JPS63115327A - Formation of semiconductor thin film - Google Patents

Formation of semiconductor thin film

Info

Publication number
JPS63115327A
JPS63115327A JP26220286A JP26220286A JPS63115327A JP S63115327 A JPS63115327 A JP S63115327A JP 26220286 A JP26220286 A JP 26220286A JP 26220286 A JP26220286 A JP 26220286A JP S63115327 A JPS63115327 A JP S63115327A
Authority
JP
Japan
Prior art keywords
formation
plasma
substrate
temperature
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26220286A
Other languages
Japanese (ja)
Other versions
JPH0754804B2 (en
Inventor
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26220286A priority Critical patent/JPH0754804B2/en
Publication of JPS63115327A publication Critical patent/JPS63115327A/en
Publication of JPH0754804B2 publication Critical patent/JPH0754804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To unnecessitate the time required for temperature rise and temperature drop in association with the heating of a substrate which is necessary for the formation of a film as well as to contrive improvement in the productivity of the title semiconductor thin film by a method wherein, after silicon has been formed by deposition without heating the substrate, a heat treatment is performed at a temperature higher than the temperature of formation of the above-mentioned silicon. CONSTITUTION:A vacuum chamber 11 is evacuated through an exhaust hole 12. Microwaves are introduced into a plasma generating chamber 15 from a microwave oscillator 14 through a waveguide 13. An electric field is applied to the plasma generating chamber 15 from an electromagnet 16. The raw gas such as SiH4 and the like is introduced from a gas introducing hole 17. The plasma having a high degree of dissociation is generated by providing the intensity of magnetic field in such a manner that the resonant condition of electronic cyclotron is satisfied. The generated plasma passes through a plasma lead-out window 18, reaches a substrate holder 19, and amorphous silicon is formed on a substrate. Even when the characteristics of the film are not satisfied immediately after its formation, excellent film characteristics can be obtained by performing a heat treatment at 200-300 deg.C, for example.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非晶質シリコンから成る半導体薄膜の形成方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of forming a semiconductor thin film made of amorphous silicon.

従来の技術 従来、非晶質シリコンは、太陽電池、薄膜トラ2い、− ンジスタ、感光ドラム、光センサ等に幅広く応用されて
おり、今後も多方面に渡って応用展開が期待されている
。しかしながらこれらに使用される非晶質シリコンはS
 i H4;ガスのグロー放電分解法によって形成され
ており、2o○℃から350℃程度の形成温度が必要と
されていた。
BACKGROUND OF THE INVENTION Conventionally, amorphous silicon has been widely applied to solar cells, thin-film transistors, transistors, photosensitive drums, optical sensors, etc., and is expected to continue to be used in a wide variety of fields in the future. However, the amorphous silicon used for these is S
i H4: It is formed by a gas glow discharge decomposition method, and a formation temperature of about 2°C to 350°C is required.

発明が解決しようとする問題点 従来の技術では、非晶質シリコンは形成温度が20o℃
以上に昇温する必要があるため、基本的に300℃以上
の耐熱性を有する基板もしくは基板上に形成された薄膜
上にしか形成し得なかった。
Problems to be Solved by the Invention In conventional technology, amorphous silicon is formed at a temperature of 20°C.
Since it is necessary to raise the temperature above 300° C., it has basically been possible to form the film only on a substrate that has heat resistance of 300° C. or higher or on a thin film formed on a substrate.

また形成時に堆積すべき基板を均一に2Q○℃〜350
℃に保つ必要があるため、昇温時間にかなり時間を要し
、それと同時に堆積装置内の加熱設備も複雑かつ高価な
ものであり、製造コストを高くしている原因となってい
た。
In addition, the substrate to be deposited during formation is uniformly heated to 2Q○℃~350℃.
Since it is necessary to maintain the temperature at 0.degree. C., it takes a considerable amount of time to raise the temperature, and at the same time, the heating equipment in the deposition apparatus is complicated and expensive, causing high manufacturing costs.

本発明は、このような従来技術における問題点を解決す
ることを目的とする。
The present invention aims to solve these problems in the prior art.

