JPH058568B2 - - Google Patents

Info

Publication number
JPH058568B2
JPH058568B2 JP1874385A JP1874385A JPH058568B2 JP H058568 B2 JPH058568 B2 JP H058568B2 JP 1874385 A JP1874385 A JP 1874385A JP 1874385 A JP1874385 A JP 1874385A JP H058568 B2 JPH058568 B2 JP H058568B2
Authority
JP
Japan
Prior art keywords
layer
inp
temperature
diffraction grating
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1874385A
Other languages
Japanese (ja)
Other versions
JPS61179525A (en
Inventor
Tooru Nishibe
Masami Iwamoto
Junichi Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1874385A priority Critical patent/JPS61179525A/en
Publication of JPS61179525A publication Critical patent/JPS61179525A/en
Publication of JPH058568B2 publication Critical patent/JPH058568B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、回折格子を有するGaInAsP層上に
InP層をエピタキシヤル成長させる気相成長方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a GaInAsP layer having a diffraction grating.
This invention relates to a vapor phase growth method for epitaxially growing an InP layer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

回折格子を有する光デバイスの一つである
DFB(分布帰還型)レーザは、従来のフアブリペ
ロー型のレーザが両へき開面をミラーとして用い
るのに対し、回折格子での光の回折による帰還を
利用している。このため、発振波長は回折格子の
周期と実効屈折率により決まり、温度変動による
発振波長の変化率も1〔Å/度〕以下と小さい。
従つて、フアブリペロー型レーザより制御性及び
安定性とも優れており、DFBレーザは今後の半
導体レーザ、特に単一モード発振を要求される半
導体レーザの主流をなすものとして注目されてい
る。
It is an optical device with a diffraction grating.
DFB (distributed feedback) lasers use feedback by diffraction of light on a diffraction grating, whereas conventional Fabry-Perot lasers use both cleavage planes as mirrors. Therefore, the oscillation wavelength is determined by the period of the diffraction grating and the effective refractive index, and the rate of change in the oscillation wavelength due to temperature fluctuation is as small as 1 [Å/degree] or less.
Therefore, DFB lasers have better controllability and stability than Fabry-Perot lasers, and are attracting attention as the mainstream of future semiconductor lasers, especially semiconductor lasers that require single mode oscillation.

DFBレーザは発振波長に応じた周期の回折格
子を含んでおり、回折格子上にこの回折格子を保
存したまま結晶成長させることが必要である。一
例として、GaInAsP混晶とInP結晶とのヘテロ接
合DFBレーザについて説明すると、組成1.3〔μm〕
帯レーザの場合、回折格子の周期は1次の回折光
を利用する場合2000〔Å〕程度である。
A DFB laser includes a diffraction grating with a period corresponding to the oscillation wavelength, and it is necessary to grow the crystal while preserving this diffraction grating on the diffraction grating. As an example, to explain a heterojunction DFB laser of GaInAsP mixed crystal and InP crystal, the composition is 1.3 [μm]
In the case of a band laser, the period of the diffraction grating is about 2000 [Å] when first-order diffracted light is used.

DFBレーザの構造としては、第7図aに示す
如くInP基板71上に回折格子71aを設けたも
のと、同図bに示す如くGaInAsP層75上に回
折格子75aを設けたものとがある。第7図bに
示す構造についてその製造方法を説明する。ま
ず、N−InP基板71上にN−InPクラツド層7
2、N−GaInAsP活性層73、P−InPバツフア
層74及びP−GaInAsP光ガイド層75を順次
成長させ、光ガイド層75の表面に回折格子75
aを設ける。次いで、P−InPクラツド層78及
びP−GaInAsPコンタクト層79に成長させる。
その後、電極を取着することによつて、DFBレ
ーザが完成することになる。
DFB laser structures include one in which a diffraction grating 71a is provided on an InP substrate 71 as shown in FIG. 7a, and one in which a diffraction grating 75a is provided on a GaInAsP layer 75 as shown in FIG. 7b. A manufacturing method for the structure shown in FIG. 7b will be explained. First, an N-InP cladding layer 7 is formed on an N-InP substrate 71.
2. Sequentially grow an N-GaInAsP active layer 73, a P-InP buffer layer 74, and a P-GaInAsP light guide layer 75, and form a diffraction grating 75 on the surface of the light guide layer 75.
Provide a. Next, a P-InP cladding layer 78 and a P-GaInAsP contact layer 79 are grown.
After that, the DFB laser is completed by attaching electrodes.

しかしながら、この種の方法にあつては次のよ
うな問題があつた。即ち、回折格子75aを有す
るP−GaInAsP光ガイド層75上にInPクラツド
層78を成長する際に、回折格子75aが変形し
たり、消失することがある。そして、回折格子の
変形や消失は、レーザの発振閾値の低下等の特性
劣化を招く大きな要因となる。
However, this type of method has the following problems. That is, when growing the InP cladding layer 78 on the P-GaInAsP optical guide layer 75 having the diffraction grating 75a, the diffraction grating 75a may be deformed or disappear. The deformation or disappearance of the diffraction grating becomes a major factor that causes characteristic deterioration such as a decrease in the laser oscillation threshold.

