JPS6311583B2 - - Google Patents

Info

Publication number
JPS6311583B2
JPS6311583B2 JP10114280A JP10114280A JPS6311583B2 JP S6311583 B2 JPS6311583 B2 JP S6311583B2 JP 10114280 A JP10114280 A JP 10114280A JP 10114280 A JP10114280 A JP 10114280A JP S6311583 B2 JPS6311583 B2 JP S6311583B2
Authority
JP
Japan
Prior art keywords
pipe
solution
heating
hot water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10114280A
Other languages
Japanese (ja)
Other versions
JPS5726366A (en
Inventor
Shigeo Sugimoto
Ryohei Minowa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10114280A priority Critical patent/JPS5726366A/en
Publication of JPS5726366A publication Critical patent/JPS5726366A/en
Publication of JPS6311583B2 publication Critical patent/JPS6311583B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は直焚吸収式冷凍機の自己排熱回収装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a self-exhaust heat recovery device for a direct-fired absorption refrigerator.

第1図は従来の二重効用吸収式冷凍機を示し、
1は低温再生器、2は凝縮器、3は蒸発器、4は
吸収器、5は水等の冷媒、6はリチウムプロマイ
ド水溶液(LiBr)等の溶液、7は燃焼ガス加熱
形の高温再生器、8は第1熱交換器、9は第2熱
交換器、10は冷媒スプレイポンプ、11は溶液
スプレイポンプ、12は溶液循環ポンプであつ
て、この種二重効用吸収式冷凍機においては溶液
循環ポンプ12からの溶液を第1熱交換器8の被
加熱側を通して低温再生器1、及び第2熱交換器
9の被加熱側を通して高温再生器7に夫々加える
とともに高温再生器7において加熱され発生した
冷媒蒸気は低温再生器1内の加熱管群に導びか
れ、低温再生器1内に導入された溶液を加熱し、
溶液中に含まれている冷媒を蒸発させた後凝縮器
2の冷媒溜めに流入する。この流入冷媒中の冷媒
蒸気及び低温再生器1において発生した冷媒蒸気
を凝縮器2の冷却水管群にて冷却して液化させた
後蒸発器3に導き、減圧膨脹させて気化させる。
この気化の際の気化潜熱を蒸発器3内の冷水管群
から奪い、冷水管群内に通過する水を冷却する。
一方蒸発器3において気化した冷媒蒸気は吸収器
4に流入し、ここで濃溶液に吸収させる。以下上
記作用の繰り返しによつて冷凍サイクルを行なわ
れる。また高温再生器7の内部には、温水加熱用
管群13が設けられ、冬期等この高温再生器7で
発生した冷媒蒸気と上記管群13を流通する水と
熱交換し、この水を加熱し温水として暖房用に供
する。
Figure 1 shows a conventional dual-effect absorption refrigerator.
1 is a low-temperature regenerator, 2 is a condenser, 3 is an evaporator, 4 is an absorber, 5 is a refrigerant such as water, 6 is a solution such as lithium bromide aqueous solution (LiBr), and 7 is a high-temperature regenerator heated by combustion gas. , 8 is a first heat exchanger, 9 is a second heat exchanger, 10 is a refrigerant spray pump, 11 is a solution spray pump, and 12 is a solution circulation pump. The solution from the circulation pump 12 is applied to the low temperature regenerator 1 through the heated side of the first heat exchanger 8 and to the high temperature regenerator 7 through the heated side of the second heat exchanger 9, and is heated in the high temperature regenerator 7. The generated refrigerant vapor is guided to a group of heating tubes in the low-temperature regenerator 1, heats the solution introduced into the low-temperature regenerator 1,
After the refrigerant contained in the solution is evaporated, it flows into the refrigerant reservoir of the condenser 2. The refrigerant vapor in this inflowing refrigerant and the refrigerant vapor generated in the low-temperature regenerator 1 are cooled and liquefied in the cooling water pipe group of the condenser 2, and then guided to the evaporator 3, where they are expanded under reduced pressure and vaporized.
The latent heat of vaporization during this vaporization is taken away from the cold water pipe group in the evaporator 3 to cool the water passing into the cold water pipe group.
On the other hand, the refrigerant vapor vaporized in the evaporator 3 flows into the absorber 4, where it is absorbed into a concentrated solution. Thereafter, the refrigeration cycle is performed by repeating the above actions. A group of hot water heating tubes 13 is provided inside the high-temperature regenerator 7, and heat is exchanged between the refrigerant vapor generated in the high-temperature regenerator 7 and the water flowing through the tube group 13 during winter, thereby heating the water. The water is then used as hot water for heating purposes.

