JPS63122175A - Mos field-effect transistor - Google Patents

Mos field-effect transistor

Info

Publication number
JPS63122175A
JPS63122175A JP26676286A JP26676286A JPS63122175A JP S63122175 A JPS63122175 A JP S63122175A JP 26676286 A JP26676286 A JP 26676286A JP 26676286 A JP26676286 A JP 26676286A JP S63122175 A JPS63122175 A JP S63122175A
Authority
JP
Japan
Prior art keywords
concentration
type
region
ldd
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26676286A
Other languages
Japanese (ja)
Inventor
Akira Uchiyama
章 内山
Toshiyuki Iwabuchi
岩渕 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP26676286A priority Critical patent/JPS63122175A/en
Publication of JPS63122175A publication Critical patent/JPS63122175A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lengthen the life of a device by optimizing the concentration of an impurity inside ah n-layer of an LDD-type MOSFET. CONSTITUTION:After a gate oxide film 12 has been deposited on a p-type Si substrate 11, a gate electrode 13 is formed in such a way that a polysilicon layer doped with, e.g., P of high concentration is deposited and patterned. Then, by an ion implantation process of a donor such as P, As or the like by making use of the gate electrode 13 as a mask, n<-> layers 14a, 14b are formed. If the highest concentration of an impurity inside the n<-> layers is set to 2.5X10<18>-5X10<18>cm<-3>, it is possible to obtain a long-lived LDD-type MOSFET where both the reduction of the concentration of an electric field at a channel and the resistance to depletion by an electron trapped inside the gate oxide film are optimized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はMOS電界効果トランジスタ(以下MOSFE
Tという)に関し1.特にホットキャリア耐性の大きい
LDD (Lightly Doped Drain 
)型MOSFETに関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a MOS field effect transistor (hereinafter referred to as MOSFE).
(referred to as T) 1. Especially LDD with high hot carrier resistance (Lightly Doped Drain)
) type MOSFET.

(従来の技術) 従来、この種の装置は文献、IEEE )ランザクシ嘗
ンズ、オン、エレエクトロン、デバイセズ(TRANS
ACTIO8ON ELECTORON DEVICE
S  ) VOL。
(Prior Art) Conventionally, this type of device has been disclosed in the literature, IEEE)
ACTIO8ON ELECTORON DEVICE
S) VOL.

ED−32,I62.1985年2月p、9.429−
433開示さ−れるものがある。一般に、MOS )ラ
ンジスタが微細化され、チャネルの電界が大きくなると
チャネルの電界によ)、ホットキャリアが発生し、それ
がゲート酸化膜に注入、トラップされMOS トランジ
スタの特性、特に、gm値(相互コンダクタンス)を劣
化させる。これを防ぐため、種々の試みがなされている
が、特に前記文献に開示されたLDD構造が広く検討さ
れている。第2図はその構造を説明するための概略断面
図であシ、以下図面を用いて説明する。
ED-32, I62. February 1985 p, 9.429-
There are 433 disclosures. In general, as MOS transistors are miniaturized and the channel electric field increases, hot carriers are generated, which are injected into the gate oxide film and trapped. conductance). Various attempts have been made to prevent this, and in particular, the LDD structure disclosed in the above-mentioned document has been widely studied. FIG. 2 is a schematic sectional view for explaining the structure, which will be explained below using the drawings.

第2図において、1がSt基板、2がゲート酸化膜、3
がf−1電極である、例えばn+ポリシリコン、4m、
4bがゲート3をマスクにしてAs(ヒ素)、PCリン
)を低濃度にイオン注入して形成したn″″層、5a、
5bがPSG (リンガラス)等のたい積装異方性エツ
チングによシ形成した側壁、6a、6bは、ダート電極
3と側壁5m 、5bをマスクにAs 、 p等を高濃
度にイオン注入し形成したソース領域及びドレイン領域
である。
In FIG. 2, 1 is the St substrate, 2 is the gate oxide film, and 3 is the St substrate.
is the f-1 electrode, for example, n+ polysilicon, 4m,
4b is an n'''' layer formed by ion-implanting As (arsenic), PC phosphorus) at a low concentration using the gate 3 as a mask, 5a,
Sidewall 5b is formed by stacking anisotropic etching of PSG (phosphor glass), etc., and 6a and 6b are formed by ion implantation of As, P, etc. at high concentration using the dirt electrode 3 and sidewall 5m, 5b as a mask. source and drain regions.