InP層上に設けた回折格子の消失を防ぐ方法と
しては、LPE(液相エピタキシヤル)法の場合、
GaAsカバー或いはGaAsPカバーを回折格子付ウ
エハに覆うことにより行われている。しかし、気
相成長を2つ以上の成長室を持つたシステムで行
う場合、ウエハを成長室間で移動しなければなら
ないので、上記のカバーを用いることは系を複雑
にし、しかも回折格子と云う微細な凹凸表面上に
活性層を成長しなければならないので、モホロジ
ーや結晶品質の低下を招き易い。他の方法では、
回折格子を設けたInP層を表面に露出した状態
で、水素雰囲気中にホスフインを混合したガス流
で保持しているものもある。この方法によれば、
2次の回折格子(周期4500Å、深さ1500Å)の場
合、620〔℃〕、90分の熱処理では、回折格子を保
存するために最低限10-3気圧のホスフインが必要
であるとされている。しかし、回折格子の前処理
等による表面の酸化膜等の状態が異なり、再現性
に乏しいと云う欠点がある。
As a method to prevent the disappearance of the diffraction grating provided on the InP layer, in the case of LPE (liquid phase epitaxial) method,
This is done by covering a wafer with a diffraction grating with a GaAs cover or a GaAsP cover. However, when vapor phase growth is performed in a system with two or more growth chambers, the wafer must be moved between the growth chambers, so using the above-mentioned cover complicates the system and also requires the use of a diffraction grating. Since the active layer must be grown on a finely uneven surface, morphology and crystal quality are likely to deteriorate. In other ways,
In some cases, an InP layer with a diffraction grating is exposed on the surface and held in a gas flow containing phosphine in a hydrogen atmosphere. According to this method,
In the case of a second-order diffraction grating (period: 4500 Å, depth 1500 Å), heat treatment at 620 [℃] for 90 minutes is said to require a minimum of 10 -3 atm of phosphine to preserve the diffraction grating. . However, the condition of the oxide film on the surface is different due to the pretreatment of the diffraction grating, etc., and there is a drawback that reproducibility is poor.

また、GaInAsP層上に設けた回折格子の消失
を防ぐ方法としても、InP層の場合と同様に
GaAsカバー、GaAsPカバー或いはInPカバーを
用いるものや、水素ベースのホスフイン、アルシ
ン雰囲気中で燐圧、砒素圧を加える方法がある。
しかし、InP層の回折格子に比べ、GaInAsP層の
回折格子は熱変形を抑えることが極めて困難であ
る。
In addition, as a method to prevent the disappearance of the diffraction grating provided on the GaInAsP layer, the same method as for the InP layer can be used.
There are methods that use a GaAs cover, GaAsP cover, or InP cover, and methods that apply phosphorus pressure or arsenic pressure in a hydrogen-based phosphine or arsine atmosphere.
However, compared to a diffraction grating made of an InP layer, it is extremely difficult to suppress thermal deformation of a diffraction grating made of a GaInAsP layer.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、回折格子を有するGaInAsP
層上に、回折格子の変形を招くことなくInP層を
エピタキシヤル成長させることができ、DFBレ
ーザの製造等に好適する気相成長方法を提供する
ことにある。
The object of the present invention is to provide GaInAsP with diffraction gratings.
It is an object of the present invention to provide a vapor phase growth method that can epitaxially grow an InP layer on the layer without causing deformation of the diffraction grating, and is suitable for manufacturing a DFB laser.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、回折格子の熱変形を生じない
ような温度で回折格子を埋込む程度の薄いInP層
を成長させ、それに続き昇温して再びInP層を制
御性の良い条件で成長させることにある。
The gist of the present invention is to grow an InP layer thin enough to embed the diffraction grating at a temperature that does not cause thermal deformation of the diffraction grating, and then raise the temperature and grow the InP layer again under well-controlled conditions. There is a particular thing.

即ち本発明は、回折格子を有するGaInAsP層
上にInP層を気相成長させるための気相成長方法
において、前記GaInAsP層を最上層に有するウ
エハを成長温度に昇温するまでの間、該ウエハを
前記回折格子が熱変形を起こさず且つ回折格子上
にInP層が堆積し得る400〜500〔℃〕の温度で水
素雰囲気中に保持したのち、上記ウエハ保持温度
と同じ温度で少なくとも回折格子を埋めるのに必
要な膜厚の第1のInP層をエピタキシヤル成長さ
せ、次いで前記ウエハを上記成長温度より高い温
度に昇温してその温度でさらに第2のInP層をエ
ピタキシヤル成長させるようにした方法である。
That is, the present invention provides a vapor phase growth method for growing an InP layer on a GaInAsP layer having a diffraction grating, in which the wafer having the GaInAsP layer as the top layer is heated to the growth temperature. is held in a hydrogen atmosphere at a temperature of 400 to 500 [°C] at which the diffraction grating does not undergo thermal deformation and an InP layer is deposited on the diffraction grating, and then at least the diffraction grating is held at the same temperature as the wafer holding temperature. A first InP layer having a thickness necessary for filling the wafer is epitaxially grown, and then the wafer is heated to a temperature higher than the growth temperature, and a second InP layer is epitaxially grown at that temperature. This is the method.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、GaInAsP層上の回折格子が
InP層で埋まるまでは低い温度でInPを成長させ
ているので、この間に回折格子が変形することは
ない。そして、回折格子が一旦InPで埋込まれた
のちは通常の成長条件(上記成長温度より高い温
度、良質の結晶が得られ、成長速度が速い条件)
でInP層を成長させても、回折格子が変形するこ
とはない。このため、GaInAsP層上の回折格子
を熱変形させることなく、その上に制御性良く
InP層を気相成長させることが可能となる。従つ
て、DFBレーザの製造に適用した場合、発振閾
値低下等の素子特性の向上をはかり得る。
According to the present invention, the diffraction grating on the GaInAsP layer
Since InP is grown at a low temperature until it is filled with the InP layer, the diffraction grating does not deform during this time. Once the diffraction grating is embedded with InP, it is grown under normal growth conditions (a temperature higher than the above growth temperature, conditions that yield high quality crystals and a fast growth rate).
Even if the InP layer is grown in this way, the diffraction grating will not be deformed. Therefore, without thermally deforming the diffraction grating on the GaInAsP layer, it is possible to
It becomes possible to grow an InP layer in a vapor phase. Therefore, when applied to the manufacture of a DFB laser, it is possible to improve device characteristics such as lowering the oscillation threshold.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によつて説
明する。
Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第6図a〜cは本発明の一実施例方法に使用し
たハイドライド気相成長装置の概略構成を示すも
ので、第6図aは縦断面図、第6図bは横断面
図、第6図cは同図aの矢視A−A断面拡大図で
ある。図中30は石英ガラス等からなる反応管で
あり、この反応管30内の反応室は仕切り板31
により上下対称に仕切られている。反応管30の
右端部近傍には排気口34が設けられている。ま
た、35は気相成長に供される試料、36は試料
35を上室32及び下室33間で滑らかに移動す
るための操作棒、37,38は抵抗加熱炉であ
る。なお、加熱炉37により加熱される領域(原
料メタル等が収容される領域)を高温領域、加熱
炉38により加熱される領域(試料が収容される
領域)を低温領域とする。
6a to 6c show the schematic structure of a hydride vapor phase growth apparatus used in the method of one embodiment of the present invention, in which FIG. 6a is a longitudinal cross-sectional view, FIG. 6b is a cross-sectional view, and FIG. Figure c is an enlarged cross-sectional view taken along arrow AA in figure a. In the figure, 30 is a reaction tube made of quartz glass or the like, and a reaction chamber inside this reaction tube 30 is defined by a partition plate 31.
It is symmetrically partitioned vertically. An exhaust port 34 is provided near the right end of the reaction tube 30. Further, 35 is a sample to be subjected to vapor phase growth, 36 is an operating rod for smoothly moving the sample 35 between the upper chamber 32 and the lower chamber 33, and 37 and 38 are resistance heating furnaces. Note that the region heated by the heating furnace 37 (the region in which the raw metal etc. are accommodated) is defined as a high temperature region, and the region heated by the heating furnace 38 (in the region in which the sample is accommodated) is defined as a low temperature region.

