JPH0371418A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0371418A
JPH0371418A JP20609389A JP20609389A JPH0371418A JP H0371418 A JPH0371418 A JP H0371418A JP 20609389 A JP20609389 A JP 20609389A JP 20609389 A JP20609389 A JP 20609389A JP H0371418 A JPH0371418 A JP H0371418A
Authority
JP
Japan
Prior art keywords
magnetic
medium
roughness
protective layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20609389A
Other languages
Japanese (ja)
Inventor
Kiyoto Yamaguchi
山口 希世登
Minoru Yamagishi
稔 山岸
Hiroyuki Nakamura
裕行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP20609389A priority Critical patent/JPH0371418A/en
Publication of JPH0371418A publication Critical patent/JPH0371418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a medium suitable for high-density recording by forming an oxide film as a protective layer by sputtering, specifying the surface roughness of the magnetic recording medium by the average roughness on the center line and the maximum roughness height, and specifying the relative load length of the relative load curve. CONSTITUTION:An oxide film is formed as the protective layer by sputtering and the surface roughness of the magnetic recording medium is specified so that the average roughness Ra on the center line is between >=15Angstrom and <=40Angstrom and the maximum roughness height Rmax <=1,000Angstrom . The difference of cutting depth DELTACv(10%-1%) between values at 10% loading length and at 1% loading length in the relative loading curve is specified to between >=50Angstrom and <=150Angstrom . The obtd. medium has excellent durability and lubricating property for CSS operation even against a hard slider magnetic head and has good quality of roughness to enable low-height floating of a magnetic head. Thereby, the medium can be used for high-density recording.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、固定磁気ディスク装置に用いられる磁気記
録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium used in a fixed magnetic disk device.

〔従来の技術〕[Conventional technology]

磁気記録媒体〈以下、単に媒体とも称する)の製造方法
はγ−pe20s系の磁性粒子を樹脂バインダに分散し
た塗布膜を磁性層とする塗布法から、CO系合金などの
強磁性合金の連続薄膜を磁性層とするめっき法、さらに
はスパッタ法へと移行してきた。これは、情報処理シス
テムの周辺記憶装置として主流を占める固定磁気ディス
ク装置の大容量化、小形化にともない、これに搭載され
る媒体の高記録密度化が近年ますます要望されてきてい
るが、スパッタ法により製造される9強磁性合金の連続
薄膜を磁性層とする薄膜媒体は高保磁力化が可能であり
、また、磁気ヘッドと磁性層との距離を小さくすること
も可能となり、高記録密度化の要望に応することができ
るからである。
The manufacturing methods for magnetic recording media (hereinafter also simply referred to as media) range from coating methods in which the magnetic layer is a coating film in which γ-pe20s magnetic particles are dispersed in a resin binder to continuous thin films of ferromagnetic alloys such as CO-based alloys. There has been a shift to plating methods, and then to sputtering methods, which use carbon as a magnetic layer. This is due to the increasing capacity and miniaturization of fixed magnetic disk drives, which are the mainstream peripheral storage devices for information processing systems, and there has been an increasing demand for higher recording densities in the media installed in these drives in recent years. Thin-film media whose magnetic layer is a continuous thin film of 9 ferromagnetic alloy manufactured by sputtering can have high coercive force, and it also makes it possible to shorten the distance between the magnetic head and the magnetic layer, resulting in high recording density. This is because it can meet the needs of the public.

上述のようなスバγり法で製造される媒体では合金薄膜
である磁性層を腐食から保護する必要がある。また、固
定磁気ディスク装置は一般にC8S方式が採られており
、媒体表面を磁気ヘッドのC5Sによる磨耗、摩擦係数
の上昇、あるいは磁気ヘッドの吸着から保護する必要が
ある。このために、薄膜媒体では磁性層上に化学的に安
定でしかも潤滑性が良く耐磨耗性の大きい良質の膜を形
成できる材料からなる保護層を設ける必要がある。
In a medium manufactured by the above-mentioned sputtering method, it is necessary to protect the magnetic layer, which is a thin alloy film, from corrosion. Furthermore, fixed magnetic disk drives generally employ the C8S method, and it is necessary to protect the medium surface from wear caused by the C5S of the magnetic head, an increase in the coefficient of friction, or adsorption of the magnetic head. For this reason, in thin film media, it is necessary to provide a protective layer on the magnetic layer made of a material that is chemically stable, has good lubricity, and can form a high-quality film with high wear resistance.

