JPS63122262A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63122262A
JPS63122262A JP61268948A JP26894886A JPS63122262A JP S63122262 A JPS63122262 A JP S63122262A JP 61268948 A JP61268948 A JP 61268948A JP 26894886 A JP26894886 A JP 26894886A JP S63122262 A JPS63122262 A JP S63122262A
Authority
JP
Japan
Prior art keywords
mosfet
gate
titanium nitride
titanium
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61268948A
Other languages
Japanese (ja)
Inventor
Juri Kato
樹理 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61268948A priority Critical patent/JPS63122262A/en
Publication of JPS63122262A publication Critical patent/JPS63122262A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a highly reliable LSI by forming a titanium nitride layer between a titanium silicide and an SiO2 to prevent the gate breakdown strength of a second MOSFET from being deteriorated. CONSTITUTION:The source, drain and gate film 2 of an N-type first MOSFET are formed on an Si substrate 1, and first and second common gate electrodes are formed of polycrystalline sllicon 3, a titanium silicide 4 and a titanium nitride 5. The gate film 6 of a P-type second MOSFET and a polycrystalline silicon layer 7 made of source, drain and channel are formed to laminate an NMOSFET and a PMOSFET. Since the SiO2 6 of the P-type second MOSFET is formed on a thermally stable titanium nitride layer 5, an Si is not precipitated in a boundary between the nitride 5 and the SiO2 6, but a flat boundary is obtained. Thus, a laminated CMOSFET which suppresses the deterioration of the gate film breakdown strength of the second MOSFET can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、rasxの高信頼性を保証する半導体装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device that guarantees high reliability of RASX.

〔発明の概要〕[Summary of the invention]

本発明は、H型MO8F10TとP型MO13?11T
を積層した。いわゆるスタックドCMO13F]!!T
において、シリコン基板上には第1M0EilFFiT
のゲート瞑、多結晶シリコン・チタンシリサイド・チタ
ンナイトライドの3層構造を持つ第1゜2の共通なゲー
ト電極、及び、第1と異極の第2MO8?]IITのゲ
ート膜と多結晶シリコン層が蓄積して成る%P型M08
71!l’l’とMfiMO81F’BTが積層した構
造を特徴としている。
The present invention is based on H-type MO8F10T and P-type MO13?11T.
were laminated. So-called stacked CMO13F]! ! T
, a first M0EilFFiT is formed on the silicon substrate.
a common gate electrode of 1°2 with a three-layer structure of polycrystalline silicon, titanium silicide, and titanium nitride, and a 2nd MO8? with a different polarity from the first. ]%P-type M08 consisting of IIT gate film and polycrystalline silicon layer accumulated
71! It is characterized by a structure in which l'l' and MfiMO81F'BT are stacked.

(従来の技術〕 従来の積層CMO871!fTにおいて、ゲート電極は
多結晶シリコンから成る。しかしながら多結晶シリコン
では、その高抵抗ゆえに、信号の遅延が大きく高速−e
xには向いていない、このため抵抗の低いシリサイドと
多結晶が積層されたポリサイド構造がゲート電極として
採用されククある。
(Prior art) In the conventional multilayer CMO871!fT, the gate electrode is made of polycrystalline silicon.However, polycrystalline silicon has a large signal delay due to its high resistance, and is
For this reason, a polycide structure in which low-resistance silicide and polycrystal are laminated is adopted as the gate electrode.

第2図は、この従来のポリサイドゲート電極を持り積層
CMO8?lTを示す、従来の構造ではチタンシリサイ
ド4上に直接第2M0E+71!!!グー) II B
iOa 6が形成され暮。
Figure 2 shows this conventional multilayer CMO 8? with a polycide gate electrode. In the conventional structure, the second M0E+71! is directly on the titanium silicide 4. ! ! Goo) II B
iOa 6 was formed.