上記の様な直焚吸収式冷凍機においては、高温
再生器7で燃焼ガス熱量の約85%は溶液に伝達さ
れ冷媒蒸気を発生させ、残りの約15%の熱量は排
ガスとなつて煙突(図示せず)より大気に放出さ
れる。また、排ガス中には、燃料中の水素が燃焼
して発生した水蒸気を多量に含んでおり、この水
蒸気の凝縮潜熱量は燃料の全燃焼発熱量の約10%
相当する。
In the above-mentioned direct-fired absorption refrigerator, about 85% of the heat of the combustion gas is transferred to the solution in the high-temperature regenerator 7 to generate refrigerant vapor, and the remaining about 15% of the heat becomes exhaust gas and is transferred to the chimney ( (not shown) is released into the atmosphere. In addition, the exhaust gas contains a large amount of water vapor generated by the combustion of hydrogen in the fuel, and the latent heat of condensation of this water vapor is approximately 10% of the total combustion calorific value of the fuel.
Equivalent to.

したがつて、これらの排ガスがもつている熱を
回収すれば直焚吸収式冷凍機の熱交率は飛躍的に
向上することが考えられる。
Therefore, it is conceivable that if the heat contained in these exhaust gases is recovered, the heat exchange coefficient of a direct-fired absorption refrigerator can be dramatically improved.

従来、これらの排ガスの熱回収装置として次に
示す装置が考えられる。
Conventionally, the following devices have been considered as heat recovery devices for these exhaust gases.

(1) 排ガスと燃焼のために供給する空気とを熱交
換させ、供縮空気を与熱することによつて排ガ
スの熱を回収する。
(1) Heat is exchanged between the exhaust gas and the air supplied for combustion, and the heat of the exhaust gas is recovered by heating the condensed air.

(2) 排ガスの通路に熱交換器を設け、暖房時のみ
熱交換器の管群内に水を流し、排ガスの熱を吸
収することによつて加熱された水を蒸発器の冷
水管群内に導き、蒸発器内の冷媒を加熱蒸発さ
せ、吸収器4の溶液に吸収させ、前述の冷凍サ
イクルと同じ溶液循環サイクルを構成させ吸収
器4および凝縮器2の管群部に水を通水し、温
水を得る。いわゆるヒートポンプとして冷凍機
を作用させて排熱を回収する。
(2) A heat exchanger is installed in the exhaust gas passage, and water is passed through the tube group of the heat exchanger only during heating, and the water heated by absorbing the heat of the exhaust gas is transferred to the cold water tube group of the evaporator. The refrigerant in the evaporator is heated to evaporate and absorbed into the solution in the absorber 4, forming a solution circulation cycle similar to the refrigeration cycle described above, and water is passed through the tube group of the absorber 4 and condenser 2. and get hot water. The refrigerator works as a so-called heat pump to recover waste heat.

などが考えられる。etc. are possible.

しかる(1)の方式は、燃焼用供給空気温度が高く
なるため、燃焼温度が上昇し、排ガス中のNoX
成分が増加し好ましく無い。また(2)の方式は、暖
房時に排ガス成分中に含む水蒸気の凝縮潜熱まで
回収できる利点はあるが、構成が複雑でかつ夏期
に排ガスの熱回収が0になる。更に夏期は冬期の
排ガス熱交換器をバイパスして排ガスを流すた
め、排ガスの背圧が変り、冬と夏で燃焼状態が変
るので、冷房と暖房の切替時に調整を必要とする
等の欠点を有する。
However, in method (1), the supply air temperature for combustion increases, which increases the combustion temperature and reduces NoX in the exhaust gas.
The number of components increases, which is not preferable. Although the method (2) has the advantage of recovering even the latent heat of condensation of the water vapor contained in the exhaust gas components during heating, it has a complicated configuration and the heat recovery of the exhaust gas becomes zero in the summer. Furthermore, in the summer, the exhaust gas is passed by bypassing the exhaust gas heat exchanger used in the winter, so the back pressure of the exhaust gas changes, and the combustion conditions change between winter and summer, so there are drawbacks such as the need for adjustment when switching between cooling and heating. have

本発明は上記に鑑みて発明されたもので、排ガ
スを有効に利用し吸収式冷凍機の熱効率を向上さ
せることを目的とする。
The present invention was invented in view of the above, and an object of the present invention is to effectively utilize exhaust gas and improve the thermal efficiency of an absorption refrigerator.