従来、−膜内には炭素(C)保護層が設けられており、
また、潤滑性能を高めるために、その上にさらに液体潤
滑剤を塗布して液体潤滑層を設けることが行われている
。磁性層上にスピンコード法でS】02保護層を形成し
、その上に液体潤滑層を設けることも行われている。
Conventionally, a carbon (C) protective layer is provided within the film;
Furthermore, in order to improve the lubrication performance, a liquid lubricant is further applied thereon to provide a liquid lubricant layer. It has also been practiced to form an S]02 protective layer on the magnetic layer by a spin code method, and to provide a liquid lubricant layer thereon.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

磁気ヘッドの材質は現在硬質化の方向へと向かっている
。C保護層や液体潤滑層を付加したC保護層は、Mn−
2nフエライトからなるスライダーの磁気ヘッドに対し
ては有効であるが、セラミック(例えばAl2O,/T
*C)のような硬質の材料からなるスライダーの磁気ヘ
ッドに対しては磨耗がはげしくて保護層として適さず、
しかも、高密度記録化を指向して薄膜化を進めれば進め
るほど問題は大きくなる。
Materials for magnetic heads are currently becoming harder. The C protective layer added with the C protective layer or the liquid lubricant layer is Mn-
It is effective for magnetic heads of sliders made of 2n ferrite, but it is effective for magnetic heads of sliders made of 2n ferrite, but
*It is not suitable as a protective layer for the magnetic head of a slider made of a hard material such as C) because it is subject to severe wear.
Moreover, the problem becomes more serious as the film thickness is made thinner with the aim of achieving higher density recording.

一方、液体潤滑層を付加したスピンコード法によるS+
02保護層は硬質スライダーの磁気ヘッドに対しても充
分な耐磨耗性を有するが表面の突起品質が良くないとい
う欠点がある。保護層表面、すなわち媒体表面の突起品
質が悪いと、磁気ヘッドの浮上走行時に磁気ヘッドと媒
体表面の突起とが接触する頻度が多くなるという不具合
が生じ、ヘッドクラッシュをひき起こすことにもなる。
On the other hand, S+ by spin code method with added liquid lubricant layer
Although the 02 protective layer has sufficient abrasion resistance even for hard slider magnetic heads, it has the disadvantage that the quality of the surface protrusions is not good. If the quality of the protrusions on the surface of the protective layer, that is, on the medium surface is poor, there will be a problem that the magnetic head will come into contact with the protrusions on the medium surface more frequently when the magnetic head is flying, which may lead to a head crash.

高密度記録化のために磁気ヘッドの浮上量を少なくすれ
ばする程上述の現象が発生しやすくなり、液体潤滑層を
付加したスピンコード法によるSiO□保護層は不適と
なる。
The smaller the flying height of the magnetic head is for high-density recording, the more likely the above-mentioned phenomenon will occur, making the SiO□ protective layer formed by the spin code method with a liquid lubricant layer added unsuitable.

また、磁気ヘッドが媒体表面で良好なcss方式を繰り
返すことができるためには、媒体表面の潤滑性能が良好
で、かつ、磁気ヘッドの吸着が生じないことが必要であ
り、媒体表面が適切な粗さで均一に粗された表面形状で
なければならないが、スピンコード法で表面粗さが適切
に制御された5102保護層を形成することは困難な問
題である。
In addition, in order for the magnetic head to repeat a good CSS method on the medium surface, it is necessary that the medium surface has good lubrication performance and that the magnetic head does not attract. Although the surface must be uniformly roughened, it is difficult to form the 5102 protective layer with appropriately controlled surface roughness using the spin coding method.

しかも、磁気ヘッドの低浮上量化を進めれば進める程表
面粗さをより精度良く制御しなければならなくなり、さ
らに難しくなってくる。
Moreover, as the flying height of the magnetic head is reduced, the surface roughness must be controlled with higher precision, which becomes even more difficult.