ここで、通常、ソース領域6aは電位Ov、ドレイン領
域6bは5v程度印加され、?−)電極3の電圧によシ
、チャネルをコントロールし、ソース領域6a、ドレイ
ン領域6b間に電流を流し動作するのである。n−層4
a 、4bがない構造においては、高濃度不純物層であ
るドレイン領域6b端において電界はピークとなシ、ホ
ットキャリア全発生する。このピーク電界を低減するた
めにn″″層4m 、4bが設けられておシ、n−m4
a*4bは、ソース領域6a゛、ドレイン領域6bより
も低濃度であシ同−導電型の不純物が導入されている。
Here, normally, a potential Ov is applied to the source region 6a, and about 5V is applied to the drain region 6b. -) The channel is controlled by the voltage of the electrode 3, and a current is passed between the source region 6a and the drain region 6b to operate. n-layer 4
In the structure without a and 4b, the electric field does not peak at the end of the drain region 6b, which is a heavily doped layer, and all hot carriers are generated. In order to reduce this peak electric field, n'''' layers 4m and 4b are provided.
In a*4b, impurities of the same conductivity type and at a lower concentration than the source region 6a' and the drain region 6b are introduced.

このn−層4m、4bの不純物濃度の違いは、チャネル
の電界に大きく影響を与える。
The difference in impurity concentration between the n-layers 4m and 4b greatly affects the electric field of the channel.

また一方、n−層4m、4b上部のダート酸化膜にトラ
ップされたエレクトロンによシn−層4m。
On the other hand, the electrons trapped in the dirt oxide film on the n-layer 4m and 4b are generated in the n-layer 4m.

4bが空乏化され抵抗が大きくなシgm値が劣化する度
合いもn″″層4m、4bの不純物濃度に大きく影響さ
れる。
The degree to which the sigm value, which has a large resistance due to depletion of 4b, deteriorates is also greatly influenced by the impurity concentration of the n'''' layers 4m and 4b.

前記文献では、これらを総合した結果、n14a、4b
の表面濃度がlXl0 〜2.5X10  cmが好ま
しいと述べている。なお、ここでn−層4m。
In the above literature, as a result of integrating these, n14a, 4b
It is stated that a surface concentration of 1X10 to 2.5X10 cm is preferable. In addition, the n-layer is 4m here.

4bの表面濃度はピーク濃度でもある。The surface concentration of 4b is also the peak concentration.

(発明が解決しようとする問題点) しかしながら、以上述べた方法は、ダート長が1.0μ
mの場合であシ、よシ小さな?−)長になった場合、n
一部の不純物濃度がlX1018〜2.5X1018m
−’では最適とは言えず、例えばダート長が0.8μm
程度になるとFETの劣化が激しく、通常動作は不可能
になるという問題点があった。
(Problem to be solved by the invention) However, in the method described above, the dart length is 1.0 μm.
In the case of m, is it small? −) long, then n
Some impurity concentration is 1X1018~2.5X1018m
−' is not optimal, for example, the dart length is 0.8 μm.
When the temperature reaches a certain level, the FET deteriorates so much that normal operation becomes impossible.

そこで本発明は、以上述べたLDD W MOSFET
のi層不純物濃度を最適化し、素子寿命の長い特性の優
れた装置を提供することを目的とする。
Therefore, the present invention is directed to the LDD W MOSFET described above.
The purpose of the present invention is to optimize the i-layer impurity concentration of the semiconductor device and provide a device with excellent characteristics and a long device life.