上室32の左方(ガス導入側)には、族原料
であるガリウムメタル41及びインジウムメタル
42が収容されている。反応管30の左端部に
は、上記メタル41,42に塩化水素ガスを流す
ためのキヤリアガス導入パイプ43,44がそれ
ぞれ接続されている。また、上室32にはV族原
料となるホスフイン、アルシン及びN型ドーピン
グガスの硫化水素を流すための導入パイプ45及
びP型ドーピングガスのジエチル亜鉛を流すため
の導入パイプ46が接続されている。また、下室
33にも上記41,〜,46に対応してガリウム
メタル51、インジウムメタル52、塩化水素ガ
スの導入パイプ53,54、ホスフイン、アルシ
ン及びN型ドーピングガスの硫化水素を流す導入
パイプ55、P型ドーピングガスのジエチル亜鉛
を流す導入パイプ56が設けられている。
Gallium metal 41 and indium metal 42, which are group raw materials, are housed on the left side (gas introduction side) of the upper chamber 32. Carrier gas introduction pipes 43 and 44 for flowing hydrogen chloride gas into the metals 41 and 42 are connected to the left end of the reaction tube 30, respectively. Further, the upper chamber 32 is connected to an introduction pipe 45 for flowing phosphine and arsine, which are group V raw materials, and hydrogen sulfide as an N-type doping gas, and an introduction pipe 46 for flowing diethylzinc as a P-type doping gas. . Also, in the lower chamber 33, corresponding to the above-mentioned 41 to 46, gallium metal 51, indium metal 52, hydrogen chloride gas introduction pipes 53 and 54, and introduction pipes for flowing phosphine, arsine, and hydrogen sulfide as an N-type doping gas. 55, an introduction pipe 56 through which diethylzinc, a P-type doping gas, flows is provided.

この装置でInP層を成長させる場合は、インジ
ウムメタル42,52に水素で希釈した9〔%〕
の塩化水素を流し、V族原料導入パイプ45,5
5から水素で希釈した10〔%〕のホスフインガス
を流す。そして、インジウムメタル42,52と
反応した塩化インジウムと熱分解したホスフイン
との化学反応により、InP層を成長させる。
GaInAsP層を成長させる場合も、InP層を成長さ
せる場合と同様に、ガリウムメタル41,51及
びインジウムメタル42,52にそれぞれ独立に
塩化水素ガスを流し、V族原料導入パイプ45,
55から水素で希釈した10〔%〕のホスフインガ
スとアルシンガスとを流す。InP層の成長及び
GaInAsP層の成長共に、水素キヤリアガスを用
い、総流量1.5〔/分〕とした。
When growing an InP layer using this equipment, indium metal 42,52 diluted with hydrogen is used at 9%.
of hydrogen chloride is passed through the V group raw material introduction pipe 45,5.
5 to 10% phosphine gas diluted with hydrogen. Then, an InP layer is grown by a chemical reaction between the indium chloride that has reacted with the indium metals 42 and 52 and the thermally decomposed phosphine.
When growing a GaInAsP layer, as in the case of growing an InP layer, hydrogen chloride gas is supplied to the gallium metals 41 and 51 and the indium metals 42 and 52 independently.
10 [%] phosphine gas diluted with hydrogen and arsine gas are flowed from No.55. InP layer growth and
A hydrogen carrier gas was used for both growth of the GaInAsP layer, with a total flow rate of 1.5 [/min].

次に、上記装置を用いたDFBレーザの製造方
法について説明する。
Next, a method for manufacturing a DFB laser using the above apparatus will be explained.

