JPS63119019A - Magnetic disk medium - Google Patents

Magnetic disk medium

Info

Publication number
JPS63119019A
JPS63119019A JP24926487A JP24926487A JPS63119019A JP S63119019 A JPS63119019 A JP S63119019A JP 24926487 A JP24926487 A JP 24926487A JP 24926487 A JP24926487 A JP 24926487A JP S63119019 A JPS63119019 A JP S63119019A
Authority
JP
Japan
Prior art keywords
film
magnetic
lubricant
wear resistance
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24926487A
Other languages
Japanese (ja)
Other versions
JPH0311004B2 (en
Inventor
Takeo Hinobayashi
日野林 武夫
Akira Isori
五十里 昭
Hiroyasu Oda
小田 浩靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24926487A priority Critical patent/JPS63119019A/en
Publication of JPS63119019A publication Critical patent/JPS63119019A/en
Publication of JPH0311004B2 publication Critical patent/JPH0311004B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide a titled medium which is suitable for ultrahigh density recording and has high durability, wear resistance and reliability by forming a magnetic film on a substrate, forming a thin inorg. compd. film of 30-200Angstrom on the magnetic film and further forming a lubricating agent film on the surface thereof. CONSTITUTION:The thin inorg. compd. film of 30-200Angstrom is formed on the surface of the disk on which the magnetic film is formed and further, the lubricating agent film is formed on the surface thereof. SiO2 is formed at 30-200Angstrom on the magnetic film and the lubricating agent is coated thereon, by which the magnetic recording medium having no spacing loss and having good wear resistance is obtd. The value as small as coefft. of friction (muk)=0.15-0.19 is obtd. at >=30Angstrom film thickness of SiO2 at the time of lubrication. Lubricity is obtd. only by the SiO2 film and the coefft. of friction (muk) does not decrease to <=0.2 if the film thickness of SiO2 is in a 30-100Angstrom range but said coefft. can be decreased to as small as muk=0.15-0.19 by making combination use of the lubricating agent.

Description

【発明の詳細な説明】 本発明は、超高密度記録に適し、耐久性、耐摩耗性が高
く高信頼性の磁気ディスク媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic disk medium that is suitable for ultra-high density recording, has high durability, wear resistance, and high reliability.

一般に情報処理装置の外部記憶装置として使用される磁
気ディスク装置用の磁気記録媒体は、情報量の増加に伴
って増々記録密度の向上と高信頼性が要求されている。
Magnetic recording media for magnetic disk drives, which are generally used as external storage devices for information processing devices, are required to have increasingly higher recording density and higher reliability as the amount of information increases.

記録密度の向上に関しては、出猟ディスクの表面に付着
する磁性膜の高保磁力化、高磁束密度化等の磁気特性の
改善と、磁性膜自体の薄膜化、更には電磁変換特性を同
上させるための磁気ヘッドと磁気記録媒体の磁性膜の間
隔(以下スペーシングと称する。)を挾<シ、スペーシ
ング・口y、f小さくする必要があるため、磁性膜面は
表面あらさ、突起等をなくシ九平滑性の良い事が要求さ
れている。
In order to improve the recording density, improvements in magnetic properties such as higher coercive force and higher magnetic flux density of the magnetic film attached to the surface of the hunting disk, thinning of the magnetic film itself, and improvement of electromagnetic conversion characteristics are required. Because it is necessary to reduce the distance between the magnetic head and the magnetic film of the magnetic recording medium (hereinafter referred to as spacing), the magnetic film surface must be free of surface roughness, protrusions, etc. Good smoothness is required.

Cのような高記録密度化を指向した磁気ディスクとして
は、従来より一般的に使用されている磁性粉とバインダ
を含む、塗布型の磁性膜から、バインダを含まない連続
的な磁性膜(連続磁性媒体)が磁気蓄積エネルギーが高
く有利である事から鉄や鉄コバルト系合金を真空中、ア
ルゴンガスあるイllアルゴンガス中に酸素を混合した
雰囲気中で、スパッタ法や、蒸着法により非磁性基板上
に連続的に付着させたフェライト酸化物磁性膜(以下フ
ェライト酸化膜と称する。)、金属磁性膜が種々の方法
で提案されている。
Magnetic disks such as C that are oriented towards high recording densities range from conventionally commonly used coated magnetic films containing magnetic powder and binder to continuous magnetic films (continuous magnetic films containing no binder). Since magnetic media (magnetic media) have a high magnetic storage energy and are advantageous, iron or iron-cobalt alloys can be made non-magnetic by sputtering or vapor deposition in a vacuum or in an atmosphere of argon gas mixed with oxygen. Various methods have been proposed for ferrite oxide magnetic films (hereinafter referred to as ferrite oxide films) and metal magnetic films that are continuously deposited on a substrate.