(問題点を解決するための手段) 本発明は前記問題点を解決するために、pWのシリコン
基板と、このシリコン基板の所定領域上に絶縁膜を介し
てダート金属が形成されたグー)電極と、このシリコン
基板中であってこのゲート電極の両側に相対して形成さ
れたP 、 As等のnfiの不純物を含むソース及び
ドレイン領域と、このドレイン領域のソース側に接して
形成されたこ°のドレイン領域よりも低濃度にP 、 
As等のn型の不純物を含む低濃度n型不純物領域とを
少なくとも備えてなるLDD型のMOSにおいて、前記
低濃度不純物領域は前記不純物濃度が2,5X10 c
m〜5X10”国−3となるように設けたものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention includes a pW silicon substrate and a goo electrode in which a dirt metal is formed on a predetermined region of the silicon substrate via an insulating film. In this silicon substrate, source and drain regions containing nfi impurities such as P and As are formed opposite to both sides of this gate electrode, and a region formed in contact with the source side of this drain region is formed. P at a lower concentration than the drain region of
In an LDD type MOS comprising at least a low concentration n-type impurity region containing an n-type impurity such as As, the low concentration impurity region has an impurity concentration of 2.5×10 c.
m~5×10” country-3.

(作用) 以上のように本発明によれば、MOSFETにおいて不
純物濃度が2.5X10 〜5X10  cm  の低
濃度不純物領域を設けているので、チャネルの電界強度
低減とゲート酸化膜にトラップされた電子にょる空乏化
に対する耐性を増すことができ、MOSFETの寿命を
向上させることができる。
(Function) As described above, according to the present invention, since a low concentration impurity region with an impurity concentration of 2.5X10 to 5X10 cm is provided in the MOSFET, the electric field strength of the channel is reduced and the electrons trapped in the gate oxide film are reduced. It is possible to increase the resistance to depletion due to depletion, and it is possible to improve the life of the MOSFET.

(実施例) 第1図(、)〜(d)は本発明の詳細な説明するための
LDD型MOSFETの工程断面図であシ、以下図面を
用いて説明する。
(Example) FIGS. 1(a) to 1(d) are process sectional views of an LDD type MOSFET for detailed explanation of the present invention, which will be explained below using the drawings.

まず第1図(a) K 示すように、p型St基板11
Ke−)酸化膜12を積層後、例えばPを高濃度にドー
プしたポリシリコンを積層及びノクターンニングするこ
とによシダート長カ0.8μmのゲート電極13f:形
成する。次に第1図(b) K示すようにr −−ト電
極13t″マスクとしてP 、 As等のドナーをイオ
ン注入することによシ、ピーク不純物濃度が3XIOc
m  のn″″層14a、14bを形成する。
First, as shown in FIG. 1(a) K, a p-type St substrate 11
After laminating the Ke-) oxide film 12, a gate electrode 13f having a cedar length of 0.8 μm is formed by laminating and nocturning polysilicon doped with a high concentration of P, for example. Next, as shown in FIG. 1(b), a peak impurity concentration of 3XIOc is achieved by ion-implanting donors such as P and As using the r--to electrode 13t'' mask.
m layers 14a and 14b are formed.

その後、第1図(c)に示すように、表面にPSG膜を
積層した後、RIE (反応性イオンエツチング)等の
異方性エツチング法にょシエッチングしてゲート電極の
側面にのみPSGの側壁15a、15bt−形成する。
After that, as shown in FIG. 1(c), after laminating a PSG film on the surface, etching is performed using an anisotropic etching method such as RIE (reactive ion etching) to form a side wall of PSG only on the side surface of the gate electrode. 15a, 15bt-form.

次に第1図(d)に示すように、ダート電極13及び側
壁15m、15bをマスクとしてP # As等のドナ
ーをイオン注入することによシピーク不純物濃度が約2
.5X10  のソース領域16a及びドレイン領域1
6bfj!:形成する。
Next, as shown in FIG. 1(d), a donor such as P#As is ion-implanted using the dart electrode 13 and the side walls 15m and 15b as a mask, so that the peak impurity concentration is reduced to approximately 2.
.. 5×10 source region 16a and drain region 1
6bfj! :Form.

