はメルトが充分に
溶融する間高温下に放置されることとなる。この
結果、InPあるいはInGaAsPを用いた基板におい
ては、特にP成分が解離して基板の表面が荒れた
り、複雑に加工された部分が変形するという問題
があつた。
InGaAsP-based semiconductors are widely used as materials for light-emitting and light-receiving elements for optical communications. Such light-emitting/light-receiving elements are generally manufactured from wafers obtained by crystal growth using liquid phase or vapor phase epitaxial growth methods. Incidentally, various structures have been proposed in the past in order to control the transverse mode or longitudinal mode of the oscillated light of a semiconductor laser, and to provide a filter effect (wavelength selectivity) in a light receiving element. The structure of such an element is
It is obtained by growing crystals on a complexly processed substrate, but during crystal growth, this substrate is left under high temperature while the melt is sufficiently melted. As a result, in substrates using InP or InGaAsP, problems arise in that the P component in particular dissociates, resulting in roughening of the surface of the substrate and deformation of intricately processed parts.

例えば、分布帰還型レーザ(以後DFBレーザ
と略す)では、縦モードの単一化を達成するのに
発光層又は発光層に近接した層に周期的凹凸を光
の進行方向に沿つて形成し、この凹凸により発振
波長の選択性を持たせている。具体的に述べる
と、n型InP基板上に周期2360Å、高さ約1000Å
の周期的凹凸を形成し、この上にn型InGaAsP
層(λg=1.3μm、λg:禁制帯幅に対応する波長)
を厚さ0.1μm、非ドープInGaAsP層(λg=1.55μ
m)を0.1μm、非ドープInGaAsP層(λg=1.3μ
m)を0.1μm、p型InP層を約2μm形成したウエ
ハを用いてレーザを作製し、電流を注入すれば
1.55μmで単一縦モード発振するレーザが得られ
る。この発振の閾値は主として凹凸の高さに依存
するが、結晶成長の際に高温下に約1時間放置し
ておく為に、この凹凸の表面が荒れたり、変形し
たり、最悪時は凹凸が消滅してしまう事が多かつ
た。これは、P成分を十分に含む雰囲気中に放置
しても同様のことが起ることから、表面からPが
解離するという現象だけでなく、凹凸のある部分
の表面エネルギーを最小にするような固相−気相
下での反応が起つて、凸部分のIn、Pが凹部分に
移動するという現象も同時に起つているものと考
えられる。また、前述した受光素子についても同
様の問題が起つていた。
For example, in a distributed feedback laser (hereinafter abbreviated as DFB laser), periodic irregularities are formed along the direction of light propagation in the light emitting layer or a layer close to the light emitting layer in order to achieve a single longitudinal mode. This unevenness provides selectivity of the oscillation wavelength. To be more specific, it is formed on an n-type InP substrate with a period of 2360 Å and a height of about 1000 Å.
On top of this, n-type InGaAsP is formed.
layer (λg=1.3μm, λg: wavelength corresponding to forbidden band width)
0.1μm thick, undoped InGaAsP layer (λg=1.55μ
m) is 0.1 μm, undoped InGaAsP layer (λg = 1.3 μm)
If we fabricate a laser using a wafer with 0.1 μm of m) and approximately 2 μm of p-type InP layer, and inject a current,
A laser that oscillates in a single longitudinal mode at 1.55 μm can be obtained. The threshold of this oscillation mainly depends on the height of the unevenness, but because the crystal is left at high temperatures for about an hour during crystal growth, the uneven surface may become rough or deformed, or in the worst case, the unevenness may become uneven. It often disappeared. The same thing happens even when left in an atmosphere containing a sufficient amount of P, so this is not only due to the phenomenon of P dissociating from the surface, but also due to the phenomenon of minimizing the surface energy of uneven parts. It is considered that a reaction occurs in the solid phase and gas phase, and a phenomenon in which In and P in the convex portions move to the concave portions is also occurring at the same time. Further, a similar problem occurred with the above-mentioned light receiving element.

従来は、上述の問題を防ぐため、PH3ガスを使
用したり、あるいはInP結晶を基板へのカバとし
て用いたりしていたが、微細加工した基板の変形
を再現性よく防ぐことは困難であつた。
Conventionally, to prevent the above problems, PH 3 gas or InP crystals were used as a cover for the substrate, but it was difficult to prevent deformation of a microfabricated substrate with good reproducibility. Ta.

本発明は、上記固相−気相下での輸送現象を抑
え、結晶開始時にも微細加工した部分の変形が起
らぬようにした結晶成長方法を提供するものであ
る。
The present invention provides a crystal growth method that suppresses the transport phenomenon in the solid phase-vapor phase and prevents deformation of microfabricated portions even when crystallization is initiated.