この発明が解決しようとする課題は、上述の問題点を解
消して、高密度記録化に好適に対応できる保護層を備え
た磁気記録媒体を提供することにある。
The problem to be solved by the present invention is to solve the above-mentioned problems and provide a magnetic recording medium equipped with a protective layer that can suitably cope with high-density recording.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、この発明によれば、非磁性基板上にスパ
ッタ法で成膜された強磁性合金薄膜磁性層を備え、この
磁性層上にさらに保護層、液体潤滑層が形成されてなる
磁気記録媒体において、前記保護層がスパッタ法で形成
された酸化物膜であり、かつ、磁気記録媒体の表面粗さ
が、中心線平均粗さRaが15Å以上40人の範囲内で
あり、最大高さRmaxが1000A以下であり、相対
負荷曲線の相対負荷長さ10%におけるカッティング深
さから相対負荷長さ1%におけるカッティング深さを差
し引いた値△Cv (10%−1%)が50A以上15
0Å以下の範囲内である磁気記録媒体とすることによっ
て解決される。
According to the present invention, the above-mentioned problem can be solved by using a magnetic material that includes a ferromagnetic alloy thin film magnetic layer formed by sputtering on a non-magnetic substrate, and a protective layer and a liquid lubricant layer further formed on this magnetic layer. In the recording medium, the protective layer is an oxide film formed by a sputtering method, and the surface roughness of the magnetic recording medium is such that the center line average roughness Ra is within the range of 15 Å or more and 40 Å, and the maximum height is Rmax is 1000A or less, and the value △Cv (10% - 1%) of the relative load curve, which is the cutting depth at 10% relative load length minus the cutting depth at 1% relative load length, is 50A or more15
This problem can be solved by using a magnetic recording medium with a thickness of 0 Å or less.

〔作用〕[Effect]

媒体の保護層の材料として酸化物を用いたことにより、
硬質で耐磨耗性に優れた保護層が形成でき、セラミック
などからなる硬質スライダーの磁気ヘッドに対しても十
分な耐磨耗性を有する媒体となる。しかも、この層はス
パッタ法で薄膜として成膜されるので、その表面は磁性
層表面と同様に非磁性基板の表面粗さに応じた表面粗さ
となる。
By using oxide as the material for the protective layer of the medium,
A protective layer that is hard and has excellent wear resistance can be formed, resulting in a medium that has sufficient wear resistance even for magnetic heads with hard sliders made of ceramic or the like. Moreover, since this layer is formed as a thin film by sputtering, its surface has a surface roughness corresponding to that of the nonmagnetic substrate, similar to the surface of the magnetic layer.

従って、基板表面を特定の適切に均一に粗された表面形
状に加工しておくことにより、保護層表面はこれに対応
して適切な粗さで均一に粗れた表面形状となり、微小突
起も少なくて突起品質も良好となる。
Therefore, by processing the substrate surface into a specific and appropriately uniformly roughened surface shape, the protective layer surface will have a correspondingly uniformly roughened surface shape with an appropriate roughness, and microprotrusions will also be eliminated. With less amount, the quality of the protrusions is also good.

表面粗さには種々の規定の仕方があり、次に示す評価量
が媒体表面としては有効であるが、それぞれが交絡しな
がら重要な意味をもつため、一つの評価量のみで表面粗
さを特定するためには無理があると考えられる。
There are various ways to specify surface roughness, and the following evaluation quantities are effective for the media surface, but each has important meanings while being intertwined, so surface roughness cannot be determined with only one evaluation quantity. It seems impossible to specify.

Ra:JISに「中心線平均粗さ」として規定されてい
るもので、表面の平均的な粗さを示す一般的な量 Rmax:JISに「最大高さ」として規定されている
もので、表面の突起品質に関係 する量 ΔCv (10%−1%):相対負荷曲線の相対負荷長
さ10%におけるカッティング深 さから相対負荷長さ1%にお けるカッティング深さを差し 引いた量で、表面の凹凸の中 でも突起品質に関係する量 スパッタ法でtmされ、かつ、これらRa。
Ra: Specified in JIS as "center line average roughness", a general amount that indicates the average roughness of the surface Rmax: Specified as "maximum height" in JIS, the surface roughness Quantity related to the protrusion quality ΔCv (10%-1%): The amount obtained by subtracting the cutting depth at a relative load length of 1% from the cutting depth at a relative load length of 10% in the relative load curve. Among these, the amount related to the protrusion quality is tm in the sputtering method, and these Ra.