これら一連の工程において、ホットキャリア耐性すなわ
ち、MOSFETの寿命に対して最も影響を与えるのは
、n″″層の不純物濃度である。第3図にn″″層のピ
ーク不純物濃度とMOSFETの寿命の関係の実験結果
を示す。ここで寿命とは、MOSFETにドレイン電圧
7. OV 、ダート電圧3.5 V t−印加し、加
速試験を行い、gm値が初期の10%劣化する時間とし
た。このMOSFETのゲート長は0.8μmであシ、
第3図から明らかな様にn−層ビーク:不純物濃度が、
3 X 10’ 8cm−3において、MOSFETの
寿命は最大になりていることがわかる。また、LDD構
造のMOSFETをドレイン電圧5.QV、fゲート電
圧0〜5vの通常用いられる条件でlO年間使用した場
合、gmが初期の値の10係未満の劣化におさえるには
、第3図に示した加速試験において、5 X 10 (
sea)の寿命を確保する必要があシ、第3図よpn−
層のピーク不純物濃度を2.5X10 〜5X10  
cm  とすればよいことがわかる。
In these series of steps, it is the impurity concentration of the n'' layer that has the most influence on hot carrier resistance, that is, the life of the MOSFET. FIG. 3 shows experimental results regarding the relationship between the peak impurity concentration of the n'''' layer and the life of the MOSFET. Here, the lifetime means that the drain voltage of the MOSFET is 7. OV and a dart voltage of 3.5 Vt- were applied, an accelerated test was conducted, and the time was taken as the time for the gm value to deteriorate by 10% of the initial value. The gate length of this MOSFET is 0.8μm,
As is clear from Figure 3, the n-layer peak: the impurity concentration is
It can be seen that the life of the MOSFET is maximum at 3 x 10' 8 cm-3. In addition, the drain voltage of the LDD structure MOSFET is 5. QV, f When used for 10 years under the normally used conditions of gate voltage 0 to 5 V, in order to suppress the deterioration of gm to less than 10 times the initial value, in the accelerated test shown in Fig. 3, 5 × 10 (
It is necessary to ensure the lifespan of sea), as shown in Figure 3.
The peak impurity concentration of the layer is 2.5X10 ~ 5X10
It turns out that cm should be used.

以上のように、n−層のピーク不純物濃度を2.5X1
018〜5 X 1018cm−3とすることによシ、
チャネルにおける電界集中の低減と、ケ°−ト酸化膜に
トラップされた電子による空乏化に対する耐性の両者が
、最適化された高寿命のLDD fi MOSFET?
、得ることができる。
As mentioned above, the peak impurity concentration of the n-layer is set to 2.5X1
By setting it as 018~5 x 1018 cm-3,
A long-life LDD fi MOSFET optimized for both reduction of electric field concentration in the channel and resistance to depletion due to electrons trapped in the gate oxide film?
,Obtainable.

尚、本発明の実施例では、e−)電極13の両側にn−
層14h及び14bf形成しているが、電界集中の起こ
るドレイン領域16b側のn−層14bのみを形成して
も同様の効果が期待できる。
In the embodiment of the present invention, e-) n-
Although the layers 14h and 14bf are formed, the same effect can be expected even if only the n- layer 14b on the drain region 16b side where electric field concentration occurs is formed.