本発明の特徴は、蒸気圧の高い第1の元素とし
てPを一つの構成元素とするInPからなり表面に
微細加工を有する基板上に所望の半導体を成長さ
せるエピタキシヤル結晶成長法において、結晶成
長開始前に前記InPの基板を前記第1の元素と該
第1の元素より飽和蒸気圧の低い第2の元素とし
てAsを含む雰囲気中に収容しておくことにある。
A feature of the present invention is that in the epitaxial crystal growth method in which a desired semiconductor is grown on a substrate made of InP containing P as a constituent element as the first element with high vapor pressure and having microfabrication on the surface, Before starting, the InP substrate is housed in an atmosphere containing the first element and As as a second element having a lower saturated vapor pressure than the first element.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

図は結晶成長用黒鉛ボートの断面を示したもの
である。ボートはメルト溜め1,2,3,4及び
底部に直径0.5〜1mmφの孔を多数有するカーボ
ン・バスケツト5を収容する空洞6が形成された
ボート本体7と、InP基板8を収容しボート本体
7と密着してスライド可能な基板ホルダ9より成
る。ここでカーボン・バスケツト5にはInP及び
InAsを溶けこませたSn融液10を入れる。各成
分は、例えばSn5gに対し、InP150mg、InAs50mg
とする。又、メルト溜め1,2,3,4には成長
組成に応じた融液を仕込む。例えば、11はn型
InGaAsP層(λg=1.3μm)用の融液、12は非
ドープInGaAsP層(λg=1.55μm)用の融液、1
3は非ドープInGaAsP層(λg=1.3μm)用の融
液、14はp型InP層用の融液である。さて、実
際の結晶成長プロセスでは、基板、融液等を全て
ボートに仕込んだ後、これを石英管内に入れ、
H2ガスを流しながら温度を約620℃に上げて30分
間程放置し、融液11〜14が十分に均一になつ
た後温度を降下させ、基板8を融液と順次接触さ
せて所望の成分、膜厚の結晶成長を行う。さて、
基板と融液が接触する前は、基板8はカーボン・
バスケツト5の下に保持されている。Sn融液1
0から蒸発したP成分は、バスケツト下部の孔を
通つて基板ホルダ9に達しInP基板表面からP成
分が散逸してしまうのを保護する役を果す。更
に、同じSn融液からAs成分も蒸発しているが、
このAs成分は基板表面にIn、P、Asより成る薄
膜を形成させ、これによつて固相−気相下での反
応による凸部分のIn、Pの凹部分への移動といつ
た現象を妨げている。
The figure shows a cross section of a graphite boat for crystal growth. The boat includes melt reservoirs 1, 2, 3, 4, a boat body 7 in which a cavity 6 is formed for accommodating a carbon basket 5 having a number of holes with a diameter of 0.5 to 1 mmφ at the bottom, and an InP substrate 8. The substrate holder 9 is slidable in close contact with the substrate holder 9. Here, carbon basket 5 contains InP and
Add 10% of the Sn melt in which InAs has been dissolved. Each component is, for example, 5g of Sn, 150mg of InP, 50mg of InAs.
shall be. Further, the melt reservoirs 1, 2, 3, and 4 are filled with melt according to the growth composition. For example, 11 is n type
Melt for InGaAsP layer (λg = 1.3 μm), 12 is melt for undoped InGaAsP layer (λg = 1.55 μm), 1
3 is a melt for an undoped InGaAsP layer (λg=1.3 μm), and 14 is a melt for a p-type InP layer. Now, in the actual crystal growth process, after the substrate, melt, etc. are all placed in a boat, this is put into a quartz tube.
While flowing H 2 gas, the temperature was raised to about 620°C and left for about 30 minutes. After the melts 11 to 14 became sufficiently uniform, the temperature was lowered and the substrates 8 were sequentially brought into contact with the melt to form the desired shape. Perform crystal growth of components and film thickness. Now,
Before the substrate and the melt come into contact, the substrate 8 is covered with carbon.
It is held under the basket 5. Sn melt 1
The P component evaporated from the InP substrate reaches the substrate holder 9 through the hole at the bottom of the basket, and serves to protect the P component from dissipating from the InP substrate surface. Furthermore, the As component also evaporates from the same Sn melt,
This As component forms a thin film consisting of In, P, and As on the substrate surface, and this causes phenomena such as migration of In and P from convex areas to concave areas due to reactions in the solid phase and gas phase. hindering.

