JPS63123213A - Digital filter - Google Patents

Digital filter

Info

Publication number
JPS63123213A
JPS63123213A JP26908486A JP26908486A JPS63123213A JP S63123213 A JPS63123213 A JP S63123213A JP 26908486 A JP26908486 A JP 26908486A JP 26908486 A JP26908486 A JP 26908486A JP S63123213 A JPS63123213 A JP S63123213A
Authority
JP
Japan
Prior art keywords
signal
output
filter
circuit
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26908486A
Other languages
Japanese (ja)
Inventor
Shoichi Nishino
正一 西野
Seiichi Hashimoto
清一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26908486A priority Critical patent/JPS63123213A/en
Publication of JPS63123213A publication Critical patent/JPS63123213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To ensure S/N at the accuracy of an input signal even at an output signal side by extracting the prescribed frequency component of a sampled digital signal and adding a signal rounding off the digits less than the effective digits to the input signal. CONSTITUTION:Only a high frequency component is extracted by the accuracy of 1/2LSB (LSB indicates a minimum effective digit in a digital signal) to be a signal (b) via a filter 10 from a signal (a) including a quantized error. The round-off is applied to the signal (b) by a round-off circuit 14 in the state of absolute value with the accuracy of 1 LSB same as that of the signal (a) to form a signal (e). Since the amplitude of the signal (b) is less than 1LSB, a non-signal state is caused to the signal (e) by the round-off of the absolute value state. Thus, the output of an adder circuit 15, that is, an output signal obtained from an output terminal 16 is a state same as that the input signal (a) is outputted as it is.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、標本化されたディジタル信号において、所定
の周波数成分のみを強調するようなディジタルフィルタ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a digital filter that emphasizes only predetermined frequency components in a sampled digital signal.

従来の技術 第3図は従来のディジタルフィルタの一例を示すブロッ
ク図である。1は標本化周期でで標本化されたディジタ
ル信号を入力する入力端子、2は入力端子1より得られ
る信号を入力とし、高域成分のみを取り出すフィルタで
あって、フィルタ2人力を標本化周期Tだけ遅延させる
遅延回路3と、遅延回路3人力から遅延回路3出力を減
じる減算回路4と、減算回路4出力に定数〃を乗じてフ
ィルタ2出力とする乗算回路5で構成される。6はフィ
ルタ2出力を前記入力端子1より入力される入力信号に
加える加算回路、7は加算回路6出力の有効桁未満の値
を四捨五入の方法により丸め操作を行う丸め回路、8は
前記入力端子1より入力された入力信号のうち前記フィ
ルタ2によって取り出される高域成分のみを強調した信
号が出力される。以上のように構成された従来のディジ
タルフィルタにおいて以下その動作を説明する。
BACKGROUND OF THE INVENTION FIG. 3 is a block diagram showing an example of a conventional digital filter. 1 is an input terminal that inputs a digital signal sampled at the sampling period, and 2 is a filter that inputs the signal obtained from input terminal 1 and extracts only the high frequency component. It is composed of a delay circuit 3 that delays by T, a subtraction circuit 4 that subtracts the output of the delay circuit 3 from the output of the delay circuit 3, and a multiplication circuit 5 that multiplies the output of the subtraction circuit 4 by a constant 〃 to obtain the output of the filter 2. 6 is an adder circuit that adds the output of the filter 2 to the input signal input from the input terminal 1; 7 is a rounding circuit that rounds off the value less than the significant digits of the output of the adder circuit 6; 8 is the input terminal A signal in which only the high-frequency components extracted by the filter 2 of the input signal inputted from the filter 1 are emphasized is output. The operation of the conventional digital filter configured as described above will be explained below.

まず、離散時間システムを表わす2変換式を用いて第3
図従来のディジタルフィルタの伝達関数(H(Z)とす
る)を表わせば次式のようになる。
First, the third
The transfer function (denoted as H(Z)) of the conventional digital filter is expressed as follows.

H(z)=1+□      ・・・・・・(1)(1
)式右辺第2項は、第3図フィルタ2の特性を示してお
り高域通過形フィルタ(IFFと略す)として動作する
ため、(1)弐H(z)は高域強調形のディジタルフィ
ルタとなる。
H(z)=1+□ ・・・・・・(1)(1
) The second term on the right side of the equation shows the characteristics of filter 2 in Figure 3, which operates as a high-pass filter (abbreviated as IFF), so (1) 2H(z) is a high-frequency emphasizing digital filter. becomes.

次に第3図従来例について、ディジタルフィルタの有効
桁について説明する。入力端子1に人力される入力信号
からフィルタ2が取り出した周波数成分が加算回路6で
入力信号に加えられるので出力信号のダイナミックレン
ジは、入力信号のダイナミックレンジより犬きくなるが
、信号の最小有効桁については、入力信号と出力信号の
最小有効桁とが同じであることが一般である。一般のデ
ィジタルフィルタでは、その内部で行なわれる演算等で
信号の桁が有効桁未満にまで算出されることが多く、そ
の時には第3図丸め回路7を設けたように信号の有効桁
未満の値を丸めて最小有効桁を入力信号とそろえてから
出力信号としている。
Next, regarding the conventional example shown in FIG. 3, the effective digits of the digital filter will be explained. Since the frequency component extracted by the filter 2 from the input signal inputted to the input terminal 1 is added to the input signal by the adder circuit 6, the dynamic range of the output signal is wider than the dynamic range of the input signal, but it is within the minimum effective range of the signal. Regarding digits, it is common for the input signal and the output signal to have the same minimum significant digit. In general digital filters, the digits of the signal are often calculated to less than the effective digits due to calculations performed inside the filter, and in such cases, as shown in the rounding circuit 7 in Figure 3, the value less than the effective digits of the signal is calculated. is rounded to align the least significant digit with the input signal before outputting the signal.

本従来例の最小有効桁に対する動作の説明を第4図の動
作波形図を用いて説明する。同図の横軸は゛時刻、縦軸
が信号の値である。ここで、縦軸の単位は、入力信号が
表わしうる最小識別量にとり、L S B (Leat
 51gn1ficant Bit :ディジタル信号
における最小有効桁を表わす)と呼ぶ。第4図aは入力
端子1に入力される入力信号であって、時刻to%t2
に間に信号の直流値が1 LSB変化するような信号で
ある。この時、ディジタル信号ではム/D変換等によっ
て量子化する際に生起する量子化誤差や、1LsH未満
の微小レベルの雑音成分のため信号aに見るように直流
値に1LSBの誤差が生じる。信号すはフィルタ2出力
で、信号Cは加算回路θによって信号b2信号乙に加え
て得られる加算回路6出力である。これら信号す、cは
フィルタ2の演算構成によって、歿LSBの精度まで算
出される。信号dは、v2LSBの精度で表わされ比信
号Cに対して、入力信号aと同じ(1LsHの精度で表
わすように丸め回路7により四捨五入の方法によって信
号c=i丸めた信号である。ただし、前記加算回路6出
力のうち11.88未満を表わす値は、加算回路θの一
方の入力であるフィルタ2出力にしか含まれていないの
で、丸め回路7を第3図のように加算回路6の後段で別
に設ける必要はなく、フィルタ2出力の112LSBを
表わすピットの値を丸めのための桁上げとして加算回路
6で加えることによって容易に丸め操作は実行できる。
The operation for the least significant digit in this conventional example will be explained using the operation waveform diagram in FIG. In the figure, the horizontal axis is time, and the vertical axis is signal value. Here, the unit of the vertical axis is LSB (Leat
51gn1ficant Bit: represents the least significant digit in a digital signal). FIG. 4a shows the input signal input to the input terminal 1, and the time to%t2
This is a signal in which the DC value of the signal changes by 1 LSB between. At this time, in the digital signal, an error of 1 LSB occurs in the DC value, as seen in signal a, due to quantization errors that occur during quantization by MU/D conversion, etc., and noise components at a minute level less than 1 LsH. The signal S is the output of the filter 2, and the signal C is the output of the adder circuit 6 obtained by adding the signal b2 to the signal B by the adder circuit θ. These signals (s) and (c) are calculated to an accuracy of one LSB by the calculation configuration of the filter 2. The signal d is expressed with an accuracy of v2LSB, and is the same as the input signal a with respect to the ratio signal C (signal c=i rounded by the rounding method by the rounding circuit 7 so that it is expressed with an accuracy of 1LsH. However, , since the value representing less than 11.88 among the outputs of the adder circuit 6 is included only in the output of the filter 2, which is one input of the adder circuit θ, the rounding circuit 7 is connected to the adder circuit 6 as shown in FIG. There is no need to separately provide a subsequent stage, and the rounding operation can be easily performed by adding the value of the pit representing 112 LSB of the filter 2 output as a carry for rounding in the adder circuit 6.

発明が解決しようとする問題点 しかしながら上記のような構成では、1LSBの信号変
化をも周波数成分として強調するので、平坦な信号の状
態においてディジタル信号の量子化誤差とされる1LS
B以下の雑音成分をI LSB以上の成分に強調してし
まい信号のS/Nを悪くするという問題点を有していた
。第4回動作波形図を用いて説明する。信号aに示すよ
うな時刻t。
Problems to be Solved by the Invention However, in the above configuration, since the signal change of 1LSB is also emphasized as a frequency component, 1LSB, which is considered to be a quantization error of the digital signal, is generated in a flat signal state.
This has the problem that the noise components below ILSB are emphasized to the components above ILSB, which deteriorates the signal-to-noise ratio of the signal. This will be explained using the fourth operation waveform diagram. Time t as shown in signal a.

〜t2 の信号変化は、信号の量子化雑音がILSB未
満であっても十分に起こりうる状態である。その量子化
雑音を含んだ信号&を第3図従来例に示すディジタルフ
ィルタによって高域強調した場合に、信号dに見るよう
に時刻to−12の信号変化が2LSBにまで強調され
、平坦な信号状態におけるS / N i悪くして、入
力信号aの精度におけるS/Nを出力信号(信号d)で
は確保できない状態にしている。
The signal change at ~t2 can easily occur even if the quantization noise of the signal is less than ILSB. When the high frequency band of the signal & containing the quantization noise is emphasized by the digital filter shown in the conventional example in Fig. 3, the signal change at time to-12 is emphasized to 2LSB as seen in the signal d, resulting in a flat signal. The S/Ni in the state is deteriorated, and the S/N in the accuracy of the input signal a cannot be ensured by the output signal (signal d).

本発明はかかる点に鑑み、所定の周波数成分のみを強調
するディジタルフィルタについて、入力信号の精度にお
けるS/Nを出力信号側においても確保するようなディ
ジタルフィルタを提供することを目的とする。
In view of this, an object of the present invention is to provide a digital filter that emphasizes only predetermined frequency components, and which ensures the S/N ratio of the input signal accuracy on the output signal side as well.

問題点を解決する次めの手段 本発明は、入力信号の所定の周波数成分を取り出すフィ
ルタと、そのフィルタ出力の有効桁未満の値を絶対値状
態で切り捨てる丸め手段と、その丸め手段出力を前記入
力信号に加える加算回路を備えたディジタルフィルタで
ある。
Next Means for Solving the Problems The present invention provides a filter for extracting a predetermined frequency component of an input signal, a rounding means for rounding off the value of less than the significant digits of the output of the filter in an absolute value state, and an output of the rounding means as described above. This is a digital filter equipped with an adder circuit that adds to the input signal.

作用 本発明は前記した構成により、フィルタ出力が入力信号
に加えられる前に、出力信号の有効桁と同じ有効桁に絶
対値状態での切り捨て丸めの操作をほどこし、入力信号
の精度における1LSB未満の微小レベルの雑音による
量子化誤差を強調しないで所定の周波数成分のみを強調
する。
Effect of the Invention With the above-described configuration, the present invention performs a rounding operation in the absolute value state on the same significant digits as the significant digits of the output signal before the filter output is added to the input signal, thereby reducing the accuracy of the input signal by less than 1 LSB. To emphasize only predetermined frequency components without emphasizing quantization errors due to minute level noise.