また電着法によるg!L性膜の作成も従来より一般に行
なわれている。これらの方法で作成された磁気記録媒体
は高記録密度媒体とし優れた特性を有するものが得られ
ており、特にフェライト酸化物膜は材質的にも硬く、ま
光腐食性が良く磁気記録媒体としては非常に良好なもの
として評価されている。
Also, g! by electrodeposition method! The production of L-based films has also been conventionally performed. Magnetic recording media created by these methods are high recording density media with excellent properties. In particular, ferrite oxide films are hard materials and have good photocorrosion resistance, making them suitable as magnetic recording media. is rated as very good.

このように従来より磁性膜としての特性は非常に良好と
なっており、このようにして出来念磁気記録媒体は実際
の使用条件に耐うるように磁気ヘッドの摺動に対する充
分な耐久性、耐摩耗性を向上させるための磁性膜表面に
処理を施す事が重要なa題となっている。
As described above, the properties of the magnetic film have been very good for a long time, and in this way, magnetic recording media have sufficient durability and resistance to the sliding of the magnetic head so that they can withstand actual usage conditions. Treating the surface of a magnetic film to improve its abrasion resistance has become an important issue.

すなわち、磁気ディスク装置においては通常動作時にお
いては磁気記録体の磁性膜面上を磁気ヘッドが浮上し、
磁気ヘッドは直接磁性膜と接触することはないが記録密
度の向上に伴ってスペーシングを小さくするために低浮
上量化が必要となり、また最近はE気ディスク媒体の回
転開始時と、停止時に磁気ヘッドが磁気記録媒体と摺動
接触する形式、すなわちコンタクトスタートストップ(
以下C8S方式と称する。)方式が採用されるようにな
りているため充分な耐久性と耐摩耗性が要求されるよう
になっている。
In other words, in a magnetic disk device, during normal operation, the magnetic head flies above the magnetic film surface of the magnetic recording material.
The magnetic head does not come into direct contact with the magnetic film, but as recording density improves, a lower flying height is required to reduce the spacing. A type in which the head makes sliding contact with the magnetic recording medium, that is, a contact start-stop (
Hereinafter, this method will be referred to as the C8S method. ) method is now being adopted, so sufficient durability and abrasion resistance are required.

このような磁気記録媒体の耐久性、耐摩耗性を向上させ
る方法として従来よシ以下の方法が採用されて−る。
Conventionally, the following methods have been employed to improve the durability and wear resistance of such magnetic recording media.

1つの方法は、磁気記録媒体上に直接潤滑膜を形成して
磁気ヘッドと磁気記録媒体との摺動に対する摩擦全小さ
くする方法が行なわれている。
One method is to form a lubricant film directly on the magnetic recording medium to reduce the total friction caused by sliding between the magnetic head and the magnetic recording medium.

例えば磁気ディスク表面に潤滑剤としてKryTox人
D(デ島ボン社商標)の稀釈液を塗布する事により、記
録媒体表面が滑性となり、磁気ヘッドの摺動に対して、
摩耗を小さくシ、耐摩耗性を向上させる事が行なわれて
いる。
For example, by applying a diluted solution of KryTox Jin-D (trademark of Dejima Bon Co., Ltd.) as a lubricant to the surface of a magnetic disk, the surface of the recording medium becomes slippery, which makes it difficult for the magnetic head to slide.
Efforts are being made to reduce wear and improve wear resistance.

磁気記録媒体の表面、すなわち磁性膜面の平滑性が非常
に良好なため磁気ヘッドが記録媒体に吸着する現象が発
生してしまう。ここで吸着とは磁気ヘッドがディスク面
に付着する現象を意味する、この吸着は潤滑剤を介在物
とする一種の接着でありC8S方式においては摺動接触
時にステックスリップ(5tick−slip )を伴
なうタメ、ff1lIIjlにおいてヘッドクラッシュ
を誘発させ、磁気ヘッドの破損、a性表面にキズを付け
る等の原因となっている。
Since the surface of the magnetic recording medium, that is, the surface of the magnetic film, has very good smoothness, a phenomenon occurs in which the magnetic head is attracted to the recording medium. Adsorption here refers to the phenomenon in which the magnetic head adheres to the disk surface. This adsorption is a type of adhesion using lubricant as an intermediary, and in the C8S method, stick slip (5tick-slip) occurs during sliding contact. This causes a head crash in the FF1IIIJL, causing damage to the magnetic head and scratches on the abrasive surface.

このように磁気記録媒体表面に潤滑剤を塗布する事は摩
擦力を低下させるが、逆に吸着現象を生じさせるために
記録媒体表面の耐摩耗性を向上させる事にはそれほど大
きな効果を上げる事が出来なかった。
Applying a lubricant to the surface of a magnetic recording medium in this way reduces the frictional force, but conversely it causes an adsorption phenomenon, so it is not very effective in improving the wear resistance of the surface of the recording medium. I couldn't do it.

尚このヘッドスティックは潤滑剤を薄く磁気記録媒体上
に塗布する裏により軽減出来るが、逆に摩擦力の低下と
いう面から考えるとそれほどの効果が期待出来ず、ま念
この潤滑剤の膜厚のコントロールは、膜厚の可変範囲が
小さい九めに再現性。
This head stick can be alleviated by applying a thin layer of lubricant on the magnetic recording medium, but on the other hand, from the perspective of reducing frictional force, we cannot expect much of an effect. The control has a small variable range of film thickness and is extremely reproducible.

製造性に欠は量産工程においては不可能に近いものであ
る。
Lack of manufacturability is nearly impossible in the mass production process.

また磁気記録媒体表面の耐摩耗性を向上させるための他
の方法として、磁性膜上に保護膜を形成する方法が従来
より金F14al性膜で行なわれ多くの保護膜材が提案
されている。
As another method for improving the wear resistance of the surface of a magnetic recording medium, a method of forming a protective film on a magnetic film has been conventionally carried out using a gold F14al film, and many protective film materials have been proposed.

しか1−1一般に金am性膜の場合の保護膜は耐摩耗性
の他に耐食性を向上させる目的も兼ねており、300A
以下の保護膜では、保護膜にピンホールが生じる念めに
耐食性に対する効果が期待出来ない九め通常は400人
〜800Aの膜厚の保護膜使用している。
However, 1-1 In general, the protective film in the case of a gold-aminous film also has the purpose of improving corrosion resistance in addition to wear resistance.
In the following protective films, in order to prevent pinholes from forming in the protective film, a protective film having a thickness of 400 to 800 Å is usually used, since no effect on corrosion resistance can be expected.

オ九この保護膜の上に潤滑剤を塗布する富も行なわれて
いる。確かに保護膜の耐摩耗性は実用レベルにまで達す
るが上述したようにこのような膜厚の大きい保巧膜金使
用すると、スペーシングロスが間電とe13、本来の磁
性膜の性能を発揮する事が出来たかった。
It is also common practice to apply a lubricant on top of this protective film. It is true that the abrasion resistance of the protective film reaches a practical level, but as mentioned above, when using a protective film with such a large thickness, the spacing loss is caused by an electric current and e13, and the original performance of the magnetic film is exerted. I wanted to be able to do that.

ま之仮に保護膜を耐食性を考えずに薄くしたとしても保
護膜が400Å以下においては著るしく耐摩耗性が低下
してし捷う欠点があっt6従って本発明は上記欠点を解
消し之新規な怒気ディスク媒体を提供する事を目的とす
るものでこの目的は、磁性膜の形成され念ディスク表面
に、30〜200人の無機化合物薄膜を形成し、更にそ
の表面に潤滑剤膜を形成して構成した事を特徴とする磁
気記録媒体により達成する事が出来る。
However, even if the protective film is thinned without considering corrosion resistance, if the protective film is less than 400 Å, the abrasion resistance will be significantly reduced and it will break. The purpose is to form a thin film of 30 to 200 inorganic compounds on the surface of the disc where the magnetic film is formed, and further form a lubricant film on the surface. This can be achieved by a magnetic recording medium characterized by having a structure of:

以下実施例を基に本発明を説明する。The present invention will be explained below based on Examples.

第1図は、本発明に係る磁気ディスク媒体の特性を示す
もので、横軸に無機化合物薄膜+5iOt)の膜厚、縦
軸に摺動回数を示す。
FIG. 1 shows the characteristics of the magnetic disk medium according to the present invention, in which the horizontal axis shows the thickness of the inorganic compound thin film +5 iOt) and the vertical axis shows the number of times of sliding.

摺動回数は磁気記録媒体(同根状)表面上にアルミナか
ら成るヘッドスライダ(テーパフラットを]を配置し、
媒体を低速で回転させ(1![1速40〜8 ocIL
/S )る加速した摩耗試験で媒体表面にキズが生じる
迄のヘッド通過回数を示す。ヘッドの荷重は2097−
である。
The number of sliding movements is determined by placing an alumina head slider (tapered flat) on the surface of the magnetic recording medium (same root shape).
Rotate the medium at low speed (1![1st speed 40~8 ocIL
/S) indicates the number of head passes until scratches appear on the media surface in an accelerated abrasion test. The head load is 2097-
It is.