以上のように、高温にInP基板を放置する際
に、P成分に加えて蒸気圧の若干低いAs成分も
含む雰囲気を用いることにより、基板表面の保護
を良好に行うことができる。As成分による基板
表面の保護膜は極く薄く、又基板へ直接成長する
層はAsを含んでいるため、結晶成長の際に再配
列が行われるので、この膜が成長層全体に与える
影響はほとんどない。こうした基板の保護は、P
成分だけ或はAs成分だけでは十分に行うことは
できず、P及びAsの両成分を用いることにより、
はじめて可能となるものである。
As described above, when an InP substrate is left at a high temperature, the substrate surface can be well protected by using an atmosphere containing an As component with a slightly lower vapor pressure in addition to the P component. The protective film on the substrate surface made of As components is extremely thin, and since the layer that grows directly on the substrate contains As, rearrangement occurs during crystal growth, so the effect of this film on the entire growth layer is small. rare. The protection of such a substrate is
It is not possible to achieve sufficient results with only the component alone or with the As component alone, but by using both P and As components,
This is possible for the first time.

例えば、深さ800Å、周期2400Åの回折格子を
形成したInP基板を用いて上記実験を行つた場
合、As成分がない場合には深さが50Å以下に変
形してしまつたが、As成分を加えて行つた場合
には深さ300Å程度の回折格子が再現性よく得ら
れた。
For example, when performing the above experiment using an InP substrate on which a diffraction grating with a depth of 800 Å and a period of 2400 Å was formed, the depth deformed to less than 50 Å without the As component, but when the As component was added When this was done, a diffraction grating with a depth of about 300 Å was obtained with good reproducibility.

以上の実施例では、As及びP成分をSn融液中
に溶解させたが、Sn以外の金属、例えば、In又
はGa又はPb又はBi又はCd又はZn或はこれ等を
組み合わせた金属の融液を用い、この中にAs及
びP成分を溶解させて用いてもよい。
In the above embodiments, As and P components were dissolved in the Sn melt, but melts of metals other than Sn, such as In, Ga, Pb, Bi, Cd, Zn, or a combination of these, may also be used. You may use it by dissolving As and P components in it.

又、溶液中から蒸発してくるAs及びP成分を
用いる代りに、InPxAs1-x或はIn1-yGayPxAs1-x
の単結晶ウエハを基板のカバとして用いれば、こ
のカバ用結晶からAs及びP成分が解離してくる
ので、上記金属融液を用いたのと同様の効果が得
られる。
Also, instead of using As and P components that evaporate from the solution, if a single crystal wafer such as InP x As 1-x or In 1-y Ga y P x As 1-x is used as a cover for the substrate. Since the As and P components are dissociated from this Kaba crystal, the same effect as when using the metal melt described above can be obtained.

更に別の一方法としては、As或はPの化合物
ガス、例えばAsH3、PH3等のガスを用いてもよ
い。この場合にはAsH3、PH3は高温で分解し、
As4、P4等を発生するので、同様の効果が得られ
る。
As yet another method, a compound gas of As or P, such as AsH 3 or PH 3 , may be used. In this case, AsH 3 and PH 3 decompose at high temperatures,
Since As 4 , P 4 , etc. are generated, similar effects can be obtained.

こうした方法は単独で用いても、又併用しても
かまわない。例えば、Sn融液中にAs、Pを溶か
した溶液を用いると同時に、PH3、AsH3ガスを
流して、両方から発生するAs、P成分を用いる
といつた方法でもよい。
These methods may be used alone or in combination. For example, a method may be used in which a solution of As and P dissolved in Sn melt is used, and at the same time, PH 3 and AsH 3 gases are flowed, and As and P components generated from both are used.

又、同様の保護法はPを含む基板のみならず、
例えばAs或はS等を含む基板に対しても適用可
能である。
In addition, similar protection laws apply not only to substrates containing P, but also to
For example, it is also applicable to substrates containing As or S.

以上の説明のように、本発明では遊離しやすい
元素を含む基板を該元素並びに蒸気圧の低い元素
を共に含む雰囲気中に基板を収容しておくことに
より、基板の変形及び荒れを効果的に防止するこ
とができ、その工業的価値は大である。
As explained above, in the present invention, deformation and roughness of the substrate can be effectively prevented by housing the substrate containing an element that is easily liberated in an atmosphere containing both the element and an element with low vapor pressure. It can be prevented and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明を適用したカーボンボートの断面図
である。 1,2,3,4……メルト溜め、5……カーボ
ン・バスケツト、6……空洞、7……ボート本
体、8……InP基板、9……基板ホルダ、10……
Sn融液、11,12,13,14……結晶成長
用融液。
The figure is a sectional view of a carbon boat to which the present invention is applied. 1, 2, 3, 4...Melt reservoir, 5...Carbon basket, 6...Cavity, 7...Boat body, 8...InP substrate, 9...Substrate holder, 10...
Sn melt, 11, 12, 13, 14...melt for crystal growth.