実施例 第1図は本発明の一実施例におけるディジタルフィルタ
のブロック図を示すものである。同図において、9は標
本化周期Tで標本化されたディジタル信号を入力する入
力端子、1oは入力端子9より得られる信号を入力とし
高域成分のみを取り出すフィルタであって、フィルタ1
0人力を標本化周期Tだけ遅延させる遅延回路11と、
遅延回路11人力から遅延回路11出力を減じる減算回
路12と、減算回路12出力に定数差を乗じてフィルタ
1o出力とする乗算回路13とで構成されている。14
はフィルタ1o出力を前記入力端子9に入力される入力
信号の有効桁に合わせた有効桁未満の値を絶対値状態で
切り捨てる方法によって丸める丸め回路、16は前記入
力端子9に入力される入力信号に前記丸め回路14出力
を加える加算回路、16は本実施例のディジタルフィル
タの出力端子である。本実施例の伝達関数は、前述の従
来の技術で示した第3図従来例の伝達関数と同じで、前
述(1)式のH(z)で表わされ、フィルタ10につい
ても前述従来例のフィルタ2と同じで、前述(1)式右
辺第2項で表わされるようなHPFである。よって、第
1図本実施の特性は、第3図従来例と同じ高域強調形の
特性である。
Embodiment FIG. 1 shows a block diagram of a digital filter in an embodiment of the present invention. In the same figure, 9 is an input terminal for inputting a digital signal sampled at sampling period T, and 1o is a filter for inputting the signal obtained from input terminal 9 and extracting only high-frequency components.
a delay circuit 11 that delays the zero human power by a sampling period T;
It is comprised of a subtraction circuit 12 that subtracts the output of the delay circuit 11 from the output of the delay circuit 11, and a multiplication circuit 13 that multiplies the output of the subtraction circuit 12 by a constant difference to obtain the output of the filter 1o. 14
16 is a rounding circuit that rounds the output of the filter 1o by a method that matches the significant digits of the input signal input to the input terminal 9 and rounds off values less than the significant digits in an absolute value state; 16 is the input signal input to the input terminal 9; An adder circuit 16 adds the output of the rounding circuit 14 to , and 16 is an output terminal of the digital filter of this embodiment. The transfer function of this embodiment is the same as the transfer function of the conventional example shown in FIG. This is the same as Filter 2, and is an HPF as expressed by the second term on the right side of equation (1) above. Therefore, the characteristics of the present embodiment shown in FIG. 1 are the same high frequency emphasized characteristics as those of the conventional example shown in FIG.

次に第2回動作波形図を用いて本実施例の動作を説明す
る。第2図信号aは、前記第4図信号&と全く同じで時
刻to−tzの間に直流値が1L8B変化する間に量子
化誤差を含んだ信号であって第1図入力端子1に入力さ
れる。信号すはフィルタ10出力であって、前記第4図
信号すと全く同じで信号乙のうち高域成分のみがXAL
SB精度で抽出される。この信号すを第1図丸め回路1
4によって、入力信号&と同じ1LSB精度に絶対値状
態で切り捨て操作が施されて信号6となる。
Next, the operation of this embodiment will be explained using a second operation waveform diagram. The signal a in FIG. 2 is exactly the same as the signal & in FIG. be done. The signal A is the output of the filter 10, and is exactly the same as the signal A in Figure 4 above, with only the high frequency component of the signal A being XAL.
Extracted with SB accuracy. This signal is shown in Figure 1. Rounding circuit 1
4, a truncation operation is performed in the absolute value state to the same 1 LSB precision as the input signal &, resulting in signal 6.

信号eは、丸め回路14人力の信号すの振幅が1LSB
未満であるため絶対値状態の切り捨て操作により無信号
状態となる。そのため、加算回路15出力つまり出力端
子16より得られる出力信号は第2図信号fのようにな
って、入力信号aiそのまま出力した状態である。
The amplitude of the signal e is 1 LSB, which is the signal of the rounding circuit 14.
Since it is less than 1, the absolute value state is truncated and becomes a no-signal state. Therefore, the output of the adder circuit 15, that is, the output signal obtained from the output terminal 16 is as shown in the signal f in FIG. 2, which is the state in which the input signal ai is output as is.

以上のように本実施例によれば、出力信号の有効桁を入
力信号の有効桁と同じくするために、フィルタ10出力
で生起する有効桁未満の値を加算回路16によって入力
信号と加える前に絶対値状態で切り捨てるような丸め操
作を行うことにより、(1)式H(z)で示すような高
域成分のみを強調するような本実施例のディジタルフィ
ルタについても、入力信号に含まれている量子化誤差を
強調することがなく入力信号における精度でのS/Ni
出力信号側においても確保できる。
As described above, according to this embodiment, in order to make the significant digits of the output signal the same as the significant digits of the input signal, the value less than the significant digits generated at the output of the filter 10 is added to the input signal by the adding circuit 16. The digital filter of this embodiment, which emphasizes only the high-frequency components as shown in equation (1) H(z) by rounding off in the absolute value state, also reduces the amount of information contained in the input signal. The accuracy of the S/Ni in the input signal without emphasizing the quantization error
This can also be ensured on the output signal side.