問題点を解決するための手段 上記問題点を解決するだめ、本発明にかかる半31− 
・ 導体薄膜の形成方法は、マイクロ波電子サイクロトロン
共鳴吸収を利用したプラズマ分解による非晶質シリコン
の形成方法において、基板加熱を行なわず前記シリコン
を堆積形成した後、その形成温度より高い温度で熱処理
を行なう方法である。
Means for Solving the Problems In order to solve the above problems, the present invention has a half-31-
- The method for forming a conductive thin film is a method for forming amorphous silicon by plasma decomposition using microwave electron cyclotron resonance absorption, in which the silicon is deposited without heating the substrate, and then heat treated at a temperature higher than the formation temperature. This is a method of doing this.

さらに望ましくは半導体薄膜の形成において、外部より
導入する原料ガスの導入量を真空装置の圧力が6×10
−4Torrから2x10””’Torrに保たれるよ
う設定する。
More preferably, in the formation of a semiconductor thin film, the amount of raw material gas introduced from the outside is controlled at a pressure of 6×10
-4Torr to 2x10'''Torr.

作  用 この方法を用いれば、室温でも良好な膜質の非晶質シリ
コンの形成が可能となる。また膜形成直後特性が満足さ
れなくてもさらにその後たとえば200℃〜300’C
の熱処理を行なうことによって良好な膜特性を示すこと
ができる。
Function: Using this method, it is possible to form amorphous silicon with good film quality even at room temperature. Moreover, even if the characteristics are not satisfied immediately after film formation,
By performing the heat treatment, good film characteristics can be exhibited.

さらに本発明において、望ましくは、μ被プラズマCV
Dによる高密度で高励起なプラズマが基板に輸送される
際に、ある適度なプラズマの状態をもって堆積に寄与す
るようにするため、プラズマの生じている真空装置の圧
力をもって調整する。
Furthermore, in the present invention, preferably μ plasma CV
When the high-density and highly excited plasma caused by D is transported to the substrate, the pressure of the vacuum device in which the plasma is generated is adjusted so that the plasma is in a certain appropriate state and contributes to deposition.

すなわちその圧力が5XIC)”’X5X10−’To
rrにおいては、堆積に関与する分解物と基板もしくは
堆積された膜の表面での原子の配列にエネルギーを与え
る荷電粒子とが適度な比率になシ良質な膜形成が行なわ
れるが、それよシ圧力が低いと荷電粒子が膜にダメージ
を与え、圧力が高いと適度な荷電粒子によるエネルギー
の供給がなされずいずれにせよ良好な膜特性が得られに
くい。
That is, the pressure is 5XIC)"'X5X10-'To
In rr, a high-quality film is formed when the decomposition products involved in deposition and the charged particles that give energy to the arrangement of atoms on the surface of the substrate or deposited film are in an appropriate ratio. If the pressure is low, the charged particles will damage the membrane, and if the pressure is high, an appropriate amount of energy will not be supplied by the charged particles, making it difficult to obtain good membrane properties.

実施例 以下、図面に基づき、本発明の代表的な実施例を示す。Example Hereinafter, typical embodiments of the present invention will be shown based on the drawings.

第1図は本実施例で使用するμ波ECRプラズマCVD
装置の概略図である。11が真空チャンバーで、排気孔
12より真空に排気される。
Figure 1 shows the μ-wave ECR plasma CVD used in this example.
FIG. 2 is a schematic diagram of the device. Reference numeral 11 denotes a vacuum chamber, which is evacuated to a vacuum through an exhaust hole 12.

導波管13を通してマイクロ波発振器14からマイクロ
波がプラズマ発生室16へ導入される。電磁石16によ
りプラズマ発生室16に磁界が印加される。17はガス
導入口でS I H4等の原料ガスが導入される。磁界
の強さを電子サイクロトロン共鳴条件を満すように設定
することにより解離度の高いプラズマが発生する。発生
したプラズマは5t・−/ プラズマ引出し窓18を通過し基板ホルダ19に達し、
ホルダ19上の基板に非晶質シリコンが形成される。
Microwaves are introduced from a microwave oscillator 14 into a plasma generation chamber 16 through a waveguide 13 . A magnetic field is applied to the plasma generation chamber 16 by the electromagnet 16 . Reference numeral 17 denotes a gas introduction port through which a raw material gas such as S I H4 is introduced. Plasma with a high degree of dissociation is generated by setting the strength of the magnetic field to satisfy electron cyclotron resonance conditions. The generated plasma passes through the plasma extraction window 18 and reaches the substrate holder 19.
Amorphous silicon is formed on the substrate on the holder 19.