本発明は、冷房時低温再生器に供給される溶液
の温度が、暖房時の温水温度に近似していること
に着目し、なされたもので、その特徴とするとこ
ろは、冷房時は高温再生器供給用溶液を排ガスで
予熱し、暖房時には暖房用温水を直接排ガスで予
熱し、年間を通しての熱効率を向上させる特徴を
有する。
The present invention was developed by focusing on the fact that the temperature of the solution supplied to the low-temperature regenerator during cooling is close to the hot water temperature during heating. The solution is preheated using exhaust gas, and during heating, the hot water for heating is directly preheated using exhaust gas, which improves thermal efficiency throughout the year.

以下本発明の一実施例を第2図にもとづき説明
する。図において、1は低温再生器で、加熱管群
によつて加熱し器内の溶液中の冷媒を蒸発させ
る。2は凝縮器にして、冷媒蒸気を冷却水管群に
よつて冷却し液化させる。3は蒸発器にして冷媒
液が気化したときの気化潜熱を冷水管群から奪い
管群内の通過する水を冷却する。4は吸収器にし
て、冷凍蒸気を濃溶液に吸収させ、希薄液溶液に
する。5は冷媒にして、おもに水が使用される。
6は溶液にしておもにリチウムプロマイド水溶液
(LiBr)が使用される。7は燃焼ガス加熱形高圧
再生器にして後述する加熱管群によつて加熱し、
器内の溶液中の冷媒を蒸発させる。ここで得られ
る冷媒蒸気は低温再生器1で発生する冷媒蒸気よ
り高温高圧である。8は第1熱交換器にして吸収
器4から低温再生器1に供給される低い温度の稀
溶液と低温再生器1から吸収器4にもどる高い温
度の濃溶液とを熱交換し、稀溶液の温度を高め
る。9は第2熱交換器にして吸収器4から高温再
生器7に供給される低い温度の稀溶液と、高温再
生器7から吸収器4にもどる高い温度の濃溶とを
熱交換し、稀溶液の温度を高める。10は冷媒ス
プレイポンプにして、冷媒液が気化するのを助け
る。11は溶液スプレイポンプにして冷媒蒸気が
溶液に吸収されるのを助ける。12は溶液循環ポ
ンプにして吸収器4から稀溶液を吸い込み、低温
再生器1及び高温再生器7に供給する。13は高
温再生器7の内部に設けられた暖房用の温水加熱
管群にして、高温再生器7内の冷媒蒸気との熱交
換によつて管群内を通過する水を加熱する。14
は低温再生器1、凝縮器3、蒸発器3及び吸収器
4を収納したシエル、15は溶液循環ポンプ12
から吐出された稀溶液を第2熱交換器9の被加熱
側を通して高温再生器7に供給する給液管、16
は溶液循環ポンプ12から吐出された稀溶液を第
1熱交換器8の被加熱側を通して低温再生器1に
供給する給液管、17及び18は高温再生器7の
内部に設けられた炉筒及び煙管にして、この炉筒
17及び煙管18にて溶液加熱管群を構成してい
る。19は高温再生器7の濃溶液を第2熱交換器
9の加熱側を通して吸収器4に戻す戻液管、20
は低温再生器1の濃溶液を第1熱交換器8の加熱
側を通して吸収器4に戻す戻液管、21は低温再
生器1の溶液面が予め定められた高さを越したと
き、過剰溶液を吸収器4に戻すオーバーフロー
管、22は冷媒溜め、23は冷媒スプレイ管、2
4は冷媒スプレイポンプ10から吐出された冷媒
液を冷媒スプレイ管23に導く管、25は溶液ス
プレイ管、26は溶液スプレイポンプ11から吐
出された溶液を溶液スプレイ管25に導く管、2
7は高温再生器7で発生した冷媒蒸気を低温再生
器1の加熱管群に導く冷媒管、28は低温再生器
1の加熱管群内の冷媒(液及び蒸気)を凝縮器2
の液溜めに導く冷媒導管を示す。30は排熱回収
器で、煙管18に接続された排熱導入管31を排
熱回収器30の底部に接続し、該回収器30内は
仕切壁32にて二室33,34に仕切られ、両室
下部に夫々開閉ダンパ35,36を設けている。
第1室33には給液室15に並列接続された給液
予熱管37を配置し、また第2室34には温水加
熱管13の入口側配管の一部に形成された温水予
熱管38を配置している。39,40は夫々第1
室および第2室の下部器壁に設けられた吸気ダン
パ、41は排熱回収器30底部のドレーン管を示
す。
An embodiment of the present invention will be described below based on FIG. In the figure, reference numeral 1 denotes a low-temperature regenerator, which is heated by a group of heating tubes to evaporate the refrigerant in the solution inside the regenerator. 2 is a condenser, and the refrigerant vapor is cooled and liquefied through a group of cooling water pipes. 3 is an evaporator which removes latent heat of vaporization when the refrigerant liquid is vaporized from the cold water pipe group to cool the water passing through the pipe group. 4 is an absorber, which absorbs frozen vapor into a concentrated solution and converts it into a dilute solution. 5 is a refrigerant, and water is mainly used.
6 is used as a solution, mainly a lithium bromide aqueous solution (LiBr). 7 is a combustion gas heating type high pressure regenerator heated by a group of heating tubes to be described later;
Evaporate the refrigerant in the solution inside the vessel. The refrigerant vapor obtained here is higher in temperature and pressure than the refrigerant vapor generated in the low-temperature regenerator 1. 8 is a first heat exchanger that exchanges heat between the low-temperature dilute solution supplied from the absorber 4 to the low-temperature regenerator 1 and the high-temperature concentrated solution returned from the low-temperature regenerator 1 to the absorber 4. Increase the temperature. 