なお、第1図実施例において丸め回路14を絶対値状態
で切り捨てる丸め操作としてフィルタ10の後段に設け
たが丸め回路14の動作が丸め操作にともなう桁上げ条
件の検出部だけで構成させて、実際の桁上げ操作は丸め
回路14の後段の加算回路16で行なうことができる。
In the embodiment of FIG. 1, the rounding circuit 14 is provided at the subsequent stage of the filter 10 for the rounding operation of rounding off in the absolute value state, but the operation of the rounding circuit 14 is configured only by the detection section of the carry condition accompanying the rounding operation. The actual carry operation can be performed in the adder circuit 16 following the rounding circuit 14.

第1図実施例で説明すると、フィルタ1oによって生起
される有効桁未満の値は1ビツトで表わされる。今、こ
の1ビツトの値をXとする。またフィルタ1o出力の正
負の符号(S(!:′−jる)は、フィルタ1o出力が
2の補数表現されているとして正ならば5=O1負なら
ばS=1となる。よって、絶対値状態での切り捨て操作
を行なう次めに、有効桁未満の値から最小有効桁への桁
上げ(Cとする)は次式の論理演算によって得られる。
In the embodiment of FIG. 1, the values produced by the filter 1o that are less than the significant digits are represented by one bit. Now, let the value of this 1 bit be X. Also, the positive/negative sign (S(!:'-jru) of the output of the filter 1o is expressed as 2's complement, and if it is positive, then 5=O1. If it is negative, S=1. Therefore, the absolute Next, after performing the truncation operation in the value state, the carry (denoted as C) from the value less than the significant digit to the least significant digit is obtained by the logical operation of the following equation.

C= S 、 x            −0−0−
(2)このCを加算回路16へ桁上げとして導くことに
よって、フィルタ1o出力の絶対値状態での切り捨て操
作を完了できる。ま之、フィルタ1oの特性が他の特性
でその出力の有効桁未満の値が複数ビット(正の整数n
i使ってnビットとする)で表わされる時には、有効桁
未満の値を表わす各ビットをx1〜Xiとし、符号ビッ
ト’6sとして、桁上げCは論理演算によって次式で得
ることができる。
C=S, x-0-0-
(2) By leading this C to the adder circuit 16 as a carry, the truncation operation can be completed in the absolute value state of the output of the filter 1o. However, the characteristics of the filter 1o are other characteristics, and the value less than the significant digit of the output is multiple bits (positive integer n
When expressed as n bits using i), each bit representing a value less than the significant digit is x1 to Xi, and the sign bit '6s is used, and the carry C can be obtained by logical operation using the following equation.

C=f;、(x1+x2+−−−−−−+xl)   
−・−A3))以上から、丸め回路14は丸め操作にと
もなう桁上げc4検出し、そのCi後段の加算回路15
へ導くような簡単な構成で実現できる。
C=f;, (x1+x2+−−−−−−+xl)
-・-A3)) From the above, the rounding circuit 14 detects the carry c4 associated with the rounding operation, and the adder circuit 15 at the subsequent stage of Ci
This can be achieved with a simple configuration that leads to