第2図は、SiH4を導入量によって真空チャンバーの
圧力を6XIC)”’から2x10−3Torrまで変
化させて室温で形成した非晶質シリコン薄膜の光電気伝
導度と喧伝導度の変化を示している。1×10−4〜5
X10−’Torrの圧力において良好な特性を示して
いる。
Figure 2 shows the changes in photoelectric conductivity and thermal conductivity of an amorphous silicon thin film formed at room temperature by varying the pressure in the vacuum chamber from 6XIC)'' to 2x10-3 Torr depending on the amount of SiH4 introduced. Yes.1×10-4~5
It shows good characteristics at a pressure of X10-'Torr.

第3図は2x10−3Torrで形成した非晶質シリコ
ンを300℃まで熱処理した場合の光電気伝導度と喧伝
導電度の変化を示している。熱処理によって良好な特性
を示しておシ実用上問題の無い非晶質シリコンが得られ
ている。
FIG. 3 shows changes in photoelectric conductivity and conductivity when amorphous silicon formed at 2×10 −3 Torr is heat-treated to 300° C. Through heat treatment, amorphous silicon has been obtained that exhibits good properties and poses no practical problems.

第4図は圧力を変化させた時の非晶質シリコンの形成速
度を示しており、特性の良い圧力では形成速度が遅く、
圧力が高い程速くなっている。それゆえ工業上の観点か
ら見ると熱処理の工程は増えるが圧力の高い場合C1X
IC)”〜2x10−’Torrが有用である。
Figure 4 shows the rate of formation of amorphous silicon when changing the pressure. At pressure with good characteristics, the rate of formation is slow;
The higher the pressure, the faster the speed. Therefore, from an industrial point of view, the number of heat treatment steps increases, but if the pressure is high, C1X
IC)"~2x10-'Torr is useful.

6、、、−7 発明の効果 本発明の効果は次のようなものである。6,,,-7 Effect of the invention The effects of the present invention are as follows.

第1に、従来、形成時に必要で基板加熱のために要した
昇温と降温に要する時間が必要なくなり生産性が良い。
First, productivity is improved because the time required for heating and cooling the substrate, which was conventionally required during formation, is not required.

第2に、前記したように圧力を選ぶ事により、熱処理の
工程は加わるが、堆積形成速度が速い条件を選ぶ事がで
き、成膜時間短縮により装置の有効利用が可能となる。
Second, by selecting the pressure as described above, although a heat treatment step is added, conditions can be selected that provide a high deposition rate, and the film formation time can be shortened, allowing effective use of the apparatus.

熱処理には犬がかりな装置は必要なく、時間も短かいの
で生産性は低下しない。
Heat treatment does not require complicated equipment and takes only a short time, so productivity does not decrease.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で使用したμ波ECRプラズマCVD装
置の概略図、第2図は本実施例としてS I H4の導
入量を変えて圧力を変化させ、非晶質シリコンを形成し
た時の非晶質シリコンの光および暗電気伝導度の変化を
示す図、第3図は光導電性を示さなかった2 X 10
””3Torr の圧力で作成した非晶質シリコンの光
および暗電気伝導度の熱処理特性を示す図、第4図は圧
力を変えた時の形成速度の変化を示す図である。 7.7 11・・・・・真空チャンバー、12・・・・・・排気
孔、13・・・・・導波管、14・・・・・・マイクロ
波発振器、15・・・・・・プラズマ発生室、16・・
・・・・電磁石、17・・・・・・ガス導入口、18・
・・・・・プラズマ引き出し窓、19・・・・・・基板
ホルダー。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名イ1
−−−真空矢テソバー T2−751F女ijL +、5−−−Vラズマ茫生窒 jG−−−y彊しニイゴ、7 イジ 丁7−−−刀□ス(1人′口 f9−−−1に本失トルダ 第2図 Eカ 第3図
Figure 1 is a schematic diagram of the μ-wave ECR plasma CVD apparatus used in the present invention, and Figure 2 is a diagram showing the results of this example when amorphous silicon was formed by changing the amount of S I H4 introduced and changing the pressure. Diagram showing changes in optical and dark electrical conductivity of amorphous silicon, Figure 3 shows no photoconductivity 2 x 10
FIG. 4 is a diagram showing the heat treatment characteristics of optical and dark electrical conductivity of amorphous silicon prepared at a pressure of 3 Torr, and FIG. 4 is a diagram showing changes in the formation rate when the pressure is changed. 7.7 11... Vacuum chamber, 12... Exhaust hole, 13... Waveguide, 14... Microwave oscillator, 15... Plasma generation chamber, 16...
...Electromagnet, 17...Gas inlet, 18.
...Plasma drawer window, 19...Substrate holder. Name of agent: Patent attorney Toshio Nakao and one other person
---Shinkuya Tesobar T2-751F Female ijL +, 5---V Razuma Isyu NijG---yJiji Niigo, 7 Ijicho 7---Katana□S (1 person'mouth f9--- 1. The book is missing. Figure 2. Figure E. Figure 3.