第1図a〜cはDFBレーザ製造工程を示す断
面図である。基板11としては、スズドープの
InP基板で、100面から<011>方向に3゜オ
フしたものを用いた。キヤリア濃度は1〜3×
1018〔cm-3〕である。このInP基板11を前記反応
管30内の操作棒36の先端の基板ホルダーに装
置し、炉の温度を高温領域820〔℃〕、低温領域670
〔℃〕に昇温する。InP基板11からの燐の蒸発
を抑えるために、基板11の置かれている低温領
域の温度が350〔℃〕を越えると同時にホスフイン
ガスを15〔c.c./分〕を流す。そして、第1図aに
示す如く基板11の上に、N−InPクラツド層1
2(キヤリア濃度〜7×1017cm-3、膜厚3〜
5μm)、アンドープのGaInAsP活性層13(キヤ
リア濃度〜1×1016cm-3、組成1.3μm、膜厚
0.1μm)、P−InPバツフア層14(キヤリア濃度
〜7×1017cm-3、膜厚0.05μm)、P−GaInAsP光
ガイド層15(キヤリア濃度〜7×1017cm-3、組
成1.1〜1.2μm、膜厚0.2μm)及びP−InP保護層
16(キヤリア濃度7×1017cm-3、膜厚〜0.5μm)
を順次成長させる。ここで、最上層のP−InP保
護層16はGaInAsP光ガイド層15の表面の保
護のために成長させる。
FIGS. 1a to 1c are cross-sectional views showing the DFB laser manufacturing process. As the substrate 11, a tin-doped
An InP substrate with an angle of 3° in the <011> direction from the 100 plane was used. Carrier concentration is 1-3x
10 18 [cm -3 ]. This InP substrate 11 is mounted on a substrate holder at the tip of the operating rod 36 in the reaction tube 30, and the temperature of the furnace is set to 820 [°C] in the high temperature range and 670 °C in the low temperature range.
Raise the temperature to [℃]. In order to suppress evaporation of phosphorus from the InP substrate 11, 15 [cc/min] of phosphine gas is flowed as soon as the temperature of the low temperature region where the substrate 11 is placed exceeds 350 [°C]. Then, as shown in FIG. 1a, an N-InP cladding layer 1 is formed on the substrate 11.
2 (carrier concentration ~7×10 17 cm -3 , film thickness 3 ~
5 μm), undoped GaInAsP active layer 13 (carrier concentration ~1×10 16 cm -3 , composition 1.3 μm, film thickness
0.1 μm), P-InP buffer layer 14 (carrier concentration ~7×10 17 cm -3 , film thickness 0.05 μm), P-GaInAsP light guide layer 15 (carrier concentration ~7×10 17 cm -3 , composition 1.1 ~ 1.2 μm, film thickness 0.2 μm) and P-InP protective layer 16 (carrier concentration 7×10 17 cm -3 , film thickness ~0.5 μm)
grow sequentially. Here, the uppermost P-InP protective layer 16 is grown to protect the surface of the GaInAsP optical guide layer 15.

次いで、上記試料を反応管30から取出し、P
−InP保護層16を塩酸による湿式エツチングに
より除去し、GaInAsP光ガイド層15の清浄な
面を露出させる。その後、第1図bに示す如くこ
の光ガイド層15の清浄な表面上に周期2000
〔Å〕、深さ300〜600〔Å〕の回折格子15aを2
光束干渉露光法により形成する。
Next, the sample is taken out from the reaction tube 30 and P
- Remove the InP protective layer 16 by wet etching with hydrochloric acid to expose the clean surface of the GaInAsP light guide layer 15. Thereafter, as shown in FIG.
The diffraction grating 15a with a depth of 300 to 600 [Å] is
Formed by beam interference exposure method.

次いで、上記試料を再び前記反応管30内に入
れ、第1図cに示す如く回折格子15aを有する
GaInAsP光ガイド層15上にP−InP層17,1
8(キヤリア濃度2×1018cm-3、膜厚1.5μm)を
後述する方法により成長させ、さらにその上にP
−GaInAsPコンタクト層19(キヤリア濃度5
×1018cm-3、組成1.3μm、膜厚0.5μm)を成長さ
せる。これ以降は、N−InP基板11の下面及び
コンタクト層19の上面に電極を形成することに
よつて、DFBレーザが完成することになる。
Next, the sample is put into the reaction tube 30 again, and is provided with a diffraction grating 15a as shown in FIG.
P-InP layer 17,1 on GaInAsP light guide layer 15
8 (carrier concentration 2×10 18 cm -3 , film thickness 1.5 μm) was grown by the method described below, and then P was deposited on top of it.
-GaInAsP contact layer 19 (carrier concentration 5
×10 18 cm -3 , composition 1.3 μm, film thickness 0.5 μm). After this, electrodes are formed on the lower surface of the N-InP substrate 11 and the upper surface of the contact layer 19, thereby completing the DFB laser.

ここで、回折格子15a上へのInP結晶成長に
ついて、詳しく説明する。
Here, the InP crystal growth on the diffraction grating 15a will be explained in detail.

本発明者等は、GaInAsP層(組成1.15〜
1.18μm)上に設けた回折格子(周期2000Å、深
さ300〜600Å)を、燐圧も砒素圧もかけずに水素
雰囲気中で熱処理して、熱処理温度と回折格子の
変形度合いとの関係を調べた。水素キヤリアガス
の総流量は1.5〔/分〕に固定し、熱処理時間は
0〜100分の間に選んだ。熱処理前の回折格子の
深さ、熱処理後の回折格子の深さを、それぞれ
d0,d1とし、回折格子の熱変形の度合いΔを%単
位で Δ=(d1/d0)×100 と表わすと、熱処理時間を変えたとき、熱処理温
度T〔℃〕と回折格子の保存度合いΔ〔%〕との関
係は第3図に示すようになる。回折格子は回折格
子上に結晶成長させるのに要する最小時間の40分
の熱処理では、500〔℃〕以下で完全に保存され
る。回折格子の表面は550〔℃〕以下の熱処理温度
では殆ど変形しないが、550〔℃〕を越えると砒
素、燐の蒸発のために表面が荒れる。そして、熱
処理温度600〔℃〕では20分以上で表面の荒れが顕
著となり、熱処理温度650〔℃〕以上では10分で既
に表面が荒れることが判明した。組成の異なる
GaInAsP層(1.15〜1.3μm)上に形成した周期
2000〔Å〕、4000〔Å〕の回折格子について熱処理
時間を40分に固定して500〔℃〕、550〔℃〕で回折
格子の変形度合いを調べたのが第4図a,bであ
る。aが回折格子の周期が2000〔Å〕、bが周期
4000〔Å〕の場合を示している。この図から長波
長の組成を持つGaInAsPの方が回折格子が保存
し易いことが判る。また、回折格子の周期が大き
い方が保存し易いことが判る。
The present inventors have developed a GaInAsP layer (composition 1.15~
A diffraction grating (period: 2000 Å, depth: 300 to 600 Å) placed on a 1.18 µm surface was heat-treated in a hydrogen atmosphere without applying phosphorous or arsenic pressure, and the relationship between the heat treatment temperature and the degree of deformation of the diffraction grating was investigated. Examined. The total flow rate of hydrogen carrier gas was fixed at 1.5 [/min], and the heat treatment time was selected between 0 and 100 minutes. The depth of the diffraction grating before heat treatment and the depth of the diffraction grating after heat treatment are respectively
d 0 , d 1 and the degree of thermal deformation Δ of the diffraction grating is expressed in % as Δ = (d 1 /d 0 ) × 100. When the heat treatment time is changed, the heat treatment temperature T [℃] and the diffraction grating The relationship between the degree of preservation Δ[%] and the degree of preservation is shown in FIG. Diffraction gratings can be completely preserved at temperatures below 500 [°C] with heat treatment of 40 minutes, which is the minimum time required to grow crystals on the diffraction gratings. The surface of the diffraction grating is hardly deformed at heat treatment temperatures below 550 [°C], but when the temperature exceeds 550 [°C], the surface becomes rough due to the evaporation of arsenic and phosphorus. It was also found that at a heat treatment temperature of 600 [°C], the surface became noticeably rough in 20 minutes or more, and at a heat treatment temperature of 650 [°C] or higher, the surface became rough already in 10 minutes. different compositions
Period formed on GaInAsP layer (1.15-1.3μm)
Figure 4 a and b show the degree of deformation of the 2000 [Å] and 4000 [Å] diffraction gratings at 500 [℃] and 550 [℃] with the heat treatment time fixed at 40 minutes. . a is the period of the diffraction grating 2000 [Å], b is the period
The case of 4000 [Å] is shown. From this figure, it can be seen that the diffraction grating is easier to preserve in GaInAsP, which has a longer wavelength composition. Furthermore, it can be seen that the larger the period of the diffraction grating, the easier it is to store.

本実施例方法では、上記の実験結果を利用し
て、回折格子上のInP結晶成長を下記の如く行
う。
In the method of this embodiment, InP crystal growth on a diffraction grating is performed as follows using the above experimental results.

前記第1図bに示す試料を前記反応管30内に
入れ、水素キヤリアガスのみを流した状態で炉の
温度を高温領域720〔℃〕、低温領域500〔℃〕に昇
温し、炉の温度プロフアイルが定常になつた約30
分後に試料を保持している室(例えば上室32)
とは異なる成長室(例えば下室33)にInPの成
長ガスを流す。即ち、インジウムメタル52に塩
化水素(9%水素希釈)を17〔c.c./分〕、V族原料
導入パイプ55からホスフイン(10%水素希釈)
を15〔c.c./分〕、ジエチル亜鉛(200ppm水素希釈)
を10〔c.c./分〕導入する。塩化水素ガスがインジ
ウムメタル52と十分反応し、成長室(下室3
3)のガス組成が定常になる約10分後、試料を
InP成長ガスを流している成長室(下室33)に
移動すると同時に、それまで試料を水素雰囲気中
で待機していた室(上室32)にホスフインを75
〔c.c./分〕流し、多めにして速やかに室(上室3
2)中にホスフインが充満するようにする。この
状態で、第2図aに示す如くP−InP薄膜層(第
1のInP層)17を回折格子15a上に0.1〔μm〕
程度成長させる。これにより、GaInAsP層15
上の回折格子15aはInP薄膜層17で埋込まれ
ることになる。なお、上記InP薄膜層17の成長
時間は、上記のエピタキシヤル条件で約2分で十
分である。
The sample shown in FIG. 1b was placed in the reaction tube 30, and with only hydrogen carrier gas flowing, the temperature of the furnace was raised to a high temperature range of 720 [°C] and a low temperature range of 500 [°C]. About 30 years ago the profile became steady.
The chamber holding the sample after minutes (e.g. upper chamber 32)
An InP growth gas is flowed into a growth chamber different from the above (for example, the lower chamber 33). That is, hydrogen chloride (9% diluted with hydrogen) is added to the indium metal 52 at 17 [cc/min], and phosphine (10% diluted with hydrogen) is added to the V group raw material introduction pipe 55.
15 [cc/min], diethyl zinc (200ppm diluted with hydrogen)
Introduce 10 [cc/min] of The hydrogen chloride gas sufficiently reacts with the indium metal 52, and the growth chamber (lower chamber 3
After about 10 minutes when the gas composition in 3) becomes steady, remove the sample.
At the same time, phosphine was transferred to the growth chamber (lower chamber 33) where the InP growth gas was flowing, and phosphine was added to the chamber (upper chamber 32) where the sample had been waiting in a hydrogen atmosphere until then.
[cc/min] Sink, add a large amount and immediately drain the chamber (upper chamber 3).
2) Make sure that the inside is filled with phosphine. In this state, as shown in FIG.
grow to a certain extent. As a result, the GaInAsP layer 15
The upper diffraction grating 15a will be buried with an InP thin film layer 17. Note that about 2 minutes is sufficient for the growth time of the InP thin film layer 17 under the above epitaxial conditions.

次いで、上記試料を予めホスフインを流してお
いた室(上室32)に移動し、ホスフイン流量を
15〔c.c./分〕に絞り、炉を高温領域820〔℃〕低温
領域670〔℃〕に更に昇温を開始し、温度が安定す
る約20分後に、試料をホスフイン中で待機してい
た室(上室32)とは異なる成長室(下室33)
にInP成長ガスを流す。即ち、インジウムメタル
52に塩化水素(9%水素希釈)を25〔c.c./分〕、
V族原料導入パイプ55からホスフイン(10%水
素希釈)を23〔c.c./分〕、ジエチル亜鉛(200ppm
水素希釈)を30〔c.c./分〕流す。成長ガスの組成
が定常になる約10分後、試料をInP成長ガスを流
している成長室(下室33)に移動し、第2図b
に示す如くP−InP層(第2のInP層)18を成
長する。この成長条件では、InPの成長速度は
0.12〔μm/分〕である。
Next, the sample was moved to a chamber (upper chamber 32) in which phosphine had been flowed in advance, and the phosphine flow rate was adjusted.
The temperature was reduced to 15 [cc/min] and the temperature of the furnace was further increased from the high temperature range of 820 [℃] to the low temperature range of 670 [℃]. After about 20 minutes when the temperature stabilized, the sample was placed in the chamber where it had been waiting in the phosphine. Growth chamber (lower chamber 33) different from (upper chamber 32)
Flow InP growth gas through. That is, hydrogen chloride (9% hydrogen dilution) was added to indium metal 52 at 25 [cc/min].
23 [cc/min] of phosphine (10% diluted with hydrogen) and diethyl zinc (200 ppm) were introduced from the V group raw material introduction pipe 55.
Flow 30 [cc/min] of diluted hydrogen. After about 10 minutes when the composition of the growth gas becomes steady, the sample is moved to the growth chamber (lower chamber 33) where the InP growth gas is flowing.
A P-InP layer (second InP layer) 18 is grown as shown in FIG. Under this growth condition, the growth rate of InP is
It is 0.12 [μm/min].

ここで、P−InP層を2回に分けて成長させる
うちで、第1のInP層17は回折格子15aを完
全に覆い熱変形を防ぐ目的で成長させるのであ
り、その膜厚は回折格子15aが埋まる程度であ
れば十分である。但し、成長温度は回折格子15
aの熱変形の起こらない程度で行う必要がある
が、低温になるにつれてInP層の成長速度が小さ
くなり表面も荒れてくる。InP層の成長はインジ
ウムメタルと塩化水素との反応を利用しており、
この反応を起こさせるために、炉の高温領域は
700〔℃〕より下げることは困難であるから、InP
層の成長温度を下げることは炉の高温領域と低温
領域との温度差を大きくすることを意味する。
520〔℃〕以下で成長させたInP層の表面は荒れる
が、回折格子15a上に〜0.1〔μm〕のInP薄膜1
7を成長した後に、670〔℃〕でInP層18を1.5
〔μm〕成長させれば表面モホロジーは良好で結晶
性も問題ない。第1回目のInP層17の成長温度
は400〔℃〕以上で可能であり、成長ガス、即ちイ
ンジウムメタルに流す塩化水素、ホスフイン流量
を各々1000〔ppm〕としたときのInP層の成長速
度は成長温度に対して第5図のようになる。第2
回目に成長させるInP層18は結晶性の良い、且
つ膜厚制御性・再現性の良好な条件で行うことが
重要である。
Here, while the P-InP layer is grown in two steps, the first InP layer 17 is grown to completely cover the diffraction grating 15a and prevent thermal deformation, and its film thickness is It is sufficient that the area is filled. However, the growth temperature is the diffraction grating 15
It is necessary to carry out the process at a level that does not cause thermal deformation (a), but as the temperature decreases, the growth rate of the InP layer decreases and the surface becomes rough. The growth of the InP layer uses the reaction between indium metal and hydrogen chloride.
In order for this reaction to occur, the high temperature area of the furnace is
Since it is difficult to lower the temperature below 700 [℃], InP
Reducing the layer growth temperature means increasing the temperature difference between the hot and cold regions of the furnace.
Although the surface of the InP layer grown below 520 [°C] is rough, the ~0.1 [μm] InP thin film 1 is formed on the diffraction grating 15a.
After growing InP layer 18 at 670 [℃]
[μm] When grown, the surface morphology is good and there is no problem with crystallinity. The growth temperature of the first InP layer 17 can be 400 [°C] or higher, and the growth rate of the InP layer when the growth gas, that is, the flow rate of hydrogen chloride and phosphine flowing through the indium metal, is each 1000 [ppm]. Figure 5 shows the growth temperature. Second
It is important that the InP layer 18 grown for the second time has good crystallinity and is grown under conditions that provide good film thickness controllability and reproducibility.

このように、GaInAsP光ガイド層15上に設
けた回折格子15aを水素雰囲気中500〔℃〕で保
持しておき、成長温度を2段階に分けて成長する
方法をとると、回折格子界面をきれいに埋込むこ
とができる。これに対し、GaInAsP層にホスフ
イン、アルシンをそれぞれ5000〔ppm〕流してお
き、40分保持した後、500〜600〔℃〕でInP層を
成長させると、熱変形により回折格子が再現性良
く保存されないのみならず、回折格子界面付近に
InPクラツド層、GaInAsP光ガイド層のいずれも
異なる組成を有する領域が形成される。この領域
ができると、横方向の屈折率差が小さくなり、レ
ーザの発振閾値の低減化の支障になり、酸化膜ス
トライプ構造で閾値電流密度が6〔KA/cm2〕と
高く室温CW発振しない。しかし、本実施例方法
により成長したウエハからDFBレーザを試作し
たところ、同じ酸化膜ストライプ構造で室温CW
発振し、閾値電流密度も2〜3〔KA/cm2〕の良
好なものが得られた。
In this way, if the diffraction grating 15a provided on the GaInAsP optical guide layer 15 is maintained at 500 [°C] in a hydrogen atmosphere and the growth temperature is divided into two stages, the diffraction grating interface can be kept clean. Can be embedded. On the other hand, if 5000 [ppm] each of phosphine and arsine are poured into the GaInAsP layer, held for 40 minutes, and then the InP layer is grown at 500 to 600 [℃], the diffraction grating is preserved with good reproducibility due to thermal deformation. Not only is it not visible, but it also appears near the diffraction grating interface.
Regions having different compositions are formed in both the InP cladding layer and the GaInAsP light guide layer. When this region is formed, the difference in refractive index in the lateral direction becomes small, which becomes a hindrance to lowering the laser oscillation threshold, and the threshold current density in the oxide film stripe structure is as high as 6 [KA/cm 2 ], preventing CW oscillation at room temperature. . However, when we prototyped a DFB laser from a wafer grown using the method of this example, we found that it had the same oxide film stripe structure and was CW at room temperature.
It oscillated and a good threshold current density of 2 to 3 [KA/cm 2 ] was obtained.

かくして本実施例方法によれば、回折格子15
aを有するGaInAsP光ガイド層15上にInPクラ
ツド層17,18を良好に形成することができ、
且つ回折格子15aの熱変形を防止することがで
きる。このため、DFBレーザの発振閾値の低下
をはかり得、素子特性の著しい向上をはかり得
る。また、回折格子の再現性が良いことから、チ
ツプ間及びウエハ間の特性のバラツキを小さくで
きる等の利点もある。
Thus, according to the method of this embodiment, the diffraction grating 15
The InP cladding layers 17 and 18 can be well formed on the GaInAsP optical guide layer 15 having a
Moreover, thermal deformation of the diffraction grating 15a can be prevented. Therefore, the oscillation threshold of the DFB laser can be lowered, and the device characteristics can be significantly improved. Furthermore, since the reproducibility of the diffraction grating is good, there are also advantages such as being able to reduce variations in characteristics between chips and between wafers.

なお、本発明は上述した実施例方法に限定され
るものではない。例えば、前記第1のInP層を成
長させる際の成長温度は500〔℃〕に限るものでは
なく、400〜500〔℃〕の範囲で適宜選択すればよ
い。同様に、第2のInP層を成長させる際の成長
温度も適宜変更可能である。また、前記気相成長
装置の構造は前記第6図に何等限定されるもので
はなく、仕様に応じて適宜変更可能である。さら
に、GaInAsP層に設けた回折格子上のInP層のハ
イドライド気相成長に限らず、気相成長一般、例
えば有機金属熱分解気相成長法、クロライド気相
成長法等に適用することも可能である。その他、
本発明の要旨を逸脱しない範囲で、種々変形して
実施することができる。
Note that the present invention is not limited to the method of the embodiment described above. For example, the growth temperature for growing the first InP layer is not limited to 500 [°C], but may be appropriately selected within the range of 400 to 500 [°C]. Similarly, the growth temperature when growing the second InP layer can also be changed as appropriate. Furthermore, the structure of the vapor phase growth apparatus is not limited to that shown in FIG. 6, and can be modified as appropriate according to specifications. Furthermore, it can be applied not only to hydride vapor phase epitaxy of an InP layer on a diffraction grating provided on a GaInAsP layer, but also to general vapor phase epitaxy, such as metal-organic pyrolysis vapor phase epitaxy, chloride vapor phase epitaxy, etc. be. others,
Various modifications can be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図はそれぞれ本発明の一実施例
方法を説明するためのもので第1図a〜cは
DFBレーザの製造工程を示す断面図、第2図a,
bは第1及び第2のInP層の製造工程を示す断面
図、第3図は熱処理温度と回折格子の保存度合い
との関係を示す特性図、第4図a,bは
GaInAsPの組成と回折格子の保存度合いとの関
係を示す特性図、第5図はInP層の成長速度の温
度依存性を示す特性図、第6図a〜cは該実施例
方法に使用したハイドライド気相成長装置の概略
構成を示す断面図、第7図a,bは従来のDFB
レーザの構造を示す断面図である。 11…N−InP基板、12…N−InPクラツド
層、13…GaInAsP活性層、14…P−InPバツ
フア層、15…P−GaInAsP光ガイド層、15
a…回折格子、16…P−InP保護層、17…P
−InP薄膜層(第1のInP層)、18…P−InP層
(第2のInP層)、19…P−GaInAsPコンタクト
層、30…反応管、32,33…反応室、35…
試料、36…操作棒、37,38…抵抗加熱炉、
41,51…ガリウムメタル、42,52…イン
ジウムメタル、43,44,45,46,53,
54,55,56…ガス導入パイプ。
Figures 1 to 6 are for explaining one embodiment of the method of the present invention, and Figures 1 a to c are
Cross-sectional view showing the manufacturing process of DFB laser, Figure 2a,
b is a cross-sectional view showing the manufacturing process of the first and second InP layers, Fig. 3 is a characteristic diagram showing the relationship between heat treatment temperature and degree of preservation of the diffraction grating, and Figs. 4 a and b are
A characteristic diagram showing the relationship between the composition of GaInAsP and the degree of preservation of the diffraction grating. Figure 5 is a characteristic diagram showing the temperature dependence of the growth rate of the InP layer. Figures 6 a to c are the hydrides used in the method of this example. A cross-sectional view showing the schematic configuration of the vapor phase growth apparatus, Figures 7a and b are conventional DFBs.
FIG. 2 is a cross-sectional view showing the structure of a laser. DESCRIPTION OF SYMBOLS 11... N-InP substrate, 12... N-InP cladding layer, 13... GaInAsP active layer, 14... P-InP buffer layer, 15... P-GaInAsP light guide layer, 15
a...Diffraction grating, 16...P-InP protective layer, 17...P
-InP thin film layer (first InP layer), 18...P-InP layer (second InP layer), 19...P-GaInAsP contact layer, 30... reaction tube, 32, 33... reaction chamber, 35...
Sample, 36... operating rod, 37, 38... resistance heating furnace,
41,51...Gallium metal, 42,52...Indium metal, 43,44,45,46,53,
54, 55, 56...Gas introduction pipe.