(発明の効果) 以上のように本発明によれば、0.8μm程度のダート
長の短かいMOSFETにおいて、ピーク不純物濃度が
2.5X 10” 〜5 X 10” cm−3のnl
を設けているので、4メガピツトダイナミツクランダム
アクセスメモリ(4MDRAM以上の集積度を有するL
SIにも用いることができる、MOSFETの寿命の向
上が実現できるのである。
(Effects of the Invention) As described above, according to the present invention, in a MOSFET with a short dart length of about 0.8 μm, nl with a peak impurity concentration of 2.5×10” to 5×10” cm
4 megapit dynamic random access memory (L with a density of 4MDRAM or higher)
This makes it possible to improve the lifespan of MOSFETs, which can also be used for SI.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するためのLDD型MOS
FETの工程断面図、第2図は従来のLDD 131M
OSFETの断面図、第3図はn層のピーク不純物濃度
とMOSFETの寿命の関係を示す図である。 1.11・・・Si基板、2.12・・・ダート酸化膜
、3 、13−・・ダート電極、4a、4b、J4a。 14b・・・n−層、 5  m  、  5  b 
 、  1 5 m  、  1 5 b =側壁、6
 a 、 16 a−・−ソース領域、6b 、16b
・・・ドレイン領域。 特許出願人 沖電気工業株式会社 LDD型MO5FETn工TV?rm) (fk1*+
1)第1図 弔ちトのLDD!!!MO5FETの沙なjけ5U第2
図 第6図 手続補正書(白和 1、事件の表示 昭和61年 特 許  願第266762号2、発明の
名称 MOS電界効果トランジスタ 3、補正をする者 事件との関係       特 許 出 願 人任 所
(〒105)  東京都港区虎ノ門1丁目7番12号4
、代理人 住 所(〒105)  東京都港区虎ノ門1丁目7番1
2号\、  − 6、補正の内容 (1)  明細書M2頁第12行目にr p、P、42
9−433開示」とあるのを とあるのを 「ダート長0.8μm」と補正する。
Figure 1 shows an LDD type MOS for detailed explanation of the present invention.
FET process cross-sectional diagram, Figure 2 is a conventional LDD 131M
FIG. 3, a cross-sectional view of the OSFET, is a diagram showing the relationship between the peak impurity concentration of the n-layer and the life of the MOSFET. 1.11...Si substrate, 2.12...dirt oxide film, 3, 13-...dirt electrode, 4a, 4b, J4a. 14b...n-layer, 5 m, 5 b
, 15 m, 15 b = side wall, 6
a, 16a--source region, 6b, 16b
...Drain area. Patent applicant Oki Electric Industry Co., Ltd. LDD type MO5FETn Engineering TV? rm) (fk1*+
1) Figure 1: Condolences to LDD! ! ! MO5FET 5U 2nd
Figure 6 Procedural Amendment (White Wa 1, Indication of Case 1986 Patent Application No. 266762 2, Title of Invention MOS Field Effect Transistor 3, Person Making Amendment Relationship with Case Patent Application Person Place (〒105) 1-7-12-4 Toranomon, Minato-ku, Tokyo
, Agent address (105) 1-7-1 Toranomon, Minato-ku, Tokyo
No. 2\, - 6, Contents of amendment (1) Page 2, line 12 of specification M p, P, 42
9-433 disclosure" is corrected to read "dart length 0.8 μm."

Claims (1)

【特許請求の範囲】 1)p型のシリコン基板と、該シリコン基板の所定領域
上に絶縁膜を介してゲート金属が形成されたゲート電極
と、該シリコン基板中であって該ゲート電極の両側に相
対して形成されたn型の不純物を含むソース及びドレイ
ン領域と、該ドレイン領域のソース側に接して形成され
た該ドレイン領域よりも低濃度にn型の不純物を含む低
濃度n型不純物領域とを少なくとも備えてなるLDD(
LightlyDopedDrain)型のMOS電界
効果トランジスタにおいて、 前記低濃度不純物領域の前記不純物濃度が2.5×10
^1^8cm^−^3〜5×10^1^8cm^−^3
であることを特徴とするMOS電界効果トランジスタ。 2)前記n型の不純物がP(リン)及As(ヒ素)から
選ばれた1種以上の不純物であることを特徴とする特許
請求の範囲第1項記載のMOS電界効果トランジスタ。
[Claims] 1) A p-type silicon substrate, a gate electrode in which a gate metal is formed on a predetermined region of the silicon substrate via an insulating film, and both sides of the gate electrode in the silicon substrate. source and drain regions containing n-type impurities formed opposite to the drain region; and a low concentration n-type impurity containing n-type impurities at a lower concentration than the drain region formed in contact with the source side of the drain region. An LDD comprising at least a region (
LightlyDopedDrain) type MOS field effect transistor, wherein the impurity concentration of the low concentration impurity region is 2.5×10
^1^8cm^-^3~5x10^1^8cm^-^3
A MOS field effect transistor characterized by: 2) The MOS field effect transistor according to claim 1, wherein the n-type impurity is one or more impurities selected from P (phosphorus) and As (arsenic).
JP26676286A 1986-11-11 1986-11-11 Mos field-effect transistor Pending JPS63122175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26676286A JPS63122175A (en) 1986-11-11 1986-11-11 Mos field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26676286A JPS63122175A (en) 1986-11-11 1986-11-11 Mos field-effect transistor