したがって摺動回数穴なるほど耐摩耗性が良いことを示
す。
Therefore, it is shown that the more the hole is slid, the better the wear resistance is.

第1図中実線で示し九ものはクライトツクス(Kry 
Tox) 143AD (デ為ボン社商標)の稀釈液′
t−磁性膜上に設けられたS iO鵞編上に潤滑剤とし
て塗布したもので、破線は無潤滑時を示す。
The nine items indicated by solid lines in Figure 1 are Krytchus (Krytx).
Tox) 143AD (trademark of Demebon Co., Ltd.) diluent'
This is a lubricant applied to the SiO weave provided on the t-magnetic film, and the broken line indicates the state without lubrication.

また各線幅は測定値のバラツキを示す。Furthermore, each line width indicates the variation in measured values.

図から明らかなように潤滑時、無111’lt時にかか
わらず磁性膜上に設けられた5iotalが厚ければ厚
いほど耐摩耗性は良く、StO,膜が薄くなるにつれて
耐摩耗性が低下する。また一般に潤滑時よりも無潤滑時
の方が耐摩耗性は劣る。
As is clear from the figure, the thicker the 5iotal provided on the magnetic film, the better the wear resistance, and the thinner the StO film, the lower the wear resistance, regardless of whether it is lubricated or not. In addition, wear resistance is generally lower when not lubricated than when lubricated.

ここで注目しなければならない事tx、sio、膜の膜
厚が300A付近の耐摩耗性である。S iO*膜厚が
300人付近の耐摩耗性は測定値に大きなバラツキが生
じる。
What we need to pay attention to here is tx, sio, and wear resistance when the film thickness is around 300A. When the SiO* film thickness is around 300, there are large variations in the measured values of wear resistance.

また大きな特徴は潤滑時においてバラツキが大きくなり
、ある測定Vckいては無潤滑時を下回る測定値も出る
事である。このような300に付近における大きなバラ
ツキはSingの薄膜化に伴ないSin、の膜強度がい
ちじるしく低下するとともに潤滑による吸着の影響が加
わったからと考えられる。
Another major feature is that during lubrication, the variation becomes large, and some measured values of Vck are lower than when no lubrication is performed. This large variation in the vicinity of 300 is thought to be due to the fact that as the Sing film becomes thinner, the strength of the Sin film decreases markedly and the adsorption effect due to lubrication is added.

現在実用レベルの耐摩耗性としては、この加速試験にお
いて摺動回数N−2000以上であることが必要である
。なお、この値はC332万回以上に耐えることを確認
している。この条件を安定に満足する点は、潤滑時にお
いてSiO富膜厚が400Å以上である。
For abrasion resistance at a current practical level, it is necessary that the number of sliding operations is N-2000 or more in this accelerated test. It has been confirmed that this value can withstand C3.32 million cycles or more. This condition is stably satisfied when the SiO rich film thickness is 400 Å or more during lubrication.

次に5iO1の膜厚が300λ付近の詳細な測定を行な
り念と0ろ第2図のような結果となりた。
Next, a detailed measurement was carried out when the film thickness of 5iO1 was around 300λ, and the results as shown in FIG. 2 were obtained.

ここで注目すべきこと框、Singの膜厚が300人で
第1図と同様に摺動回数Nが最低となり、300A以下
においては逆にバラツキが小さくなり耐摩耗性も向上し
、また300庫上においても、当然ながら耐摩耗性が同
上する点である。
What should be noted here is that when the film thickness of the frame and Sing is 300 people, the number of sliding times N is the lowest as shown in Figure 1, and when it is 300A or less, the variation becomes smaller and the wear resistance is improved. Naturally, the wear resistance is also the same as above.

これらの理由は以下によるものと考えられる。These reasons are considered to be as follows.

Singの膜厚が300Å以上の場合にはSin、の膜
強度が大きいため、例え吸着が発生してもキズつきにく
いと考えられる。
When the film thickness of Sing is 300 Å or more, the film strength of Sing is high, so it is considered that even if adsorption occurs, it is unlikely to be scratched.

またSin宜の膜厚が300A以下の場合、S iQ1
膜厚が薄く、膜強度が小さいにもかかわらず耐摩耗性が
安定し、向上しているのは吸着の発生が抑えられる念め
と考えられる。
In addition, if the film thickness of S iQ1 is 300A or less,
The reason why the wear resistance is stable and improved despite the thin film thickness and low film strength is thought to be due to the prevention of adsorption.