Rmax、 ΔCv(10%−1%)の量が適切に特定
された表面粗さの酸化物膜の保護層は、磁気ヘッドの低
浮上量化に対応でき、かつ、その上に設けられた液体潤
滑層の作用と相まって、媒体表面を磁気ヘッドのC3S
による磨耗2摩擦係数の上昇、あるいは磁気ヘッドの吸
着から効果的に保護することができ、高密度記録化に好
適に対応できる媒体が得られることになる。
A protective layer of an oxide film with a surface roughness with an appropriately specified amount of Rmax and ΔCv (10%-1%) can cope with the reduction of the flying height of the magnetic head, and can also be used for liquid lubrication provided on it. Coupled with the action of the layer, the medium surface is exposed to the C3S of the magnetic head.
This results in a medium that can be effectively protected from an increase in the coefficient of friction due to abrasion 2 or from being attracted by a magnetic head, and can suitably accommodate high-density recording.

〔実施例〕〔Example〕

N1−Pめっきを施した直径3.5インチのJV合金基
板の表面をポリッシングにより平滑化し、その後研磨テ
ープにより基板表面を粗面化した。このときの研磨条件
を変えることにより種々の表面粗さの基板を作製した。
The surface of a 3.5-inch diameter JV alloy substrate plated with N1-P was smoothed by polishing, and then the substrate surface was roughened using a polishing tape. By changing the polishing conditions at this time, substrates with various surface roughnesses were produced.

これらの基板上にスパック法によりCr、 Co −N
i−Cr合金、 Sin、の各層をこの順序で連続成膜
した。スパッタ条件を以下に示す。
Cr, Co-N
Each layer of i-Cr alloy and Sin was successively formed in this order. The sputtering conditions are shown below.

Arガス圧     10+nTorr基板加熱温度 
  220℃ 基板加熱時間   7分 次に、この5103層上にフロロカーボン系の液体潤滑
剤を浸漬法で塗布して、膜厚15人の液体潤滑層を形成
して媒体とした。
Ar gas pressure 10+nTorr substrate heating temperature
220° C. Substrate heating time: 7 minutes Next, a fluorocarbon-based liquid lubricant was applied on the 5103 layer by a dipping method to form a liquid lubricant layer with a thickness of 15 mm to form a medium.

このようにして作製した媒体について、媒体表面の潤滑
性能および突起品質を評価した。
The lubrication performance and protrusion quality of the medium surface were evaluated for the medium thus produced.

潤滑性能は、媒体を磁気ヘッドが浮上しない程度の低速
で回転させ磁気ヘッドを媒体上で摺動させる、一種の加
速試験である摺動摩擦磨耗試験を行ったときの摩擦係数
により評価した。磁気ヘッドはAjhOs/Ticから
なる硬質スライダーの磁気ヘッドを用いた。
The lubrication performance was evaluated by the friction coefficient when a sliding friction and wear test, which is a type of accelerated test, was conducted in which the medium was rotated at a low speed that did not allow the magnetic head to fly and the magnetic head was slid on the medium. A hard slider magnetic head made of AjhOs/Tic was used as the magnetic head.

また、突起品質はGHT (グライド・ハイド・テスト
)で突起個数をカウントすることにより評価した。磁気
ヘッドの浮上量は0.15μmとした。
Further, the quality of the protrusions was evaluated by counting the number of protrusions using GHT (glide hide test). The flying height of the magnetic head was 0.15 μm.

評価結果を各媒体の表面粗さと合わせて第1表に示す。The evaluation results are shown in Table 1 together with the surface roughness of each medium.

/ / / / / 第  l  表 第1表より、 Raが20人〜35A、  Rcnax
が500 A 〜700人、  ΔCv(10%−1%
)  カ80人〜120人である表面粗さが好適であり
、Raが15Å以上40Å以下。
/ / / / / Table l From Table 1, Ra is 20 to 35A, Rcnax
is 500 A ~ 700 people, ΔCv (10%-1%
) Surface roughness of 80 to 120 degrees is suitable, and Ra is 15 Å or more and 40 Å or less.