Publications (1)

Publication Number Publication Date
JPS63122175A true JPS63122175A (en) 1988-05-26

Family

ID=17435354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26676286A Pending JPS63122175A (en) 1986-11-11 1986-11-11 Mos field-effect transistor

Country Status (1)

Country Link
JP (1) JPS63122175A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239194A (en) * 1990-03-02 1993-08-24 Kabushiki Kaisha Toshiba Semiconductor device having increased electrostatic breakdown voltage
US5586799A (en) * 1992-11-11 1996-12-24 Mazda Motor Corporation Upper body structure of a vehicle
KR100267414B1 (en) * 1996-01-30 2000-10-16 가네꼬 히사시 Mosfet with gradiently doped polysilicon gate electrode and method of producing same
JP2007076603A (en) * 2005-09-16 2007-03-29 Nissan Motor Co Ltd Vehicle body side structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239194A (en) * 1990-03-02 1993-08-24 Kabushiki Kaisha Toshiba Semiconductor device having increased electrostatic breakdown voltage
US5586799A (en) * 1992-11-11 1996-12-24 Mazda Motor Corporation Upper body structure of a vehicle
KR100267414B1 (en) * 1996-01-30 2000-10-16 가네꼬 히사시 Mosfet with gradiently doped polysilicon gate electrode and method of producing same
JP2007076603A (en) * 2005-09-16 2007-03-29 Nissan Motor Co Ltd Vehicle body side structure

Similar Documents

Publication Publication Date Title
US5438007A (en) Method of fabricating field effect transistor having polycrystalline silicon gate junction
US6261889B1 (en) Manufacturing method of semiconductor device
JPH01205470A (en) Semiconductor device and its manufacture
US6548363B1 (en) Method to reduce the gate induced drain leakage current in CMOS devices
JPH03268435A (en) Mos device and manufacture thereof
US4233616A (en) Semiconductor non-volatile memory
US4330850A (en) MNOS Memory cell
KR900008153B1 (en) Semiconductor device and its manufacturing method
US6410377B1 (en) Method for integrating CMOS sensor and high voltage device
US6476430B1 (en) Integrated circuit
JPS63122175A (en) Mos field-effect transistor
JP5090601B2 (en) MOS transistors for high density integrated circuits
US5696401A (en) Semiconductor device and method of fabricating the same
JPH0629524A (en) Manufacture of semiconductor device
JPH0234936A (en) Semiconductor device and its manufacture
JPH0656855B2 (en) Insulated gate type field effect transistor
JP3344078B2 (en) Insulated gate field effect transistor
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
JPH06177146A (en) Manufacture of mosfet
JPS62120082A (en) Semiconductor device and manufacture thereof
JPH0590588A (en) Semiconductor device and semiconductor memory device
US6060767A (en) Semiconductor device having fluorine bearing sidewall spacers and method of manufacture thereof
JPS6190395A (en) Semiconductor memory cell
JP3405664B2 (en) Semiconductor device and manufacturing method thereof
JPH07147399A (en) Semiconductor device