すなわち、吸着は潤滑剤を介在物とする、ヘッドと媒体
の接着現象であって、潤滑剤の媒体への塗布tをvI4
!iL、てやれば防止出来る。ここで問題なのは潤滑剤
の媒体への付着力である。
In other words, adsorption is an adhesion phenomenon between the head and the medium with the lubricant as an intermediary, and the application t of the lubricant to the medium is vI4
! iL, you can prevent it by doing something. The problem here is the adhesion of the lubricant to the medium.

第1表に記載されているように一般の潤滑剤は7エライ
トなどの磁性膜よりもSin、などの無機化合物に対す
る方が付着力が大きいことはぬれ性が良いことからも明
らかである。
As shown in Table 1, it is clear from the good wettability that general lubricants have a greater adhesion force to inorganic compounds such as Sin than to magnetic films such as 7-elite.

従って、磁性膜上に無機化合物を点在させたものに対し
て潤滑剤を塗布させた優十分に拭きとり全行なえば無機
化合物表面にのみ潤滑剤を残す事が可能となる。
Therefore, if a lubricant is applied to a magnetic film on which an inorganic compound is dotted and thoroughly wiped off, the lubricant can be left only on the surface of the inorganic compound.

よって磁性膜上に設けられる無機化合物の点在量?増せ
ば当然潤滑剤の塗布量が増し、また逆に無機化合物の点
在量を減らせば潤滑剤の塗布1−を減らす事が出来る。
Therefore, what is the amount of inorganic compounds dotted on the magnetic film? Naturally, if the amount of the lubricant is increased, the amount of lubricant applied will increase, and conversely, if the amount of the inorganic compound scattered is reduced, the amount of lubricant applied 1- can be reduced.

この無機化合物の点在量は5i02の膜厚のコン)a−
ルによって行なう事が出来る。
The amount of this inorganic compound dotted is 5i02 film thickness con)a-
This can be done by

すなわち、5intの膜厚が300に以下になるとすて
にS tO,膜は磁性膜上に連続して付着しているので
はなく網状〜島状に付着しているものと考えられる。
That is, when the film thickness of 5 int becomes 300 mm or less, it is considered that the S 2 O film does not adhere continuously on the magnetic film but in a network to island form.

従って、上述したように潤滑剤の塗布量のコントa−ル
が可能となる。よりで第2図に示すようにSin、の膜
厚が300A以下では潤滑剤の塗布量がコントロールさ
れて最適の塗布量となり吸着がなくなり、かつ潤滑剤の
すべりの効果より耐摩耗性貴向上させる事が出来る。
Therefore, as described above, it is possible to control the amount of lubricant applied. As shown in Figure 2, when the thickness of the Sin film is less than 300A, the amount of lubricant applied is controlled and becomes the optimum amount, eliminating adsorption and improving wear resistance due to the sliding effect of the lubricant. I can do things.

このように本発明者らは、このような発想より保護膜と
称されるような比較的厚いS iot膜を設けなくとも
、潤滑剤を最適な塗布量にコントロールし、十分耐摩耗
性が得られる5iO1の膜厚を見い出し、この膜厚は3
0〜200Aが最適値である事発見したもので、スペー
シングロスを大幅に改善する事を可能としつつ実用上十
分な耐摩耗性を得る事に成功し友ものである。
Based on this idea, the inventors of the present invention were able to control the amount of lubricant applied to the optimum level and obtain sufficient wear resistance without providing a relatively thick Siot film called a protective film. The film thickness of 5iO1 is found, and this film thickness is 3
It has been discovered that 0 to 200 A is the optimum value, and it has succeeded in obtaining practically sufficient wear resistance while making it possible to significantly improve spacing loss.

秦 KryTox  143AD(デ為ボン社商標)l
、5 X 10  濃度のフレオン稀釈液を1μ!滴下
し九ときの拡がりの径(顛)。
Hata KryTox 143AD (trademark of Demebon Co., Ltd.)
, 1μ of Freon dilution with a concentration of 5 x 10! The diameter of the drop after 9 minutes.

(注) 膜厚は全て100OOA。(Note) All film thicknesses are 100OOA.

第3図は磁性膜上に設けられたSin、の膜厚とフェラ
イトヘッドとの摩擦係数(μk)の関係を示す図である
FIG. 3 is a diagram showing the relationship between the thickness of the Sin film provided on the magnetic film and the coefficient of friction (μk) between the magnetic film and the ferrite head.

図中Q印は、SiQ、の膜上が無潤滑で・印は潤滑時を
示す。なおこの潤滑は前述したKry ’rox143
AD1!r使用した場合である。
In the figure, the Q mark indicates that the SiQ film is not lubricated, and the * mark indicates that it is lubricated. This lubrication is performed using the aforementioned Kry'rox143.
AD1! This is the case when r is used.

この図から明らかなように潤滑時はSin、の膜厚30
A以上で摩擦係数cμk)=0.15〜0.19と小さ
い値が得られた。Sin、の膜厚が30人〜100人の
範囲ではSi0g膜のみの滑性だけでは摩擦係数(μk
)は0.2以下VCはならないが潤滑剤を併用する事に
よりμに=0.15〜0.19 と少なくする事が出来
る。
As is clear from this figure, during lubrication, the film thickness of Sin is 30
A small friction coefficient cμk) of 0.15 to 0.19 was obtained above A. When the film thickness of Si0g is in the range of 30 to 100, the coefficient of friction (μk
) should not be less than 0.2, but by using a lubricant, μ can be reduced to 0.15 to 0.19.

別表は磁気記録媒体上のS io、の膜厚と潤滑剤の塗
布の有無による磁気ヘッドと磁気記録媒体との摩擦係数
、耐C8S性、特性変化率及びS ion成膜のスパッ
タ条件を示したものである。
The attached table shows the film thickness of S ion on the magnetic recording medium, the coefficient of friction between the magnetic head and the magnetic recording medium depending on whether or not a lubricant is applied, the C8S resistance, the rate of change in characteristics, and the sputtering conditions for forming the S ion film. It is something.

本発明に該当する試料番号は3〜9であシ30〜200
にのS iO,の濃厚について別表の如き測定結果を得
几。
Sample numbers applicable to the present invention are 3 to 9 and 30 to 200.
The measurement results as shown in the attached table were obtained regarding the concentration of SiO.

表より明らかなように本発明のS io、の膜厚で潤滑
剤を撒布した場合、耐C3S性がほぼ20000回以上
でありまたスペーシングロス(特性変化率)もほぼOチ
であり非常に良好な結果を得た。
As is clear from the table, when the lubricant of the present invention is applied with a film thickness of S io, the C3S resistance is approximately 20,000 times or more, and the spacing loss (rate of change in characteristics) is approximately 0, which is very high. Good results were obtained.

以上のように本発明では磁性膜上に30〜200Aの3
10.を形成し、その上に潤滑剤を塗布する事によシス
ペークングロスがなく、また耐摩耗性が良好な磁気記優
媒体全提供出来る。
As described above, in the present invention, 30 to 200 A is applied on the magnetic film.
10. By forming a magnetic recording medium and applying a lubricant thereon, it is possible to provide a magnetic recording medium that does not have any visible loss and has good abrasion resistance.

尚本発明では、フェライト酸化磁性膜をスパッタで形成
し念ものについて説明したがこれに限らず電着法や、ス
パヅメスは蒸着法で形成される金属磁性模でも耐食性が
要求されないディスク、又腐食のないディスク更には防
食処理が施され友ディスクに対しては二酸化けい素等の
表面に滑性を付与する膜とディスク表面との密着性(結
合力)が良ければ適用する事が可能である。
In the present invention, the ferrite oxide magnetic film is formed by sputtering. However, the present invention is not limited to this. Electrodeposition method and spadume film are also used for metal magnetic models formed by vapor deposition method, such as disks that do not require corrosion resistance or corrosion resistance. It can be applied to discs without corrosion protection, and even discs that have been subjected to anti-corrosion treatment, as long as the adhesion (bonding strength) between the film, such as silicon dioxide, which provides lubricity to the surface of the disc and the disc surface is good.

まt1表面に滑性を付与する膜としては、滑性を有し、
ディスク表面との密着性が良く、しかも表面潤滑剤を強
固に付着させ得る無機化合物であれば二酸化けい素膜(
Sin、 )に限らず、表1に示したアルミナ(入Jt
O,)膜、チッ化けい素(SilN、)膜も効果がある
The film that imparts lubricity to the surface of t1 has lubricity,
Silicon dioxide film (
Not limited to alumina (Sin, ) shown in Table 1 (Jt
A silicon nitride (SilN, ) film and a silicon nitride (SilN, ) film are also effective.

更に二酸化けい素−アルミナー酸化べI7 +7ウム(
S i O@−Al、 o、−B eO)膜を同時に使
用出来る。また潤滑剤も種々使用可能である。
Furthermore, silicon dioxide-alumina oxide I7+7um (
S i O@-Al, o, -B eO) films can be used simultaneously. Various lubricants can also be used.

〈実施例〉 CI)  フェライト酸化磁性膜の形成:アルミナ基板
表面を硫酸浴を吊込て陽極処理し、アルマイト7@全1
〜2μmの厚さに形成し之後この基板を洗浄し、コバル
トを含む鉄を主成分とするターゲットを用いて80チア
ルゴン(Ar)、20チ酸累(0,)雰囲気中でスパッ
ターし、基板表面に0.2μmのへマタイト(α−Fe
lOs)′It形成した。
<Example> CI) Formation of ferrite oxide magnetic film: The surface of the alumina substrate was anodized in a sulfuric acid bath, and alumite 7@all 1
After forming the substrate to a thickness of ~2 μm, the substrate was cleaned and sputtered using a target mainly composed of iron containing cobalt in an atmosphere of 80 thiargon (Ar) and 20 thionic acid (0,0) to form a thin film on the substrate surface. 0.2 μm hematite (α-Fe
lOs)'It was formed.

これを還元雰囲気中で熱処理し、マグネタイト(Fe、
 0. )に変換し、更に大気中熱処理してヘマタイト
(γ−Fe2O3)のフェライト酸化磁性Mを形成し念
This was heat-treated in a reducing atmosphere and magnetite (Fe,
0. ) and further heat-treated in the atmosphere to form ferrite oxide magnetic M of hematite (γ-Fe2O3).

CII)  二酸化けい素膜の形成二フェライト酸化膜
上に二酸化けい素膜ターゲットとして100俤アルゴy
(Ar)又1−jso*アルゴン(Ar)−20’4酸
素(0り雰囲気でスパッタリングにより形成し念。・条
件は別表に示す。
CII) Formation of silicon dioxide film 100 y
(Ar) or 1-jso*Argon (Ar)-20'4 Oxygen (formed by sputtering in an atmosphere of zero). Conditions are shown in the attached table.

(2)潤滑剤膜の形成ニスピンコーティングにより回転
しているディスクに潤滑剤AとしてKryTox143
AD(デ島ボン社商標)、潤滑剤B 、!: L−IX
looO(キャニオンプロダクト社商標)を塗布、シ、
次に油脂弁を含まない紙をとりつけた回転パッドで表面
を拭き取り潤滑剤膜を形成した。
(2) Formation of lubricant film KryTox143 is used as lubricant A on the rotating disk by Nispin coating.
AD (Dejima Bon Co., Ltd. trademark), Lubricant B,! : L-IX
Apply looO (Canyon Products Company trademark),
Next, the surface was wiped with a rotating pad to which paper containing no oil valve was attached to form a lubricant film.

潤滑剤の塗布は二酸化けい素膜の形成後デクケータ内に
20時間放置後行なった。
The lubricant was applied after the silicon dioxide film was formed and the sample was left in a decal for 20 hours.

く実験方法〉 (1)  耐C8S性の試験は第4図に示すサイクルの
繰り返しによるC8S試験でディスク面に傷が生じる迄
のC8S回数で示した。傷の確認は目視による。
Experimental Method> (1) The C8S resistance test was performed by repeating the cycle shown in FIG. 4, and was expressed as the number of C8S cycles until scratches appeared on the disk surface. Check for scratches by visual inspection.

試験は1試料につき内周、外周2回行なった。The test was conducted twice for each sample, once on the inner circumference and once on the outer circumference.

また、使用したヘッドは、3.2±0.21の荷重のウ
ィンチェスタ−タイプ、テーバ7エライト型Mn−Zu
フェライトのヘッドで試験毎に新しいヘッドを用いた。
The heads used were Winchester type and Taber 7 elite type Mn-Zu with a load of 3.2±0.21.
A new head was used for each test with a ferrite head.

電磁変換性の変化率(特性変化基)は別表の試料慮2の
二酸化けい素膜がない時の孤立波出力を1とした時の出
力差をチで示した。
The rate of change in electromagnetic transmissibility (characteristic change group) is the output difference when the solitary wave output in sample No. 2 in the attached table without the silicon dioxide film is set to 1, and is shown in "H".

尚、特性の測定に使用し九ヘッドは浮上量0.2μm(
周速40m/s)のテーパーフラット型止−Znフェラ
イトヘッドで常に同一のヘッドを使用し、同一の条件で
測定した。
The nine heads used to measure the characteristics had a flying height of 0.2 μm (
Measurements were carried out under the same conditions using the same tapered flat Zn ferrite head with a circumferential speed of 40 m/s).