Claims (1)

【特許請求の範囲】 1 回折格子を有するGaInAsP層上にInP層を気
相成長させる方法において、前記GaInAsP層を
最上層に有するウエハを成長温度に昇温するまで
の間、該ウエハを前記回折格子が熱変形を起こさ
ず且つ回折格子上にInP層が堆積し得る400〜500
〔℃〕の温度で水素雰囲気中に保持する工程と、
次いで上記ウエハ保持温度と同じ温度で少なくと
も回折格子を埋めるのに必要な膜厚の第1のInP
層をエピタキシヤル成長する工程と、次いで前記
ウエハを上記成長温度より高い温度に昇温してそ
の温度でさらに第2のInP層をエピタキシヤル成
長する工程とを含むことを特徴とする気相成長方
法。 2 前記第2のInP層の成長温度を、600〜700
〔℃〕に設定したことを特徴とする特許請求の範
囲第1項記載の気相成長方法。 3 前記回折格子は、DFBレーザの光ガイド層
に形成されたものであることを特徴とする特許請
求の範囲第1項記載の気相成長方法。 4 前記第1及び第2のInP層を成長する手段と
して、ハイドライド気相成長装置を用いたことを
特徴とする特許請求の範囲第1項記載の気相成長
方法。
[Claims] 1. In a method for vapor phase growing an InP layer on a GaInAsP layer having a diffraction grating, the wafer having the GaInAsP layer as the uppermost layer is subjected to the diffraction process until the temperature of the wafer is raised to the growth temperature. 400-500 so that the grating does not undergo thermal deformation and an InP layer can be deposited on the diffraction grating
holding in a hydrogen atmosphere at a temperature of [°C];
Next, the first InP film is deposited at the same temperature as the wafer holding temperature to a thickness necessary to at least fill the diffraction grating.
A vapor phase growth method comprising the steps of: epitaxially growing a layer; and then raising the temperature of the wafer to a temperature higher than the growth temperature and epitaxially growing a second InP layer at that temperature. Method. 2 The growth temperature of the second InP layer is set to 600 to 700.
The vapor phase growth method according to claim 1, characterized in that the temperature is set at [°C]. 3. The vapor phase growth method according to claim 1, wherein the diffraction grating is formed in a light guide layer of a DFB laser. 4. The vapor phase growth method according to claim 1, wherein a hydride vapor phase growth apparatus is used as a means for growing the first and second InP layers.
JP1874385A 1985-02-04 1985-02-04 Vapor growth method Granted JPS61179525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1874385A JPS61179525A (en) 1985-02-04 1985-02-04 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1874385A JPS61179525A (en) 1985-02-04 1985-02-04 Vapor growth method

Publications (2)

Publication Number Publication Date
JPS61179525A JPS61179525A (en) 1986-08-12
JPH058568B2 true JPH058568B2 (en) 1993-02-02

Family

ID=11980134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1874385A Granted JPS61179525A (en) 1985-02-04 1985-02-04 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS61179525A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3977920B2 (en) * 1998-05-13 2007-09-19 富士通株式会社 Manufacturing method of semiconductor device
JP6031783B2 (en) * 2012-03-12 2016-11-24 富士通株式会社 Manufacturing method of semiconductor device
JP2016219667A (en) * 2015-05-22 2016-12-22 住友電気工業株式会社 Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS61179525A (en) 1986-08-12

Similar Documents

Publication Publication Date Title
US6358316B1 (en) Method for producing semiconductor device, method for producing semiconductor laser device, and method for producing quantum wire structure
EP0377281B1 (en) Method of growing epitaxial layers
GB2144337A (en) Process for epitaxial growth
JPH021387B2 (en)
EP0188147A1 (en) Method of producing a strip-buried semiconductor laser
US4073676A (en) GaAs-GaAlAs semiconductor having a periodic corrugation at an interface
WO1997015103A1 (en) Buried-ridge laser device
JPH058568B2 (en)
US4629532A (en) Method of growing InGaAsP on InP substrate with corrugation
US4734387A (en) Growth of semiconductors on a shaped semiconductor substrate
EP0945939A2 (en) Semiconductor light-emitting device
US4849373A (en) Growth of semi-insulating indium phosphide by liquid phase epitaxy
JPS62237722A (en) Method of keeping surface structure on semiconductor surface
JPS5946113B2 (en) Semiconductor laser device and its manufacturing method
US4717443A (en) Mass transport of indium phosphide
JP3396323B2 (en) High resistance compound semiconductor layer, crystal growth method thereof, and semiconductor device using the high resistance compound semiconductor layer
JPH02283084A (en) Manufacture of semiconductor laser
JP2806951B2 (en) Method of manufacturing stripe type semiconductor laser
CA1313107C (en) Growth of semi-insulating indium phosphide by liquid phase epitaxy
JP2813711B2 (en) (III)-(V) Method for diffusing zinc into compound semiconductor crystal
JP2641540B2 (en) Method for forming epitaxial crystal layer and method for manufacturing stripe type semiconductor laser
CA1121492A (en) Channelled substrate double heterostructure lasers
KR940007591B1 (en) Manufacturing method of photo-electron device using compound semiconductor
KR100319759B1 (en) Fabrication method of index compensated dfb-ld using selective area growth
CA1293179C (en) Interrupted liquid phase epitaxy process

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term