Rmaxが1000Å以下、ΔCv (10%−1%〉
が50Å以上150A以下であれば、実用上問題のない
潤滑性能、突起品質が得られることが判る。
Rmax is 1000Å or less, ΔCv (10%-1%>
It can be seen that if the angle is 50 Å or more and 150 A or less, lubrication performance and protrusion quality with no practical problems can be obtained.

以上の実施例では、保護膜の材料として5in2を用い
たが、これに限られるものではなく Al2O,など他
の酸化物材料も同様に有効である。
In the above embodiments, 5in2 was used as the material for the protective film, but the material is not limited to this, and other oxide materials such as Al2O are equally effective.

〔発明の効果〕〔Effect of the invention〕

Claims (1)

【特許請求の範囲】[Claims] 1)非磁性基板上にスパッタ法で成膜された強磁性合金
薄膜磁性層を備え、この磁性層上にさらに保護層、液体
潤滑層が形成されてなる磁気記録媒体において、前記保
護層がスパッタ法で形成された酸化物膜であり、かつ、
磁気記録媒体の表面粗さが、中心線平均粗さRaが15
Å以上40Åの範囲内であり、最大高さRmaxが10
00Å以下であり、相対負荷曲線の相対負荷長さ10%
におけるカッティング深さから相対負荷長さ1%におけ
るカッティング深さを差し引いた値ΔCv(10%−1
%)が50Å以上150Å以下の範囲内であることを特
徴とする磁気記録媒体。
1) A magnetic recording medium comprising a ferromagnetic alloy thin film magnetic layer formed by sputtering on a non-magnetic substrate, and a protective layer and a liquid lubricant layer further formed on this magnetic layer, in which the protective layer is formed by sputtering. an oxide film formed by a method, and
The surface roughness of the magnetic recording medium is such that the center line average roughness Ra is 15.
Within the range of Å or more and 40 Å, and the maximum height Rmax is 10
00 Å or less, and the relative load length of the relative load curve is 10%
The value ΔCv (10%-1
%) is within the range of 50 Å or more and 150 Å or less.
JP20609389A 1989-08-09 1989-08-09 Magnetic recording medium Pending JPH0371418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20609389A JPH0371418A (en) 1989-08-09 1989-08-09 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20609389A JPH0371418A (en) 1989-08-09 1989-08-09 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0371418A true JPH0371418A (en) 1991-03-27

Family

ID=16517691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20609389A Pending JPH0371418A (en) 1989-08-09 1989-08-09 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0371418A (en)

Similar Documents

Publication Publication Date Title
US4820584A (en) Magnetic recording medium and method of manufacturing the same
US4713279A (en) Magnetic recording medium
US5122423A (en) Magnetic recording medium comprising a chromium underlayer deposited directly on an electrolytic abrasive polished high purity aluminum alloy substrate
US6572958B1 (en) Magnetic recording media comprising a silicon carbide corrosion barrier layer and a c-overcoat
JPH0371418A (en) Magnetic recording medium
JPS61199224A (en) Magnetic recording medium
JPH0421930B2 (en)
JP2546383B2 (en) Magnetic disk
JP2613947B2 (en) Magnetic recording media
JPH0568771B2 (en)
US6660364B2 (en) Magnetic recording medium
JPH0440626A (en) Magnetic recording medium
JPH04216319A (en) Magnetic recording medium
JP3962962B2 (en) Magnetic recording medium
JP3024769B2 (en) Magnetic hard disk
JPH0315254B2 (en)
JPS61131224A (en) Magnetic recording medium
Sato Thin film media for hard disks
JPH0775069B2 (en) Magnetic disk
JPH07122932B2 (en) Magnetic recording medium
JPH0770050B2 (en) Magnetic recording medium
JPH0311004B2 (en)
Goto et al. Metallic Thin Film Media for Hard Disks
JPS6174129A (en) Magnetic recording medium
JPH0283803A (en) Magnetic disk device