また摩擦係数はフェライトヘッドと磁気記録媒体の摺動
直後の摩擦係数(μk)を示す。別表における摩擦係数
の値は5回の平均値である。尚5iO1の膜厚は、スパ
ッタレートより換算したものであり、また厚さZQOA
  以下では完全な連続膜ではないと考えられるがここ
では被着量を総面積で除した平均形状膜厚を指すもので
ある。
Further, the friction coefficient indicates the friction coefficient (μk) immediately after the ferrite head and the magnetic recording medium slide. The friction coefficient values in the attached table are the average values of 5 times. The film thickness of 5iO1 is calculated from the sputtering rate, and the thickness ZQOA
In the following description, it is considered that the film is not a completely continuous film, but here it refers to the average shape film thickness obtained by dividing the deposition amount by the total area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、S iolの膜厚と摺動回数関係を示す図、
纂2図は、本発明に係るSin、の膜厚における摺動回
数関係を示す図、第4図は磁気記録媒体の回転の開始と
停止を繰り返す際の条件を示す図、第3図は5iO1の
膜厚と摩擦係数の関係を示す図である。 摺動ω数(N)(xt6り
FIG. 1 is a diagram showing the relationship between the film thickness of Siol and the number of times of sliding.
Figure 2 is a diagram showing the relationship between the number of times of sliding and the film thickness of Sin according to the present invention, Figure 4 is a diagram showing the conditions for repeating the start and stop of rotation of the magnetic recording medium, and Figure 3 is a diagram showing the relationship between the number of times of sliding and the thickness of the Sin film according to the present invention. FIG. 3 is a diagram showing the relationship between film thickness and friction coefficient. Sliding ω number (N) (xt6ri

Claims (1)

【特許請求の範囲】 回転する磁気ディスク媒体上に浮上ヘッドを配置して情
報の記録再生を行なう磁気ディスク装置に使用される磁
気ディスク媒体であって、 基板上に磁性膜の形成し、該磁性膜上に、30〜200
Åの無機化合物薄膜を形成し、更にその表面に潤滑剤膜
を形成して構成したことを特徴とする磁気ディスク媒体
[Scope of Claims] A magnetic disk medium used in a magnetic disk device for recording and reproducing information by disposing a flying head on a rotating magnetic disk medium, comprising: a magnetic film formed on a substrate; On the membrane, 30-200
1. A magnetic disk medium comprising: a thin film of an inorganic compound having a thickness of 1.5 cm, and a lubricant film formed on the surface of the thin film of an inorganic compound.
JP24926487A 1987-10-02 1987-10-02 Magnetic disk medium Granted JPS63119019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24926487A JPS63119019A (en) 1987-10-02 1987-10-02 Magnetic disk medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24926487A JPS63119019A (en) 1987-10-02 1987-10-02 Magnetic disk medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56050122A Division JPS57167131A (en) 1981-04-03 1981-04-03 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS63119019A true JPS63119019A (en) 1988-05-23
JPH0311004B2 JPH0311004B2 (en) 1991-02-15

Family

ID=17190376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24926487A Granted JPS63119019A (en) 1987-10-02 1987-10-02 Magnetic disk medium

Country Status (1)

Country Link
JP (1) JPS63119019A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321248A (en) * 1976-08-11 1978-02-27 Furukawa Electric Co Ltd:The Preparation of antitracking polyolefin composition molding
JPS54162508A (en) * 1978-06-13 1979-12-24 Nec Corp Magnetic memory medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321248A (en) * 1976-08-11 1978-02-27 Furukawa Electric Co Ltd:The Preparation of antitracking polyolefin composition molding
JPS54162508A (en) * 1978-06-13 1979-12-24 Nec Corp Magnetic memory medium

Also Published As

Publication number Publication date
JPH0311004B2 (en) 1991-02-15

Similar Documents

Publication Publication Date Title
US4713279A (en) Magnetic recording medium
JPH0421930B2 (en)
JPS63119019A (en) Magnetic disk medium
JP2546383B2 (en) Magnetic disk
JP2771973B2 (en) Magnetic recording medium and method of manufacturing the same
JPS59172160A (en) Magnetic recording medium
JP2638228B2 (en) Manufacturing method of magnetic recording medium
JPH0440626A (en) Magnetic recording medium
JPS58185029A (en) Magnetic disc medium
JPH0315254B2 (en)
JP2967698B2 (en) Manufacturing method of magnetic recording medium
JPS61236017A (en) Metallic thin film magnetic recording medium
JPH04134621A (en) Magnetic recording medium and magnetic recording and reproducing method
JP2833025B2 (en) Magnetic recording medium
JPH0371418A (en) Magnetic recording medium
JPS62231427A (en) Magnetic recording medium
JPS63102014A (en) Magnetic recording medium
JPH06259756A (en) Magnetic recording medium and its production
JPS62200518A (en) Magnetic recording medium
JPH08273139A (en) Magnetic recording medium
JPH01251314A (en) Perpendicular magnetic recording medium
JPH0388123A (en) Production of magnetic recording medium
JPH05250655A (en) Magnetic recording medium
JPH04344318A (en) Magnetic disk
JPH01184617A (en) Magnetic recording medium