Claims (1)

【特許請求の範囲】 1 InPからなり表面に微細加工を有する基板上
へのエピタキシヤル結晶成長を行う工程の前に、
PとAsを含む雰囲気中に前記基板を収容してお
く工程を有する結晶成長方法。 2 前記PとAsを含む雰囲気は、前記Pと前記
AsをSn、In、Ga、Pb、Bi、CdもくくはZn又は
これらの組合わせの金属融液中に溶解させ、該溶
液から蒸発してくる前記Pと前記Asを用いて形
成されることを特徴とする特許請求の範囲第1項
記載の結晶成長方法。 3 前記Pと前記Asを含む雰囲気は、前記Pと
前記Asを含む化合物半導体からの解離による前
記Pと前記Asを用いて形成されることを特徴と
する特許請求の範囲第1項記載の結晶成長方法。 4 前記Pと前記Asを含む雰囲気は、前記Pと
前記Asを含む化合物ガスから分解してくる前記
Pと前記Asを用いて形成されることを特徴とす
る特許請求の範囲第1項記載の結晶成長方法。
[Claims] 1. Before the step of epitaxial crystal growth on a substrate made of InP and having microfabrication on the surface,
A crystal growth method comprising the step of housing the substrate in an atmosphere containing P and As. 2 The atmosphere containing the above P and As is the atmosphere containing the above P and the above
Formed by dissolving As in a metal melt of Sn, In, Ga, Pb, Bi, Cd, Zn, or a combination thereof, and using the P and As that evaporate from the solution. A crystal growth method according to claim 1, characterized in that: 3. The crystal according to claim 1, wherein the atmosphere containing the P and the As is formed using the P and the As by dissociation from a compound semiconductor containing the P and the As. How to grow. 4. The atmosphere containing the P and the As is formed using the P and the As decomposed from a compound gas containing the P and the As. Crystal growth method.
JP16845582A 1982-09-29 1982-09-29 Method for growing crystal Granted JPS5957999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16845582A JPS5957999A (en) 1982-09-29 1982-09-29 Method for growing crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16845582A JPS5957999A (en) 1982-09-29 1982-09-29 Method for growing crystal

Publications (2)

Publication Number Publication Date
JPS5957999A JPS5957999A (en) 1984-04-03
JPH0214320B2 true JPH0214320B2 (en) 1990-04-06

Family

ID=15868422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16845582A Granted JPS5957999A (en) 1982-09-29 1982-09-29 Method for growing crystal

Country Status (1)

Country Link
JP (1) JPS5957999A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190299A (en) * 1983-04-07 1984-10-29 Agency Of Ind Science & Technol Method for preventing thermal deformation of indium phosphide crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559716A (en) * 1978-10-30 1980-05-06 Nec Corp Liquid phase growing method of 3-5 group compound semiconductor
JPS571888A (en) * 1980-05-31 1982-01-07 Bridgestone Tire Co Ltd Fiber reinforced hose and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559716A (en) * 1978-10-30 1980-05-06 Nec Corp Liquid phase growing method of 3-5 group compound semiconductor
JPS571888A (en) * 1980-05-31 1982-01-07 Bridgestone Tire Co Ltd Fiber reinforced hose and its manufacture

Also Published As

Publication number Publication date
JPS5957999A (en) 1984-04-03

Similar Documents

Publication Publication Date Title
CA1225465A (en) Fabrication of grooved semiconductor devices
CA1086431A (en) Etching of iii-v semiconductor materials in the preparation of heterodiodes
EP0469900B1 (en) A method for the production of a semiconductor laser device
US4347486A (en) Single filament semiconductor laser with large emitting area
GB2144337A (en) Process for epitaxial growth
US4049488A (en) Method of manufacturing a semiconductor device
JPH0214320B2 (en)
EP0321294B1 (en) A semiconductor laser device
US4902644A (en) Preservation of surface features on semiconductor surfaces
EP0117051B2 (en) Growth of semiconductors
US4805178A (en) Preservation of surface features on semiconductor surfaces
JPH0763053B2 (en) Method for growing InGaAsP crystal on InP
JPH0217519B2 (en)
KR940007591B1 (en) Manufacturing method of photo-electron device using compound semiconductor
JP3287311B2 (en) Method of manufacturing semiconductor laser device
US4717443A (en) Mass transport of indium phosphide
JPH0136689B2 (en)
Botez et al. Crystal growth of mode-stabilized semiconductor diode lasers by liquid-phase epitaxy
JPH058568B2 (en)
JPH0310222B2 (en)
JPH0330288B2 (en)
KR19980015871A (en) Method for manufacturing semiconductor laser diode
JPS60166296A (en) Liquid-phase epitaxial growth apparatus
JPH07221385A (en) Manufacture of semiconductor laser
GB2299709A (en) Method for producing a semiconductor device