発明の効果 以上説明したように、本実施例によれば、信号をディジ
タル化する際に生起する量子化誤差のような1LSBの
雑音成分を含んだ入力信号に対して、所定の周波数成分
のみを強調しても、前記1LSBの雑音成分に対して強
調動作を行なわず、入力信号と同じ有効桁をもつ出力信
号の平坦な信号状態におけるS/Ni確保でき、その実
用的効果は大きい。特に、VTRの輝度信号処理に対し
ては、記録時のエンファシス回路や、再生時のテープ、
ヘッド系でFM信号の上側波が失われることによる再生
輝度信号の高域成分の低下を補う補正回路等に用いれば
、出力信号の有効桁数を微小レベル方向に伸張する必要
なくしてS / Nを確保できるので、回路規模の点に
おいても非常に効果の大きいものである。
Effects of the Invention As explained above, according to the present embodiment, only a predetermined frequency component is detected for an input signal containing a 1 LSB noise component such as a quantization error that occurs when a signal is digitized. Even if it is emphasized, the S/Ni in a flat signal state of the output signal having the same significant digits as the input signal can be ensured without performing an emphasis operation on the 1LSB noise component, which has a great practical effect. In particular, for VTR brightness signal processing, the emphasis circuit during recording, the tape during playback,
If used in a correction circuit that compensates for the drop in the high-frequency component of the reproduced luminance signal due to the loss of the upper side wave of the FM signal in the head system, the S/N can be improved without the need to expand the effective number of digits of the output signal toward the minute level. This is very effective in terms of circuit scale as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における1実施例のディジタルフィルタ
のブロック図、第2図は同実施例の動作波形図、第3図
は従来のディジタルフィルタのブロック図、第4図は第
3図従来例の動作波形図である。 1o・・・・・・フィルタ、14・・・・・・丸め回路
、15・・・・・・加算回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第4図
Fig. 1 is a block diagram of a digital filter according to an embodiment of the present invention, Fig. 2 is an operation waveform diagram of the same embodiment, Fig. 3 is a block diagram of a conventional digital filter, and Fig. 4 is a conventional example shown in Fig. 3. FIG. 1o...Filter, 14...Rounding circuit, 15...Addition circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 標本化されたディジタル信号を入力信号とし、その入力
信号の所定の周波数成分を取り出すフィルタと、そのフ
ィルタ出力の有効桁未満の値を絶対値状態で切り捨てる
丸め手段と、その丸め手段で丸められた信号を前記入力
信号に加える加算回路とを備え、前記入力信号のうちの
前記フィルタで取り出される周波数成分のみを強調する
ことを特徴とするディジタルフィルタ。
A filter that takes a sampled digital signal as an input signal and extracts a predetermined frequency component of the input signal, a rounding means that rounds off the value of less than the significant digits of the filter output in an absolute value state, and a filter that is rounded by the rounding means. A digital filter comprising: an adder circuit for adding a signal to the input signal, and emphasizing only the frequency component extracted by the filter of the input signal.
JP26908486A 1986-11-12 1986-11-12 Digital filter Pending JPS63123213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26908486A JPS63123213A (en) 1986-11-12 1986-11-12 Digital filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26908486A JPS63123213A (en) 1986-11-12 1986-11-12 Digital filter

Publications (1)

Publication Number Publication Date
JPS63123213A true JPS63123213A (en) 1988-05-27

Family

ID=17467446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26908486A Pending JPS63123213A (en) 1986-11-12 1986-11-12 Digital filter

Country Status (1)

Country Link
JP (1) JPS63123213A (en)

Similar Documents

Publication Publication Date Title
JP3762011B2 (en) Apparatus for symmetrically shortening the least significant N bits of an M-bit digital signal
KR950015183B1 (en) Apparatus for estimating the square root of digital samples
JPS5838023A (en) Device including digital filter for subtracting first and second binary numbers by binary calculation
JPH0346415A (en) Digital/analog conversion circuit
JPS6380626A (en) Digital/analog converter
JPH0469455B2 (en)
JP2656024B2 (en) Modulation circuit
JPS5995784A (en) Digital television signal processing system with error correction
JPS63123213A (en) Digital filter
JPH09200797A (en) Device for separating digital composite video signal into components
JPS62122331A (en) Nonlinear compression device for digital signal
JPH0732347B2 (en) Circuit type digital filter
JP3611359B2 (en) EFM modulator
JPS63103509A (en) Digital filter
JP3416477B2 (en) Delta-sigma D / A converter
JPS63204810A (en) Cyclic digital filter
JPS61166230A (en) Video signal processing circuit
JPH066216A (en) Bit length extending device
JPH05276035A (en) D/a converter
JPS6354827A (en) Differential pcm signal generating circuit
JPS6363130B2 (en)
JPS6376618A (en) Da converter system
JPH0265412A (en) Digital/analog converter
JPH0669144B2 (en) Signal conversion circuit
JPH0314364B2 (en)