〔発明が解決しよりとする問題点〕[Problems that the invention is supposed to solve]

しかしながら、シリサイド上にsho!@形成する場合
、チタンシリサイドのチタンは酸化し、析出したシリコ
ン原子が、チタンシリサイド4と8j01G界面を凹凸
にする。との凹凸のため第2M08IFETのゲート耐
圧が劣化し、 MO81FIIITからなるTJS工の
信頼性を損ねるという欠点を有する。
However, sho on silicide! In the case of @ formation, titanium in the titanium silicide is oxidized, and the precipitated silicon atoms make the interface between the titanium silicide 4 and 8j01G uneven. This has the disadvantage that the gate breakdown voltage of the second M08IFET deteriorates due to the unevenness of the surface, impairing the reliability of the TJS made of MO81FIIIT.

本発明の目的はかかる従来の欠点を取り除き。The object of the present invention is to obviate such conventional drawbacks.

高信頼性が保障されるL13工を実現するための積層C
MOEIIPET’i提供することにある。
Laminated C to realize L13 construction that guarantees high reliability
MOEIIPET'i is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

従来の問題を解決するために本発明では、チタンシリサ
イドとago 、との間にチタンナイトライド層を形成
した。チタンナイトライドはシリサイドに比べ酸化され
に<〈、均一で平担なチタンナイトライドとBイ0冨の
界面を形成できる。従って本発明では第2M0871!
!Tのゲート耐圧が優れた高信頼の半導体装置を可能に
する。
In order to solve the conventional problems, in the present invention, a titanium nitride layer is formed between titanium silicide and ago. Titanium nitride is less susceptible to oxidation than silicide and can form a uniform and flat interface between titanium nitride and B0-rich. Therefore, in the present invention, the second M0871!
! To enable a highly reliable semiconductor device with excellent gate breakdown voltage of T.

〔実施列〕[Implementation row]

以下実施列を用いて説明する。 This will be explained below using implementation columns.

第1図は本発明による積層CM08IF1!fTの構造
断面図であフ、第2図は従来の積層C:M08FInT
の構造断面図である。
FIG. 1 shows the laminated CM08IF1 according to the present invention! Fig. 2 is a cross-sectional view of the structure of fT.
FIG.

本発明による積層CMOEiFFtTにおいては。In the stacked CMOEiFFtT according to the present invention.

第1図に示すごと<% BS基板1にはN型の第1M0
87ITのソースドレイン及びゲート膜2が形成され、
第1.2の共通ゲート電極は、多結晶シリコン3.−チ
タンシリサイド4.及びチタンナイトライド5から形成
され、P型の第2M08FETのゲート膜6及びソース
・ドレイン及びチャネルからなる多結晶シリコン層7が
形成されることによ51MM0a管Z丁と2MO8:F
ITが積層されている1本発明OwI造によれば、P型
の第2 M O8F RT OBiOt 6は、熱的に
安定なチタンナイトライド層5上に形成されるため、チ
タンナイトライド5とazo16の界面にはS(が析出
されることがなく、平担な界面を得ることができる。従
って第2M05FKTのゲート膜耐圧の劣化を抑制した
積層CMOE11FFiTを可能くする。
As shown in Fig. 1, the BS substrate 1 has an N-type first M0
87IT source/drain and gate films 2 are formed,
The 1.2nd common gate electrode is made of polycrystalline silicon 3. -Titanium silicide4. and titanium nitride 5, and a gate film 6 of a P-type second M08FET and a polycrystalline silicon layer 7 consisting of a source, drain, and channel are formed, thereby forming a 51MM0a tube Z and 2MO8:F.
According to the OwI structure of the present invention in which IT is laminated, the P-type second MO8F RT OBiOt 6 is formed on the thermally stable titanium nitride layer 5, so that the titanium nitride 5 and the azo16 S (S) is not precipitated at the interface, and a flat interface can be obtained. Therefore, a multilayer CMOE11FFiT in which deterioration of the gate film breakdown voltage of the second M05FKT is suppressed is possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明の積眉?MO日IETは、
第2M013PKTOゲート耐圧劣化を防ぎ、高信頼性
IJS工を提供する。
As explained above, is it the product of this invention? MO day IET is
2nd M013PKTO gate breakdown voltage deterioration is prevented and highly reliable IJS construction is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による1M08F’!!:’r、!:R
MO8IPETの積層構造断面図。 第2図は従来のMMO811CTと:E’MOEi?I
!fTの積層構造断面図。 1・・B4基板 20・ゲート熱酸化膜3、・・多結晶
シリコン 4・・チタンシリサイド 5・・チタンナイトライド 6・・SjO,(第2MasymTゲート艇)7・・多
結晶シリコン 以   上
Figure 1 shows 1M08F' according to the present invention! ! :'r,! :R
A cross-sectional view of the laminated structure of MO8IPET. Figure 2 shows the conventional MMO811CT: E'MOEi? I
! A sectional view of the laminated structure of fT. 1.B4 substrate 20.Gate thermal oxide film 3,...Polycrystalline silicon 4..Titanium silicide 5..Titanium nitride 6..SjO, (2nd MasymT gate boat) 7..Polycrystalline silicon or more

Claims (1)

【特許請求の範囲】[Claims]  N型MOSFETとP型MOSFETを積層したいわ
ゆるスタツクドCMOSFETにおいて、第1FETの
ゲート膜上には多結晶シリコン、チタンシリサイド、チ
タンナイトライドが積層され、該チタンナイトライド層
上には第2FETのゲート膜が形成され、該第2FET
のゲート膜上には多件晶シリコンが形成され、シリコン
基板上には第1のゲート膜、多結晶シリコン・チタンシ
リサイド・チタンナイトライドの3層構造を持つゲート
電極、第2のゲート膜及び多結晶シリコンが蓄積し、P
型MOSFETとN型MOSFETが積層した構造を持
つことを特徴とする半導体装置。
In a so-called stacked CMOSFET in which an N-type MOSFET and a P-type MOSFET are stacked, polycrystalline silicon, titanium silicide, and titanium nitride are stacked on the gate film of the first FET, and the gate film of the second FET is stacked on the titanium nitride layer. is formed, and the second FET
Polycrystalline silicon is formed on the gate film, and a first gate film, a gate electrode having a three-layer structure of polycrystalline silicon, titanium silicide, and titanium nitride, a second gate film, and a gate electrode are formed on the silicon substrate. Polycrystalline silicon accumulates and P
A semiconductor device characterized by having a structure in which a type MOSFET and an N type MOSFET are stacked.
JP61268948A 1986-11-12 1986-11-12 Semiconductor device Pending JPS63122262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61268948A JPS63122262A (en) 1986-11-12 1986-11-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61268948A JPS63122262A (en) 1986-11-12 1986-11-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63122262A true JPS63122262A (en) 1988-05-26

Family

ID=17465513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61268948A Pending JPS63122262A (en) 1986-11-12 1986-11-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63122262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980732A (en) * 1987-10-15 1990-12-25 Nec Corporation Semiconductor device having an improved thin film transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980732A (en) * 1987-10-15 1990-12-25 Nec Corporation Semiconductor device having an improved thin film transistor

Similar Documents

Publication Publication Date Title
JPH02294076A (en) Semiconductor integrated circuit device
JPS63102264A (en) Thin film semiconductor device
JPH0715009A (en) Vertical mos field-effect transistor
JPS63122262A (en) Semiconductor device
JPH0258874A (en) Semiconductor integrated circuit device
JPH01155654A (en) Complementary type integrated circuit
JPH0351313B2 (en)
JPH04162771A (en) Mos semiconductor device
JPS61139067A (en) Semiconductor device
JPS6286865A (en) Mos transistor
JP4921887B2 (en) Semiconductor device and manufacturing method thereof
JP2593641B2 (en) Insulated gate field effect semiconductor device
JPS61232676A (en) Semiconductor device
JPS59215766A (en) Metal oxide semiconductor integrated circuit device
JPH1012869A (en) Semiconductor device and its manufacture
JPH04370978A (en) Quantum-effect type field-effect transistor
JPH04170066A (en) Manufacture of semiconductor integrated circuit device
JPS61166171A (en) Semiconductor integrated circuit device
JPS58142579A (en) Mos transistor
JPH0319285A (en) Mos type semiconductor device
JPH03284878A (en) Thin film transistor
JPS592363A (en) Complementary insulated gate field effect device
WO1984004628A1 (en) Semiconductor device
JPH01251757A (en) Semiconductor device
JPH0330439A (en) Charge-transfer element and its manufacture