9 is a second heat exchanger that exchanges heat between the low-temperature dilute solution supplied from the absorber 4 to the high-temperature regenerator 7 and the high-temperature concentrated solution returned to the absorber 4 from the high-temperature regenerator 7; Increase the temperature of the solution. 10 is a refrigerant spray pump to help vaporize the refrigerant liquid. 11 is a solution spray pump to help the refrigerant vapor be absorbed into the solution. 12 is a solution circulation pump that sucks the dilute solution from the absorber 4 and supplies it to the low-temperature regenerator 1 and the high-temperature regenerator 7. Reference numeral 13 denotes a group of hot water heating tubes for heating provided inside the high-temperature regenerator 7, and heats water passing through the tube group by heat exchange with refrigerant vapor in the high-temperature regenerator 7. 14
15 is a shell housing a low-temperature regenerator 1, a condenser 3, an evaporator 3, and an absorber 4; 15 is a solution circulation pump 12;
A liquid supply pipe 16 that supplies the dilute solution discharged from the second heat exchanger 9 to the high-temperature regenerator 7 through the heated side of the second heat exchanger 9;
1 is a liquid supply pipe that supplies the dilute solution discharged from the solution circulation pump 12 to the low-temperature regenerator 1 through the heated side of the first heat exchanger 8, and 17 and 18 are furnace cylinders provided inside the high-temperature regenerator 7. The furnace tube 17 and the smoke tube 18 constitute a solution heating tube group. 19 is a return pipe for returning the concentrated solution from the high temperature regenerator 7 to the absorber 4 through the heating side of the second heat exchanger 9;
21 is a return pipe that returns the concentrated solution from the low-temperature regenerator 1 to the absorber 4 through the heating side of the first heat exchanger 8; An overflow pipe for returning the solution to the absorber 4, 22 a refrigerant reservoir, 23 a refrigerant spray pipe, 2
4 is a tube that guides the refrigerant liquid discharged from the refrigerant spray pump 10 to the refrigerant spray pipe 23; 25 is a solution spray tube; 26 is a tube that guides the solution discharged from the solution spray pump 11 to the solution spray tube 25;
7 is a refrigerant pipe that guides the refrigerant vapor generated in the high-temperature regenerator 7 to the heating tube group of the low-temperature regenerator 1, and 28 is a refrigerant pipe that guides the refrigerant (liquid and vapor) in the heating tube group of the low-temperature regenerator 1 to the condenser 2.
The refrigerant conduit leading to the reservoir is shown. Reference numeral 30 denotes an exhaust heat recovery device, in which an exhaust heat introduction pipe 31 connected to the smoke pipe 18 is connected to the bottom of the exhaust heat recovery device 30, and the inside of the recovery device 30 is partitioned into two chambers 33 and 34 by a partition wall 32. , opening/closing dampers 35 and 36 are provided at the bottom of both chambers, respectively.
A liquid supply preheating pipe 37 connected in parallel to the liquid supply chamber 15 is arranged in the first chamber 33, and a hot water preheating pipe 38 formed in a part of the inlet side piping of the hot water heating pipe 13 is arranged in the second chamber 34. are placed. 39 and 40 are the first
An intake damper is provided on the lower wall of the chamber and the second chamber, and reference numeral 41 indicates a drain pipe at the bottom of the exhaust heat recovery device 30.

上記構造の排熱回収器の作用について説明す
る。冷房(冷却)時には、前記二重効用吸収式冷
凍機を運転すると共に、ダンパ35を開きダンパ
36を閉じて、煙管18の排ガスを排熱導入管3
1を介し排熱回収器30の第一室33に導びき、
同室に配置された給液予熱管37を加熱し、高温
再生器7に送給される稀溶液を予熱し、排ガス中
の熱を該稀溶液に回収し、冷房(冷却)時の熱効
率を約10%程度向上させることができる。この場
合第1室の吸気ダンパ39を閉じ、使用していな
い第2室34の吸気ダンパ40は開いて冷却用の
大気を吸入し、温水予熱管37内の温水が過熱さ
れることを防止する。次に暖房時は二重効用吸収
式冷凍機を運転すると共に、冷房(冷却)時の反
対にダンパ36を開き、ダンパ35を閉じて、排
ガスを第2室に導入し、温水加熱管13に流入す
る温水を温水予熱管38を介し予熱し、排ガス中
の熱を該温水に回収し、暖房時の熱効率を向上さ
せる。この場合第2室の吸気ダンパ40は閉じて
第1室の吸気ダンパ39を開く。
The operation of the exhaust heat recovery device having the above structure will be explained. During cooling, the dual-effect absorption refrigerator is operated, the damper 35 is opened and the damper 36 is closed, and the exhaust gas from the smoke pipe 18 is transferred to the waste heat introduction pipe 3.
1 to the first chamber 33 of the exhaust heat recovery device 30,
The liquid supply preheating pipe 37 placed in the same room is heated to preheat the dilute solution sent to the high temperature regenerator 7, and the heat in the exhaust gas is recovered to the dilute solution, reducing the thermal efficiency during cooling (cooling). It can be improved by about 10%. In this case, the intake damper 39 in the first chamber is closed, and the intake damper 40 in the second chamber 34, which is not in use, is opened to suck in air for cooling, thereby preventing the hot water in the hot water preheating pipe 37 from being overheated. . Next, during heating, the dual-effect absorption refrigerator is operated, and the damper 36 is opened and the damper 35 is closed, opposite to when cooling (cooling), and the exhaust gas is introduced into the second chamber and into the hot water heating pipe 13. The inflowing hot water is preheated through the hot water preheating pipe 38, and the heat in the exhaust gas is recovered into the hot water, improving thermal efficiency during heating. In this case, the intake damper 40 of the second chamber is closed and the intake damper 39 of the first chamber is opened.

以上説明したように本発明によれば、高温再生
器の加熱用熱源の排熱を回収し、冷房(冷却)時
には高温再生器に送給する稀溶液を予熱し冷房
(冷却)時の熱効率を向上し、また暖房時には暖
房用温水を予熱し暖房時の熱効率を向上すること
ができる。
As explained above, according to the present invention, the exhaust heat of the heating heat source of the high-temperature regenerator is recovered, and during cooling, the dilute solution to be sent to the high-temperature regenerator is preheated, thereby increasing the thermal efficiency during cooling. Furthermore, during heating, hot water for heating can be preheated to improve thermal efficiency during heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の二重効用吸収式冷凍機の系統
図、第2図は本発明の一実施例を示す排熱回収器
つきの二重効用吸収式冷凍機の系統図である。 1……低温再生器、2……凝縮器、3……蒸発
器、4……吸収器、5……冷媒(水)、6……溶
液(リチウムプロマイド水溶液)、7……高温再
生器、13……温水加熱管群、15……給液管、
17……炉筒、18……煙管、27……冷媒管、
30……排熱回収器、31……排熱導入管、32
……仕切壁、33……第1室、34……第2室、
35,36……ダンパ、37……給液予熱管、3
8……温水予熱管、39,40……吸気ダンパ、
41……ドレーン管。
FIG. 1 is a system diagram of a conventional dual-effect absorption refrigerating machine, and FIG. 2 is a system diagram of a dual-effect absorption refrigerating machine with an exhaust heat recovery device, showing an embodiment of the present invention. 1... Low temperature regenerator, 2... Condenser, 3... Evaporator, 4... Absorber, 5... Refrigerant (water), 6... Solution (lithium bromide aqueous solution), 7... High temperature regenerator, 13...Hot water heating tube group, 15...Liquid supply pipe,
17...furnace tube, 18...smoke pipe, 27...refrigerant pipe,
30...Exhaust heat recovery device, 31...Exhaust heat introduction pipe, 32
...Partition wall, 33...First room, 34...Second room,
35, 36...damper, 37...liquid preheating pipe, 3
8...Hot water preheating pipe, 39,40...Intake damper,
41...Drain pipe.

Claims (1)

【特許請求の範囲】 1 凝縮器、蒸発器、吸収器および溶液を加熱し
て冷媒蒸気を発生する直焚の再生器内に設けられ
た暖房用温水加熱管と上記再生器用熱源の排ガス
を導入する排熱回収器を備え、この排熱回収器は
二室に支切られ、夫々下部に排ガス導入ダンパを
設け、一方の室には給液管に並設された給液予熱
管を配置し、他室には温水予熱管を配置してな
り、冷房時には給液予熱管を介し排熱を回収し、
暖房時には温水予熱管を介し排熱を回収すること
を特徴とする直焚吸収式冷凍機。 2 排熱回収器の両区画室に夫々吸気ダンパを設
け、排熱導入ダンパと吸気ダンパの開閉を逆作動
させる特許請求の範囲第1項記載の直焚吸収式冷
凍機。
[Scope of Claims] 1. A hot water heating pipe for heating provided in a direct-fired regenerator that heats a condenser, an evaporator, an absorber, and a solution to generate refrigerant vapor, and the exhaust gas from the heat source for the regenerator is introduced. This waste heat recovery device is divided into two chambers, each with an exhaust gas introduction damper at the bottom, and one chamber has a liquid supply preheating pipe installed in parallel with the liquid supply pipe. , Hot water preheating pipes are installed in other rooms, and during cooling, exhaust heat is recovered via the supply liquid preheating pipe.
A direct-fired absorption refrigerator that is characterized by recovering exhaust heat through hot water preheating pipes during heating. 2. The direct-fired absorption refrigerator according to claim 1, wherein intake dampers are provided in both compartments of the exhaust heat recovery device, and the opening and closing of the exhaust heat introduction damper and the intake damper are reversely operated.
JP10114280A 1980-07-25 1980-07-25 Direct burning absorption type refrigerating machine Granted JPS5726366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10114280A JPS5726366A (en) 1980-07-25 1980-07-25 Direct burning absorption type refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10114280A JPS5726366A (en) 1980-07-25 1980-07-25 Direct burning absorption type refrigerating machine

Publications (2)

Publication Number Publication Date
JPS5726366A JPS5726366A (en) 1982-02-12
JPS6311583B2 true JPS6311583B2 (en) 1988-03-15

Family

ID=14292825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10114280A Granted JPS5726366A (en) 1980-07-25 1980-07-25 Direct burning absorption type refrigerating machine

Country Status (1)

Country Link
JP (1) JPS5726366A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2865305B2 (en) * 1989-04-21 1999-03-08 三洋電機株式会社 Absorption refrigerator

Also Published As

Publication number Publication date
JPS5726366A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
JP2000121196A (en) Cooling/heating system utilizing waste heat
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
JPS6311583B2 (en)
JP3883894B2 (en) Absorption refrigerator
JPH0719647A (en) Waste heat recovering system for direct burning absorption chilled and hot water machine
JP2003343939A (en) Absorption refrigerating machine
JPH0237262A (en) Device for utilizing waste heat of fuel battery
JP3851204B2 (en) Absorption refrigerator
JPS6122225B2 (en)
KR200154287Y1 (en) Absorption type air conditioner
JPS6135900Y2 (en)
JPS6119406Y2 (en)
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JPH0555787B2 (en)
JP2543258B2 (en) Absorption heat source device
JPH0350373Y2 (en)
JPS6148064B2 (en)
JP3851837B2 (en) Waste heat recovery type absorption refrigerator
KR0113790Y1 (en) Absorption refrigerating machine
JPS629487Y2 (en)
JPS5829819Y2 (en) Absorption heat pump
JPS6138787B2 (en)
JPS5829818Y2 (en) absorption refrigerator
KR0139277Y1 (en) Absorptive refrigerator
JP2002195679A (en) Absorption refrigerator