Claims (2)

【特許請求の範囲】[Claims] (1)マイクロ波、電子サイクロトロン共鳴吸収を利用
したプラズマ分解による非晶質シリコンの形成方法にお
いて、基板加熱を行なわず前記シリコンを堆積形成した
後、その形成温度より高い温度で熱処理を行なう事を特
徴とする半導体薄膜の形成方法。
(1) In a method for forming amorphous silicon by plasma decomposition using microwaves and electron cyclotron resonance absorption, after the silicon is deposited and formed without heating the substrate, heat treatment is performed at a temperature higher than the formation temperature. Characteristic method for forming semiconductor thin films.
(2)外部より導入する原料ガスの導入量を真空装置の
圧力が5×10^−^4Torrから2×10^−^3
Torrに保たれるよう設定することを特徴とする特許
請求の範囲第1項記載の半導体薄膜の形成方法。
(2) Adjust the amount of raw material gas introduced from the outside depending on the pressure of the vacuum device from 5 x 10^-^4 Torr to 2 x 10^-^3
2. The method of forming a semiconductor thin film according to claim 1, wherein the temperature is set to be maintained at Torr.
JP26220286A 1986-11-04 1986-11-04 Method for forming semiconductor thin film Expired - Fee Related JPH0754804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26220286A JPH0754804B2 (en) 1986-11-04 1986-11-04 Method for forming semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26220286A JPH0754804B2 (en) 1986-11-04 1986-11-04 Method for forming semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS63115327A true JPS63115327A (en) 1988-05-19
JPH0754804B2 JPH0754804B2 (en) 1995-06-07

Family

ID=17372497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26220286A Expired - Fee Related JPH0754804B2 (en) 1986-11-04 1986-11-04 Method for forming semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0754804B2 (en)

Also Published As

Publication number Publication date
JPH0754804B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
US5132754A (en) Thin film silicon semiconductor device and process for producing thereof
US5248630A (en) Thin film silicon semiconductor device and process for producing thereof
JPH06105691B2 (en) Method for producing carbon-doped amorphous silicon thin film
JPH04100233A (en) Manufacture of semiconductor device
JPH08504479A (en) Heteroepitaxially deposited diamond
KR20000068372A (en) Method of producing thin semiconductor film and apparatus therefor
JPH04174517A (en) Manufacture of diamond semiconductor
JP2006176859A (en) Method for producing silicon nano-crystal structure
JPS63115327A (en) Formation of semiconductor thin film
JP3100668B2 (en) Method for manufacturing photovoltaic element
JPH05213695A (en) Method for depositing thin diamond film
JPS63211628A (en) Plasma treatment device
JPH04287314A (en) Hydrogenated amorphous silicon laminated body and its manufacture
JP2916514B2 (en) Manufacturing method of oxide thin film
JP2644764B2 (en) Method for manufacturing heterojunction device
JPS6277465A (en) Formation of amorphous silicon film
JPH01766A (en) semiconductor equipment
JPH02208928A (en) Manufacture of amorphous thin film
JP2002069616A (en) Production method for thin film of anatase-type titanium oxide
JPS63262837A (en) Manufacture of p-type amorphous silicon
JPH0317274A (en) Film formation
JPH049458A (en) Production of thin silicon-containing film
JP2723513B2 (en) Method for manufacturing semiconductor device
JPH0499313A (en) Amorphous silicon thin film and its manufacture
JPH09208389A (en) Crystalline silicon membrane, forming of the same and device therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees