JPH01766A - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPH01766A
JPH01766A JP63-69169A JP6916988A JPH01766A JP H01766 A JPH01766 A JP H01766A JP 6916988 A JP6916988 A JP 6916988A JP H01766 A JPH01766 A JP H01766A
Authority
JP
Japan
Prior art keywords
film
hydrogen
fluorine
substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63-69169A
Other languages
Japanese (ja)
Other versions
JPS64766A (en
Inventor
茂 白井
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to JP6916988A priority Critical patent/JPS64766A/en
Priority claimed from JP6916988A external-priority patent/JPS64766A/en
Publication of JPH01766A publication Critical patent/JPH01766A/en
Publication of JPS64766A publication Critical patent/JPS64766A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電界効果トランジスタ等の半導体装置に関し
、更に詳しくは、多結晶シリコン薄膜半導体層でその主
要部を構成した半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device such as a field effect transistor, and more particularly to a semiconductor device whose main portion is composed of a polycrystalline silicon thin film semiconductor layer.

[従来技術及びその問題点] 最近、長尺化された一次元フオドセンサや大面積化され
た二次元フォトセンサ等の画像読取り装置の走査回路部
、あるいは液晶(以下LCと記す)や電界発光(以下E
Lと記す)やエレクトロクロミー材料(以下ECと記す
)を利用した画像表示デバイスの駆動回路部の大型化に
伴い、所定の基板上に形成されたシリコン薄膜を素材と
して、これらを形成することが提案されている。シリコ
ン薄膜としては、水素化シリコン非晶質薄膜や多結晶シ
リコン薄膜の検討が試られている。しかし、高速、高機
能の読取装置の走査回路部や画像表示装置の駆動回路が
要請する実効キャリア移動度(以下μoffと記す)が
約50〜1000c m” / V・SeC程度なのに
対して、非晶質シリコン薄膜ではμeffが約0.1c
rr?/V−sec程度と小さいため、上記回路部を構
成するには必ずしも適当とはいえなかった。一方、多結
晶シリコンI&[は非晶質シリコン薄膜に比べてμaf
’fは大きいが、まだ不充分であり、大面積の均一な膜
が得られない等の欠点があった。
[Prior art and its problems] Recently, scanning circuits of image reading devices such as elongated one-dimensional food sensors and large-area two-dimensional photosensors, or liquid crystal (hereinafter referred to as LC) and electroluminescent ( Below E
With the increasing size of the drive circuit portion of image display devices that utilize electrochromic materials (hereinafter referred to as L) and electrochromic materials (hereinafter referred to as EC), these materials are being formed using silicon thin films formed on predetermined substrates. is proposed. As silicon thin films, hydrogenated silicon amorphous thin films and polycrystalline silicon thin films are being investigated. However, while the effective carrier mobility (hereinafter referred to as μoff) required by the scanning circuit of a high-speed, high-performance reading device and the drive circuit of an image display device is approximately 50 to 1000 cm”/V・SeC, In a crystalline silicon thin film, μeff is approximately 0.1c.
rr? /V-sec, which is not necessarily suitable for constructing the circuit section. On the other hand, polycrystalline silicon I&[ has a smaller μaf than that of amorphous silicon thin film.
Although 'f' was large, it was still insufficient, and there were drawbacks such as the inability to obtain a uniform film over a large area.

多結晶シリコンにおいて上記の欠点が生じる原因として
、粒界に欠陥準位密度が1018c m””程度存在し
ていることが挙げられ、このような欠陥が存在すると次
の問題が生ずる。
The cause of the above-mentioned defects in polycrystalline silicon is the existence of a defect level density of approximately 1018 cm'' at grain boundaries, and the presence of such defects causes the following problems.

0粒界の欠陥準位はチャンネルの形成を阻害し、その結
果閾値電圧が高くなる。
Defect levels at the 0-grain boundary inhibit channel formation, resulting in a higher threshold voltage.

■また、粒界の欠陥準位及びポテンシャル障壁はキャリ
アの輸送を阻害し、電界効果穆勅度を減少させてしまう
(2) In addition, defect levels and potential barriers at grain boundaries inhibit carrier transport and reduce the field effect strength.

従来は、粒界の欠陥準位密度を減少させるために、水素
プラズマ処理を行う方法や、レーザー、電子線等による
アニールを行って結晶粒径の拡大を図り粒界を減少させ
る方法等が試られている(IEEE ELECTRON
 DEVICE LETTER5,VOL、EDL−1
゜No、8. P、159. AUGLIST、 19
80  T、1.KAMINSetc、)。
Conventionally, in order to reduce the density of defect levels at grain boundaries, methods such as hydrogen plasma treatment and annealing using lasers, electron beams, etc. to enlarge the crystal grain size and reduce the number of grain boundaries have been tried. (IEEE ELECTRON
DEVICE LETTER5, VOL, EDL-1
゜No, 8. P, 159. AUGLIST, 19
80 T, 1. KAMINSetc,).

しかしながら、水素プラズマ処理だけでは粒界の欠陥準
位密度を十分減少させることは困難な状況にある。また
、レーザーアニールによっても界面準位の叱りを十分に
減少させることは難しく、特に、大面積で薄膜トランジ
スタを形成する場合、その特性を均一化することは困難
である。
However, it is difficult to sufficiently reduce the density of defect levels at grain boundaries by hydrogen plasma treatment alone. Furthermore, it is difficult to sufficiently reduce the distortion of interface states even by laser annealing, and in particular, when forming a thin film transistor over a large area, it is difficult to make its characteristics uniform.

一方、気相中で異なるラジカルを会合、反応させ比較的
低温に保たれた基板上に多結晶シリコンを堆積させる方
法も提案されている(特開昭62−40717号公報)
。この方法では、堆積と平行して膜中に適量の水素を含
有させることが可能であり、粒界の欠陥を水素によって
均一に補償し得る。
On the other hand, a method has also been proposed in which different radicals are brought together and reacted in a gas phase to deposit polycrystalline silicon on a substrate kept at a relatively low temperature (Japanese Patent Laid-Open No. 40717/1983).
. With this method, it is possible to incorporate an appropriate amount of hydrogen into the film in parallel with the deposition, and defects at grain boundaries can be uniformly compensated for by hydrogen.

しかし、膜中の水素は同時に膜中の応力を増加させ、成
膜過程で、また、薄膜トランジスタの形成プロセスにお
いて剥離してしまう場合がある。
However, hydrogen in the film also increases stress in the film, and may peel off during the film formation process or during the formation process of a thin film transistor.

本発明は、上記の事情に基きなされたものであり、その
目的は、半導体装置において、多結晶シリコンからなる
半導体層が十分な電気的特性と密着性を備えている半導
体装置を提供することにある。
The present invention has been made based on the above circumstances, and an object thereof is to provide a semiconductor device in which a semiconductor layer made of polycrystalline silicon has sufficient electrical characteristics and adhesion. be.

[問題点を解決するための手段] 本発明は、半導体装置において、所定の基板上に多結晶
シリコンからなる半導体層を有し、当該半導体層が多結
晶シリコンの粒界近傍に水素及びフッ素を含有し、前記
水素及び前記フッ素の濃度のいずれか一方が前記半導体
層の層厚方向に分布していることを特徴とする半導体装
置であることに要旨が存在する。
[Means for Solving the Problems] The present invention provides a semiconductor device that includes a semiconductor layer made of polycrystalline silicon on a predetermined substrate, and that the semiconductor layer contains hydrogen and fluorine near the grain boundaries of the polycrystalline silicon. The gist of the semiconductor device is that the concentration of either the hydrogen or the fluorine is distributed in the thickness direction of the semiconductor layer.

[作用] 通常、多結晶シリコンの粒界には多数のダングリングボ
ンドが存在し、キャリアの輸送に多大な影響を与えるが
、水素やフッ素を結合させると欠陥としての働きが失わ
れ、電気的な特性が大幅に改善されル(US、P、42
17374) 、しかしながら、過剰な水素やフッ素の
存在は膜の内部応力を増大させたり耐熱性を低下させて
しまう。特に、成膜過程において水素及びフッ素を含有
させる場合、過剰な水素やフッ素の存在によって内部応
力の増大と共に膜が剥離したり、結晶成長を阻害する等
の悪影響が生じることになる。また、成膜過程の初期と
後期では結晶性が異なり、粒界並びに粒界に存在する欠
陥の濃度が異なることも考慮して水素並びにフッ素の含
有量を膜厚方向に注意深く制御しなければならない。
[Function] Normally, there are many dangling bonds at the grain boundaries of polycrystalline silicon, which have a great effect on carrier transport, but when hydrogen or fluorine is bonded, their function as defects is lost, and electrical properties have been significantly improved (US, P, 42
17374) However, the presence of excessive hydrogen or fluorine increases the internal stress of the film and reduces the heat resistance. Particularly, when hydrogen and fluorine are contained in the film forming process, the presence of excessive hydrogen and fluorine causes an increase in internal stress and adverse effects such as peeling of the film and inhibition of crystal growth. In addition, the hydrogen and fluorine contents must be carefully controlled in the film thickness direction, taking into account that the crystallinity differs between the early and late stages of the film formation process, and the concentration of grain boundaries and defects present in grain boundaries also differ. .

一方、シリコンとフッ素の結合エネルギーはシリコンと
水素の結合エネルギーに比べて大きいため、フッ素を含
有させることによって生じる電気的特性への影響は水素
に比べて小さく、または耐熱性の面でも優れている。
On the other hand, the bonding energy between silicon and fluorine is larger than that between silicon and hydrogen, so the effect of containing fluorine on electrical properties is smaller than that of hydrogen, and it also has superior heat resistance. .

しかしながら、水素原子に比べてフッ素原子は原子半径
が大きく、多量に含有させた場合、膜の内部応力を増大
させたり、結晶性を損う結果となってしまう。
However, a fluorine atom has a larger atomic radius than a hydrogen atom, and if a large amount is contained, the internal stress of the film will increase and the crystallinity will be impaired.

本発明は、半導体に水素とフッ素を同時に含有させ、水
素濃度を層厚方向で分布させることにより、粒界近傍に
存在する欠陥を半導体層全層にわたって低減し、同時に
基板との密着性を増大させることを、多結晶シリコン膜
の表面性や結晶成長を損うことなく可能としている。
In the present invention, by simultaneously containing hydrogen and fluorine in a semiconductor and distributing the hydrogen concentration in the layer thickness direction, defects existing near grain boundaries are reduced throughout the semiconductor layer, and at the same time, adhesion to the substrate is increased. This makes it possible to do this without damaging the surface properties or crystal growth of the polycrystalline silicon film.

すなわち、前述のように、CVD法(Chemical
Vapour Deposition ) 、L P 
CV D法(LowPressure Chemica
l Vapour Deposition )、あるい
はPCVD法(Plasma Chemical Va
pourDeposition)等で多結晶シリコン薄
膜を形成する場合、成膜初期と後期では結晶性が異なり
、一般に成膜初期において粒界が多い。従って、成膜初
期はど欠陥密度が大台く、成膜後期はど粒界の減少に伴
フて欠陥密度も減少するため、膜中の一欠陥密度を低減
しようとすると基板側はど多くの水素又はフッ素を含有
させる必要がある。
That is, as mentioned above, the CVD method (Chemical
Vapor Deposition), L P
CV D method (Low Pressure Chemical
l Vapor Deposition) or PCVD method (Plasma Chemical Vapor Deposition) or PCVD method (Plasma Chemical Vapor Deposition)
When a polycrystalline silicon thin film is formed using a method such as PourDeposition, the crystallinity differs between the initial stage and the latter stage of film formation, and there are generally many grain boundaries in the early stage of film formation. Therefore, in the early stage of film formation, the defect density is large, and in the later stage of film formation, the defect density decreases as the number of grain boundaries decreases. It is necessary to contain hydrogen or fluorine.

本発明者は、種々の実験を行った結果、水素又はフッ素
あるいは両者の含有量を基板側に多く、層厚方向に減少
させることができ、それによって欠陥密度を極端に減少
させることができることを見出した。しかも、膜の基板
側の反対側では水素又はフッ素あるいは両者の含有量を
減少させることで、結晶性を損うことがなく、また、電
気的特性を悪化させることもない。
As a result of various experiments, the present inventor has found that the content of hydrogen or fluorine, or both, can be increased on the substrate side and decreased in the layer thickness direction, thereby dramatically reducing the defect density. I found it. Moreover, by reducing the content of hydrogen or fluorine, or both, on the opposite side of the film from the substrate side, the crystallinity is not impaired, and the electrical characteristics are not deteriorated.

多結晶シリコン膜中の水素及びフッ素の含有量は、膜全
体の堆積に対して粒界が占める比率によって異なるが、
本発明においては、多結晶シリコン膜の電気的特性、結
晶性及び表面性に影響を与えないようにIIJalされ
ている。水素の濃度は、多結晶シリコン膜全体での割合
、すなわち、[H]  /  ([s  il  + 
[Hコ + [F] )の表示で、好適にはlXl0−
’原子比以下、最適には5X10−2原子比以下が望ま
しく、下限値としては、好適には5X10−’原子比以
上、最適には5X10−’原子比以上が望ましい。フッ
素の濃度については、 [F]/ ([si] + [H] + [F] )の
表示で、上限値は好適には5X10−2原子比以下、最
適にはlX10−2原子比以下にすることが望ましく、
下限値は好適にはtxto−’原子比以上、最適にはl
Xl0−’原子比以上が望ましい。
The content of hydrogen and fluorine in a polycrystalline silicon film varies depending on the ratio of grain boundaries to the total film deposition.
In the present invention, IIJal is applied so as not to affect the electrical properties, crystallinity, and surface properties of the polycrystalline silicon film. The concentration of hydrogen is determined by the proportion of the entire polycrystalline silicon film, that is, [H] / ([s il +
[H+[F]), preferably lXl0-
The lower limit is preferably 5X10-' or more, most preferably 5X10-' or more. The concentration of fluorine is expressed as [F]/([si] + [H] + [F]), and the upper limit is preferably below 5X10-2 atomic ratio, optimally below 1X10-2 atomic ratio. It is desirable to
The lower limit is preferably greater than or equal to txto-' atomic ratio, and optimally l
Xl0-' atomic ratio or more is desirable.

上記の濃度の場合、水素及びフッ素が粒界に偏析し、十
分に欠陥準位を補償するからである。
This is because at the above concentration, hydrogen and fluorine segregate at grain boundaries and sufficiently compensate for defect levels.

また、電気的特性を更に改善するには、膜中における5
i−H結合に比べてS 1−H2結合を少なくすること
が望ましい。これは、51−M結合の量を5L−H2結
合の量に比べて多くすることにより結晶性を良くし、キ
ャリアの移動度を増大させることができるからである。
In addition, in order to further improve the electrical properties, it is necessary to
It is desirable to have fewer S 1-H2 bonds than i-H bonds. This is because by increasing the amount of 51-M bonds compared to the amount of 5L-H2 bonds, crystallinity can be improved and carrier mobility can be increased.

これを実現する具体的条件としては、半導体層の赤外吸
収スペクトルにおいて5i−H結合を反映する2000
cm””におけるピークと5L−Hz結合を反映する2
100cm”におけるピークとの比(2000cm−’
のピークの値/2100Cm−’のピークの値)が1以
下になることが好ましい。
The specific conditions for achieving this are as follows: 2,000
2 reflecting the peak at cm”” and the 5L-Hz coupling
Ratio to the peak at 100cm''(2000cm-'
It is preferable that the value (peak value at 2100 Cm-') be 1 or less.

多結晶シリコン薄膜の粒界近傍に水素及びフッ素を含有
させる方法としては、多結晶シリコン薄膜形成後、水素
又はフッ素を主体とするガスのプラズマ雰囲気中で熱処
理する方法がある。すなわち、基板温度100〜500
℃でガス圧力1O−5To r r〜l OTo r 
r、高周波電力10−3〜102W/rr?、高周波周
波数5〜50GH2のもとでプラズマを発生させる。こ
の時ガスは主として水素(H2)、フッ素(F2)を用
いるが、A r % He % N e等の不活性ガス
を加えてもよい。
As a method for containing hydrogen and fluorine near the grain boundaries of a polycrystalline silicon thin film, there is a method of forming a polycrystalline silicon thin film and then performing heat treatment in a plasma atmosphere of a gas mainly containing hydrogen or fluorine. That is, the substrate temperature is 100 to 500
Gas pressure 1O-5Tor r~l OTor at °C
r, high frequency power 10-3~102W/rr? , plasma is generated under a high frequency frequency of 5 to 50 GH2. At this time, hydrogen (H2) and fluorine (F2) are mainly used as gases, but an inert gas such as Ar % He % Ne may also be added.

例えば、基板上に多結晶シリコンを形成した後、フッ素
プラズマ中で処理を行う。その後、さらに水素プラズマ
中で処理を行い、薄膜中にフッ素並びに水素を含有させ
る。次に、ルビーレーザーやエキシマレーザ−等によっ
て、基板と反対側を約100〜1000人の深さでアニ
ーリングする。この時レーザー照射した領域は溶融して
も溶融しなくてもよいが、溶融した方が結晶粒径は拡大
する。ただし、レーザー照射した領域における水素並び
にフッ素はレーザー照射によって薄膜中より放出される
が、レーザー照射によって溶融した場合、水素並びにフ
ッ素の含有量は極端に減少してしまう。従って、レーザ
ーアニール後、再びフッ素プラズマ処理、又は水素プラ
ズマ処理、又は水素とフッ素の両者を用いたプラズマ処
理を行う。この時のフッ素又は水素あるいは両者のプラ
ズマ処理の条件は、レーザーアニール前に行ったフッ素
プラズマ処理の条件と同じでもよいが、好ましくは、基
、板温度は100〜300’C、ガス圧力は10−5〜
10−’To r r、高周波電力は10−3〜IW/
rn’である。以上に述べた方法、比較的粒界が少なく
、したがって欠陥密度の低い、また表面近傍においては
フッ素含有量が少ない多結晶シリコン薄膜が得られる。
For example, after forming polycrystalline silicon on a substrate, processing is performed in fluorine plasma. Thereafter, further treatment is performed in hydrogen plasma to incorporate fluorine and hydrogen into the thin film. Next, the opposite side of the substrate is annealed to a depth of approximately 100 to 1000 nm using a ruby laser, an excimer laser, or the like. At this time, the laser irradiated area may or may not be melted, but the crystal grain size will be expanded if it is melted. However, although hydrogen and fluorine in the laser irradiated area are released from the thin film by laser irradiation, when the thin film is melted by laser irradiation, the hydrogen and fluorine contents are extremely reduced. Therefore, after laser annealing, fluorine plasma treatment, hydrogen plasma treatment, or plasma treatment using both hydrogen and fluorine is performed again. The conditions for the fluorine or hydrogen or both plasma treatment at this time may be the same as the conditions for the fluorine plasma treatment performed before laser annealing, but preferably the substrate and plate temperatures are 100 to 300'C and the gas pressure is 10 -5~
10-'To r r, high frequency power is 10-3~IW/
rn'. The method described above yields a polycrystalline silicon thin film with relatively few grain boundaries, therefore low defect density, and low fluorine content near the surface.

また、多結晶シリコン薄膜の形成時に、水素並びにフッ
素を含有させる場合も同等の効果を有する。
Further, when forming a polycrystalline silicon thin film, the same effect can be obtained when hydrogen and fluorine are contained.

多結晶シリコン薄膜の形成法としては、プラズマCVD
法、スパッタリング法、イオンブレーティング法などが
あるが、ここでは、気相中で異なるラジカルを会合、反
応させ比較的低温に保たれた基板上に成膜する方法を例
に説明する。
Plasma CVD is a method for forming polycrystalline silicon thin films.
method, sputtering method, ion blating method, etc., but here we will explain a method of forming a film on a substrate kept at a relatively low temperature by associating and reacting different radicals in a gas phase.

すなわち、基板上に堆積膜を形成する為の成膜空間内に
、ケイ素とハロゲンを含む化合物を分解することにより
生成される活性種(A)と、該活性種(A)と化学的相
互作用をする、成膜用の化学物質より生成される活性種
(B)とをそれぞれ別々に導入し、相互的に化学反応さ
せる事によって前記基板上に堆積膜を形成するにあたっ
て、該堆積膜に対して水素を含有させる作用を有するガ
ス又はその分解物を供給すると共に、前記水素を含有さ
せる作用を有するガス又はその分解物に光エネルギーを
照射して前記堆積膜に対し水素が含有される効率を増大
せしめる。
That is, active species (A) generated by decomposing a compound containing silicon and halogen are present in a film forming space for forming a deposited film on a substrate, and chemical interactions with the active species (A) occur. In forming a deposited film on the substrate by separately introducing active species (B) generated from a chemical substance for film formation and causing a mutual chemical reaction, the deposited film is supplying a gas having the effect of containing hydrogen or a decomposition product thereof, and irradiating the gas having the effect of containing hydrogen or the decomposition product thereof with light energy to increase the efficiency with which hydrogen is contained in the deposited film. increase.

さらに、前記水素を含有させる作用を有するガス又はそ
の分解物の流量又は、前記光エネルギーの量を変化させ
ることで前記堆積膜中に含有させる水素の量を制御する
ことが可能となる。
Furthermore, it is possible to control the amount of hydrogen contained in the deposited film by changing the flow rate of the gas having the effect of containing hydrogen or its decomposition product, or the amount of the light energy.

本発明において、活性化空間(A)に導入されるケイ素
とハロゲンを含む化合物としては、例えば鎮状又は環状
シラン化合物の水素原子の一部乃至全部をハロゲン原子
で置換した化合物が用いられ、具体的には、例えば、S
 1 u Y 2u+2 (uは1以上の整数、YはF
、CIL、Br及び■より選択される少なくとも一種の
元素である)で示される鎮状ハロゲン化ケイ素、S i
v Y2V (vは3以上の整数、Yは前記と同じ)で
示される環状ハロゲン化ケイ素、S 1 u HX Y
y  (u及びyは上記と同じ。x+y=2u又は2u
+2である)で示さねる鎮状又は環状化合物などが挙げ
られる。
In the present invention, as the compound containing silicon and halogen to be introduced into the activation space (A), for example, a compound in which part or all of the hydrogen atoms of a silane compound or a cyclic silane compound is replaced with a halogen atom is used. For example, S
1 u Y 2u+2 (u is an integer greater than or equal to 1, Y is F
, CIL, Br, and (1) is a dehydrated silicon halide, S i
Cyclic silicon halide represented by v Y2V (v is an integer of 3 or more, Y is the same as above), S 1 u HX Y
y (u and y are the same as above. x+y=2u or 2u
Examples include styrene or cyclic compounds represented by +2).

具体的には、例えばSiF4.(SiF2)s。Specifically, for example, SiF4. (SiF2)s.

(SiF2)a、(SiF2)4,5i2Fe。(SiF2)a, (SiF2)4,5i2Fe.

513Fa、SiHF3.SiH2F2+5iCJlt
4.(SiCA2)5.SiBr4゜(SiBr2)5
,5i2Cf16,5t2Bra。
513Fa, SiHF3. SiH2F2+5iCJlt
4. (SiCA2)5. SiBr4゜(SiBr2)5
, 5i2Cf16, 5t2Bra.

5iHCn3 、SiH3CA、5fH2C112゜5
iHBr3,5iHI3.5i2Cf13 F3等のガ
ス状態又は容易にガス化し得るものが挙げられる。
5iHCn3, SiH3CA, 5fH2C112°5
Examples include those in a gaseous state or those that can be easily gasified, such as iHBr3, 5iHI3.5i2Cf13 F3.

活性種(A)を生成させるためには、前記ケイ素とハロ
ゲンを含む化合物に加えて、必要に応じてケイ素単体等
他のケイ素化合物、水素、ハロゲン化合物(例えばF2
ガス、Cλ2ガス、ガス化したBr2、■2等)などを
併用することができる。
In order to generate the active species (A), in addition to the above-mentioned compound containing silicon and halogen, other silicon compounds such as simple silicon, hydrogen, and halogen compounds (for example, F2
gas, Cλ2 gas, gasified Br2, ■2, etc.) can be used in combination.

上述したものに、活性化空間(A)で熱、光、電気など
の励起エネルギーを加えることにより、活性種(A)が
生成される。
Activated species (A) are generated by adding excitation energy such as heat, light, electricity, etc. to the above-mentioned species in the activation space (A).

本発明において、活性化空間(A)で活性種(A)を生
成させるエネルギーとしては、各々の条件及び装置を考
慮して、マイクロ波、RF、低周波、DC等の電気エネ
ルギーやヒータ加熱、赤外線加熱等による熱エネルギー
や光エネルギーなどの活性化エネルギーが使用される。
In the present invention, the energy for generating the active species (A) in the activation space (A) may be electrical energy such as microwave, RF, low frequency, DC, etc., heater heating, Activation energy such as thermal energy such as infrared heating or light energy is used.

上述したものに、活性化空間(A)で熱、光、電気など
の励起エネルギーを加えることにより、活性種(A)が
生成される。
Activated species (A) are generated by adding excitation energy such as heat, light, electricity, etc. to the above-mentioned species in the activation space (A).

本発明の方法で用いられる活性化空間(B)において、
活性種(B)を生成させる前記成膜用の化学物質として
は、水素ガス及び/又はハロゲン化合物(例えばF2ガ
ス、C,Q2ガス、ガス化したBr2.I2等)が有利
に用いられる。また、これらの成膜用の化学物質に加え
て、例えばHe、Ar、Ne等の不活性ガスを用いるこ
ともできる。これらの成膜用の化学物質のうち複数を用
いる場合には、あらかじめ混合して活性化空間(B)内
にガス状態で導入してもよいし、あるいはそれぞれ独立
した供給源から各々個別に、活性化空間(B)にガス状
態で導入してもよいし、また、それぞれ独立の活性化空
間に導入してそれぞれ個別に活性化してもよい。
In the activation space (B) used in the method of the present invention,
Hydrogen gas and/or halogen compounds (for example, F2 gas, C, Q2 gas, gasified Br2.I2, etc.) are advantageously used as the chemical substance for film formation that generates the active species (B). Furthermore, in addition to these chemical substances for film formation, inert gases such as He, Ar, and Ne can also be used. When using multiple of these chemical substances for film formation, they may be mixed in advance and introduced into the activation space (B) in a gaseous state, or each may be individually supplied from independent sources. They may be introduced into the activation space (B) in a gaseous state, or may be introduced into independent activation spaces and activated individually.

本発明において、成膜空間に導入される前記活性種(A
)と前記活性fffi(B)との量の割合は、成膜条件
、活性種の種類等に従って適宜決められるが、好ましく
は10:1〜1:10(導入流量比)が適当であり、よ
り好ましくは8:2〜4:6とされるのが望ましい。
In the present invention, the active species (A
) and the active fffi (B) can be appropriately determined according to the film forming conditions, the type of active species, etc., but is preferably 10:1 to 1:10 (introduction flow rate ratio), and more The ratio is preferably 8:2 to 4:6.

ハロゲンを成分として含む化合物は、ガス状態で直接成
膜空間内に導入してもよいし、あるいは、あらかじめ活
性化空間(A)乃至は活性化空間(B)、又は第3の活
性化空間(C)で活性化し、その後成膜空間に導入する
こともできる。
The compound containing halogen as a component may be introduced directly into the film forming space in a gaseous state, or may be introduced in advance into the activation space (A) or (B) or the third activation space ( It is also possible to activate it in step C) and then introduce it into the film forming space.

また、水素を含有させる作用を有するガス又は活性種と
しては、水素ガス(F2)や、水素ラジカル(H)が有
利に用いられるが、ざらにF2やHに加えてHe、Ar
、Ne等の不活性ガスを用いることもできる。
Further, as the gas or active species having the effect of containing hydrogen, hydrogen gas (F2) and hydrogen radicals (H) are advantageously used, but in addition to F2 and H, He, Ar, etc.
, Ne, and other inert gases may also be used.

また、フッ素を含有させる作用を有するガス又は活性種
としては、フッ素ガス(F2)や、CHF3.CF4.
C2F6.CBrF3゜C(1:J2□F2 、CCf
13F、CCJ2F3 。
Further, examples of the gas or active species having the effect of containing fluorine include fluorine gas (F2), CHF3. CF4.
C2F6. CBrF3゜C (1:J2□F2, CCf
13F, CCJ2F3.

C2(1!2F4等のフッ化炭素、BF3のようなフッ
化ホウ素をはじめとするSF6.NF、。
C2 (1!2 SF6.NF, including fluorocarbons such as F4, boron fluorides such as BF3.

PF、等のフッ化物、さらにこれらのガスによるフッ素
ラジカル(F″)、CF”のようなイオンが用いられる
Fluorides such as PF, and ions such as fluorine radicals (F'') and CF'' generated by these gases are used.

また、前記の方法により形成される堆積膜は、成膜中又
は成膜後に不純物元素でドーピングすることが可能であ
る。使用する不純物元素としては、p型不純物としては
、例えば、B、AI!、。
Further, the deposited film formed by the above method can be doped with an impurity element during or after film formation. As the impurity element to be used, examples of the p-type impurity include B, AI! ,.

Ga、In、TJ2等の周期律表第3族Bの元素が好適
なものとして挙げられ、n型不純物としては、例えばP
、As、Sb、Bi等の周期律表第5族Bの元素が好適
なものとして挙げられるが、これらのうち、特にB、G
a、P、Sb等が最適である。ドーピングされる不純物
の量は、所望される電気的・光学的特性に応じて適宜決
定される。
Suitable examples include elements of Group 3 B of the periodic table such as Ga, In, and TJ2, and examples of n-type impurities include, for example, P.
, As, Sb, Bi, and other elements in Group 5 B of the periodic table are preferred, but among these, B, G, etc.
a, P, Sb, etc. are optimal. The amount of impurities to be doped is appropriately determined depending on desired electrical and optical characteristics.

かかる不純物元素を成分として含む物質(不純物導入用
物質)としては、常温常圧でガス状態であるか、あるい
は少なくとも活性化条件下で気体であり、適宜の気化装
置で容易に気化し得る化合物を選択するものが好ましい
。この様な化合物としては、PH3,F2 H4、PF
3 、PFa 。
The substance containing such an impurity element as a component (substance for introducing impurities) is a compound that is in a gaseous state at room temperature and normal pressure, or at least in a gaseous state under activation conditions, and that can be easily vaporized with an appropriate vaporization device. The one you choose is preferred. Such compounds include PH3, F2 H4, PF
3, PFa.

PCIL3 、ASH3、ASF3 、AsF5 。PCIL3, ASH3, ASF3, AsF5.

ASCJZ3.5bHs 、5bFs 、5iHz 。ASCJZ3.5bHs, 5bFs, 5iHz.

BF3 、BCJ23 、BBr3 、B2 H6。BF3, BCJ23, BBr3, B2 H6.

B4 Hlo、B5 He・ BsH++・ BaH+
o・B、H,2,AuCJZ3等を挙げることができる
B4 Hlo, B5 He・BsH++・BaH+
o.B, H,2, AuCJZ3, etc. can be mentioned.

不純物元素を含む化合物は、1種だけ用いても2種以上
併用してもよい。
The compounds containing impurity elements may be used alone or in combination of two or more.

第1図は本発明の半導体装置を説明する為の模式図であ
る。第1図に示す基板101は導電性でも電気絶縁性で
あっても良い。導電性支持体としては、例えばNiCr
、ステンレス、Au2゜Cr、Mo、Au、I r、N
b、Ta、Ti。
FIG. 1 is a schematic diagram for explaining the semiconductor device of the present invention. The substrate 101 shown in FIG. 1 may be electrically conductive or electrically insulating. As the conductive support, for example, NiCr
, stainless steel, Au2゜Cr, Mo, Au, Ir, N
b, Ta, Ti.

V、Ti、Pt、Pd等の金属またはこれ等の合金が挙
げられる。
Examples include metals such as V, Ti, Pt, and Pd, and alloys thereof.

電気絶縁性支持体としては、ポリエステル、ポリエチレ
ン、ポリカーボネート、セルローズアセテート、ポリプ
ロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
スチレン、ポリアミド等の合成樹脂のフィルムまたはシ
ートやガラス、セラミック、紙等が通常使用される。
As the electrically insulating support, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramic, paper, etc. are usually used. .

第2図は堆積膜形成装置の一例の概略構成を示す部分断
面図である。
FIG. 2 is a partial sectional view showing a schematic configuration of an example of a deposited film forming apparatus.

第2図において、201はその内部で多結晶シリコン膜
の堆積が行われる堆積室であり、堆積室201内は排気
管221を通して不図示の排気系に接続され、排気バル
ブ220によって堆積室201内を所望の圧力に保持す
ることができる。堆積室201の圧力は通常10−5〜
!、0Torr、好ましくは10−’〜0. I To
 r rに調整される。堆積室201には基板支持台2
02上に所望の基板203が載置される。
In FIG. 2, 201 is a deposition chamber in which a polycrystalline silicon film is deposited, and the inside of the deposition chamber 201 is connected to an exhaust system (not shown) through an exhaust pipe 221. can be maintained at a desired pressure. The pressure in the deposition chamber 201 is usually 10-5~
! , 0 Torr, preferably 10-' to 0. I To
r Adjusted to r. The deposition chamber 201 has a substrate support 2.
A desired substrate 203 is placed on 02.

204は基板加熱用のヒーターであり、導線205を介
して給電され発熱する、基板温度は特に制限されないが
、好ましくは100〜500℃、より好ましくは150
〜400℃である。
Reference numeral 204 denotes a heater for heating the substrate, which is supplied with power through a conductive wire 205 and generates heat.The substrate temperature is not particularly limited, but is preferably 100 to 500°C, more preferably 150°C.
~400°C.

206乃至211はガス供給源であり、ケイ素化合物、
及び必要に応じて用いられる水素、ハロゲン化合物、不
活性ガス、不純物元素を成分とする化合物の数に応じて
設けられる。原料化合物のうち液状のものを使用する場
合には、適宜気化装置を設ける。図中ガス供給源206
乃至211の符号にaを付したものは分岐管、bを付し
たものは流量計、Cを付したものは各流量針の高圧側の
圧力を計測する圧力計、d又はeを付したものは各気体
流量を調整するためのバルブである。
206 to 211 are gas supply sources, silicon compounds,
and, depending on the number of compounds containing hydrogen, a halogen compound, an inert gas, and an impurity element, which are used as necessary. When using liquid raw material compounds, a vaporizer is provided as appropriate. Gas supply source 206 in the figure
Those with a suffix a to 211 are branch pipes, those with b are flow meters, those with C are pressure gauges that measure the pressure on the high pressure side of each flow needle, and those with d or e. are valves for adjusting the flow rate of each gas.

212.225.226は成膜空間へのガス導入管であ
る。
212, 225, 226 are gas introduction pipes into the film forming space.

217は光エネルギー発生装置であり、例えば、水銀ラ
ンプ、キセノンランプ、炭酸ガスレーザー、アルゴンイ
オンレーザ−、エキシマレーザ−等である。
217 is a light energy generating device, such as a mercury lamp, a xenon lamp, a carbon dioxide laser, an argon ion laser, an excimer laser, or the like.

光エネルギー発生装e217から適宜の光学系を用いて
基板全体あるいは基板の所望部分に向けられた光218
は、矢印219の向きに導入された原料ガス等に照射さ
れ、成膜原料のガス等を励起し反応させる。励起された
ガス等は矢印219の向きに流れていく過程で基板20
3の全体あるいは所望部分に多結晶シリコンの堆積膜を
形成する。
Light 218 is directed from the optical energy generating device e217 onto the entire substrate or a desired portion of the substrate using a suitable optical system.
is irradiated onto the raw material gas introduced in the direction of arrow 219 to excite the film forming raw material gas and cause it to react. The excited gas, etc. flows in the direction of the arrow 219 and reaches the substrate 20.
A deposited film of polycrystalline silicon is formed on the entire surface 3 or on a desired portion.

また、214.223は各々、活性種(A)及び活性種
(B)を生起する活性化空間であり、213.222は
各々、活性種を生成させるためのマイクロ波プラズマ発
生装置である。
In addition, 214 and 223 are activation spaces that generate active species (A) and active species (B), and 213 and 222 are microwave plasma generators that generate active species.

本発明の半導体層中の水素又はフッ素、あるいは各気体
流量を調整するためのバルブである。
This is a valve for adjusting the flow rate of hydrogen, fluorine, or each gas in the semiconductor layer of the present invention.

212.225.226は成膜空間へのガス導入管であ
る。
212, 225, 226 are gas introduction pipes into the film forming space.

217は光エネルギー発生装置であり、例えば、水銀ラ
ンプ、キセノンランプ、炭酸ガスレーザー、アルゴンイ
オンレーザ−、エキシマレーザ−等である。
217 is a light energy generating device, such as a mercury lamp, a xenon lamp, a carbon dioxide laser, an argon ion laser, an excimer laser, or the like.

光エネルギー発生装置217から適宜の光学系を用いて
基板全体あるいは基板の所望部分に向けられた光218
は、矢印219の向きに導入された原料ガス等に照射さ
れ、成膜原料のガス等を励起し反応させる。励起された
ガス等は矢印219の向きに流れていく過程で基板20
3の全体あるいは所望部分に多結晶シリコンの堆積膜を
形成する。
Light 218 is directed from a light energy generating device 217 onto the entire substrate or a desired portion of the substrate using a suitable optical system.
is irradiated onto the raw material gas introduced in the direction of arrow 219 to excite the film forming raw material gas and cause it to react. The excited gas, etc. flows in the direction of the arrow 219 and reaches the substrate 20.
A deposited film of polycrystalline silicon is formed on the entire surface 3 or on a desired portion.

また、214.223は各々、活性種(A)及び活性種
(B)を生起する活性化空間であり、213.222は
各々、活性種を生成させるためのマイクロ波プラズマ発
生装置である。
In addition, 214 and 223 are activation spaces that generate active species (A) and active species (B), and 213 and 222 are microwave plasma generators that generate active species.

本発明の半導体層中の水素又はフッ素、あるいは水素及
びフッ素の両者の含有量と層圧分布との関連性について
鋭意検討した結果を次に示す。
The results of intensive study on the relationship between the content of hydrogen or fluorine, or both hydrogen and fluorine, and the layer pressure distribution in the semiconductor layer of the present invention are shown below.

第2図に示す装置を用いて膜を堆積した後、本発明の半
導体装置である薄膜トランジスタを作成して検討した。
After depositing a film using the apparatus shown in FIG. 2, a thin film transistor, which is a semiconductor device of the present invention, was fabricated and examined.

まず、洗浄したガラス(Corntng社製$7059
)の基板203を支持台202上に載置した。
First, clean glass (Corntng $7059)
) was placed on the support stand 202.

次に、排気装置(図示せず)により堆積室201内を排
気し、約10””Torrに減圧した。ガス供給ボンベ
よりH2ガス50secmをガス導入管225を介して
活性化室(B)223に導入した。活性化室(B)22
3内に導入されたH2ガス等はマイクロ波プラズマ発生
装置222により活性化されて活性水素等とされ、導入
管224を通じて成膜室201に導入された。
Next, the inside of the deposition chamber 201 was evacuated using an exhaust device (not shown), and the pressure was reduced to about 10'' Torr. 50 sec of H2 gas was introduced from a gas supply cylinder into the activation chamber (B) 223 via the gas introduction pipe 225. Activation room (B) 22
The H2 gas and the like introduced into the film forming chamber 3 were activated by the microwave plasma generator 222 to become active hydrogen and the like, and introduced into the film forming chamber 201 through the introduction pipe 224.

他方、活性化室(A)214にSiF4ガス20scc
mをガス導入管212を介して導入した。活性化室(A
)214内に導入されたS i F4ガスは、マイクロ
波プラズマ発生装置213により活性化されて、導入管
212を通して成膜室201に導入された。
On the other hand, 20scc of SiF4 gas is placed in the activation chamber (A) 214.
m was introduced through the gas introduction pipe 212. Activation chamber (A
) 214 was activated by the microwave plasma generator 213 and introduced into the film forming chamber 201 through the introduction pipe 212.

さらに、F2ガス10105eをガス導入管226を通
じて成膜室201に導入した。
Further, F2 gas 10105e was introduced into the film forming chamber 201 through the gas introduction pipe 226.

成膜室201内に圧力を0.02Torrに保ちながら
、Xeランプから1kWの光をあらかじめヒータ204
によって350℃に加熱された基板203に垂直に照射
し、活性種を相互的に化学反応させることで多結晶シリ
コン膜を堆積させた。このとき、同時に前記の光照射に
よりF2ガスを活性化し、膜中に含有させた。その後、
時間と共にF2ガスの流量を第3図に示すように減少さ
せた。
While maintaining the pressure in the film forming chamber 201 at 0.02 Torr, 1 kW light from a Xe lamp is applied to the heater 204 in advance.
A polycrystalline silicon film was deposited by vertically irradiating the substrate 203 heated to 350° C. to cause the active species to chemically react with each other. At this time, F2 gas was simultaneously activated by the light irradiation and contained in the film. after that,
The flow rate of F2 gas was decreased over time as shown in FIG.

基板203上に得られた多結晶シリコン薄膜試料につい
てX線回折法及び電子線回折法により堆積膜の結晶性の
評価を行ったところ、多結晶シリコン膜であることが確
認された。さらに、透過型電子顕微鏡によって観察した
ところ、多結晶シリコンの粒径は約5±0,2μmであ
った。結晶粒径のバラツキは基板全面に亘って殆ど無か
った。また、走査型電子顕微鏡により試料の表面状態を
観察したところ、平滑度は良好で、波模様等が無く、膜
厚ムラも±4%以下であった。
When the crystallinity of the deposited film of the polycrystalline silicon thin film sample obtained on the substrate 203 was evaluated by X-ray diffraction and electron beam diffraction, it was confirmed that it was a polycrystalline silicon film. Furthermore, when observed using a transmission electron microscope, the grain size of the polycrystalline silicon was approximately 5±0.2 μm. There was almost no variation in crystal grain size over the entire surface of the substrate. Further, when the surface condition of the sample was observed using a scanning electron microscope, it was found that the smoothness was good, there was no wave pattern, etc., and the film thickness unevenness was ±4% or less.

次いで、得られたノンドープの多結晶シリコン膜試料を
蒸着槽に入れ、真空度1O−5Torrでクシ型のAJ
:Lギャップ電極(長さ250μm、5mm)を形成し
た後、印加電圧10Vで暗電流を測定し、暗電流σdを
求めて、多結晶シリコン膜を評価した。さらに、SIM
S(2次イオン質量分析法)により、水素含有量の深さ
方向のプロファイルを出した。
Next, the obtained non-doped polycrystalline silicon film sample was placed in a vapor deposition tank, and a comb-shaped AJ was placed at a vacuum degree of 1O-5 Torr.
: After forming an L gap electrode (length 250 μm, 5 mm), dark current was measured with an applied voltage of 10 V, dark current σd was determined, and the polycrystalline silicon film was evaluated. Furthermore, SIM
A profile of hydrogen content in the depth direction was obtained by S (secondary ion mass spectrometry).

また、膜中の局在準位密度を電界効果法及びESR法に
よって測定した。
In addition, the localized level density in the film was measured by the field effect method and the ESR method.

上述の成膜条件並びに堆積膜の評価結果を各々第1表、
第2表、第9図、第16図に示す。
The above film formation conditions and evaluation results of the deposited film are shown in Table 1 and
It is shown in Table 2, FIG. 9, and FIG. 16.

第9図に示すように膜中の水素含有量は膜厚方向゛で減
少し、基板側では多く、基板と反対側では少ない。それ
に伴って膜中の局在準位密度が減少し、かつ、1017
c m−3e Vりよりも極端に小さな値になフており
、かつ、基板側では多く、基板と反対側では少なくなっ
ている(2〜8 x 10 I6c m−3e V−’
) 。水素の結合については、IRの赤外吸収スペクト
ルにおいて、2000cm−’におけるピークと210
0cm−’におけるピークの比が0.7であり、1以下
となっている。第2表に示したF含有量及び膜中の局在
準位密度は、膜厚0.5μm程度の深さでの値を示す。
As shown in FIG. 9, the hydrogen content in the film decreases in the film thickness direction, with more on the substrate side and less on the side opposite to the substrate. Along with this, the localized level density in the film decreases, and 1017
The value is extremely smaller than that of cm-3e V, and it is large on the substrate side and small on the side opposite to the substrate (2 to 8 x 10 I6c m-3e V-'
). Regarding hydrogen bonds, in the IR infrared absorption spectrum, there is a peak at 2000 cm-' and a peak at 210 cm-'.
The peak ratio at 0 cm-' is 0.7, which is 1 or less. The F content and the localized level density in the film shown in Table 2 are the values at a depth of about 0.5 μm in film thickness.

以上述べた様に良好な半導体膜が得られていることが判
明した。
As described above, it was found that a good semiconductor film was obtained.

上記実験例と同様にして、フッ素ガスを10105eガ
ス導入管226を通じて成膜室210に導入した以外は
全く同じ方法で行った。
The experiment was carried out in exactly the same manner as in the above experimental example except that fluorine gas was introduced into the film forming chamber 210 through the 10105e gas introduction pipe 226.

成膜室201内に圧力を0.02Torrに保ちながら
、Xeランプから1kWの光を、あらかじめヒータ20
4によって350℃に加熱された基板203に垂直に照
射し、活性種を相互的に化学反応させることで多結晶シ
リコン膜を堆積させた。このとき、同時に前記の光照射
によりF2ガスを活性化し、膜中に含有させた。その後
、時間と共にF2ガスの流量を第3図に示すように減少
ESR法によって測定した。
While maintaining the pressure in the film forming chamber 201 at 0.02 Torr, 1 kW light from a Xe lamp is applied to the heater 20 in advance.
A polycrystalline silicon film was deposited by vertically irradiating the substrate 203 heated to 350° C. by irradiating active species to chemically react with each other. At this time, F2 gas was simultaneously activated by the light irradiation and contained in the film. Thereafter, the flow rate of F2 gas was measured over time by the decreasing ESR method as shown in FIG.

上述の成膜条件並びに堆積膜の評価結果を各々第3表、
第4表、第9図、第16図に示す。
The above film forming conditions and the evaluation results of the deposited film are shown in Table 3 and
It is shown in Table 4, FIG. 9, and FIG. 16.

第9図に示すように、膜中のフッ素含有量は、膜厚方向
で減少し、基板側では多く、基板と反対側では少ない。
As shown in FIG. 9, the fluorine content in the film decreases in the film thickness direction, being higher on the substrate side and lower on the side opposite to the substrate.

それに伴って膜中の局在準位密度が減少し、かつ、10
 ”c m−3e V−’J: r) モ極端に小さな
値になっていて、かつ、基板側では多く、基板と反対側
では少なくなっている(2〜8 x 1018c m−
3e V−’) 、第4表に示したH含有量及び膜中の
局在準位密度は、膜厚約0.5μm程度の深さでの値を
示す。以上述べたように良好な半導体膜が得られている
ことが判明した。
Along with this, the localized level density in the film decreases, and 10
"c m-3e V-'J: r) The value is extremely small, and it is large on the board side and small on the opposite side (2 to 8 x 1018 cm m-
3e V-'), the H content and the local level density in the film shown in Table 4 are the values at a depth of about 0.5 μm in film thickness. As described above, it was found that a good semiconductor film was obtained.

次に、水素とフッ素を同時に流入した場合について検討
を行った。この場合、水素又はフッ素を単独で流入して
行った場合と同様に、水素及びフッ素の流入を減少させ
ることにより膜中の水素及びフッ素の含有量は、膜厚方
向で減少し、基板側では多く、基板と反対側では少なく
分布させ得ることか判明した。第1表のような製膜条件
において、水素とフッ素を同時に第3図のような水素及
びフッ素ガス流量で導入した場合には、第18図のよう
な水素及びフッ素の膜厚方向の分布を持ち、かつ膜中に
第20図のような局在準位密度の分布を有することが測
定され、良好な膜が得られていた。
Next, we investigated the case where hydrogen and fluorine were introduced simultaneously. In this case, as in the case where hydrogen or fluorine is introduced alone, by reducing the inflow of hydrogen and fluorine, the content of hydrogen and fluorine in the film decreases in the film thickness direction, and on the substrate side, the content of hydrogen and fluorine decreases in the film thickness direction. It has been found that the distribution can be made to be more concentrated and less distributed on the side opposite to the substrate. Under the film forming conditions shown in Table 1, when hydrogen and fluorine are simultaneously introduced at the hydrogen and fluorine gas flow rates shown in Figure 3, the distribution of hydrogen and fluorine in the film thickness direction as shown in Figure 18 is obtained. It was also determined that the film had a localized level density distribution as shown in FIG. 20, indicating that a good film was obtained.

次に、半導体発明の半導体装置である多結晶シリコンで
構成される薄膜トランジスタ(以下TPTと略す)につ
いて説明する。第15図は本発明のTPTの構造を示す
模式的な斜視部分図である。
Next, a thin film transistor (hereinafter abbreviated as TPT) made of polycrystalline silicon, which is a semiconductor device of the semiconductor invention, will be described. FIG. 15 is a schematic partial perspective view showing the structure of the TPT of the present invention.

第15図に示したように多結晶シリコンTPT1500
は、ガラス、セラミック等からなる基板1506上に、
ゲート電極1501、該ゲート電極1501を覆うよう
に電気的な絶縁層1504及び多結晶シリコンからなる
半導体層1505を順次積層して形成され、半導体層1
505の面1509上には並置的関係で離隔されて、第
1の12層1507、第2の層n+層1508が設けら
れ、さらに、第1の01層1507上にはソースTL極
1502、第2のn+層1508上にはドレイン電極1
503が各々設けられた構成とされている。
As shown in Figure 15, polycrystalline silicon TPT1500
is on a substrate 1506 made of glass, ceramic, etc.
A gate electrode 1501, an electrically insulating layer 1504 covering the gate electrode 1501, and a semiconductor layer 1505 made of polycrystalline silicon are sequentially laminated to form the semiconductor layer 1.
A first 12 layer 1507 and a second n+ layer 1508 are provided on the surface 1509 of the 505 and spaced apart in a juxtaposed relationship, and further on the first 01 layer 1507 a source TL pole 1502 and a The drain electrode 1 is on the n+ layer 1508 of 2.
503 are respectively provided.

半導体51505上の表面(グリーンサーフェス)15
09に接触して設けられる第1のn1層1507及び第
2のn0層1508は、半導体層1505を形成した後
、該層表面1509を大気又は酸素にさらすことなく形
成されるものである。なお、ソース電極1502とドレ
イン電極1503との間の距1IiltLが50μm、
ソース電極1502、及びドレイン電8i1503の長
さZが10mmである。
Surface (green surface) on semiconductor 51505 15
The first n1 layer 1507 and the second n0 layer 1508 provided in contact with the semiconductor layer 1505 are formed without exposing the layer surface 1509 to the atmosphere or oxygen after the semiconductor layer 1505 is formed. Note that the distance 1IiltL between the source electrode 1502 and the drain electrode 1503 is 50 μm,
The length Z of the source electrode 1502 and the drain electrode 8i 1503 is 10 mm.

[実施例] 以下に実施例を示し、本発明について具体的に説明する
[Example] The present invention will be specifically explained using Examples below.

(実施例1) 作用で述べた第2図の装置を用い、第4図に示す条件で
膜を堆積して、′評価を行った。その結果を第10図及
び第17図に示す。第10図かられかるように、膜中の
水素含有量が導入水素量に従って膜厚方向で減少し、基
板側では多く、基板と反対側では少なく膜が作成できて
いた。IRのスペクトル比(2000cm−’のピーク
の値/2100cm−’のピークの値)は0.8であっ
た。膜中の局在準位密度も10−” c m−3e V
−’以下に減少し、膜厚方向で減少していることが示さ
れた。また、σdも7X10−’(Ω・cm)−’の値
を示し結晶粒径も4.3μmあり良質な膜が得られてい
ることが判明した。
(Example 1) Using the apparatus shown in FIG. 2 described in the operation section, a film was deposited under the conditions shown in FIG. 4 and evaluated. The results are shown in FIGS. 10 and 17. As can be seen from FIG. 10, the hydrogen content in the film decreased in the film thickness direction according to the amount of hydrogen introduced, and the film was formed with more hydrogen on the substrate side and less on the side opposite to the substrate. The IR spectral ratio (value of peak at 2000 cm-'/value of peak at 2100 cm-') was 0.8. The local level density in the film is also 10-” cm-3e V
−' or less, indicating that it decreases in the film thickness direction. Further, it was found that σd had a value of 7×10-'(Ω·cm)-', and the crystal grain size was 4.3 μm, indicating that a good quality film was obtained.

(実施例2) 実施例1と同一の条件で、水素ガスの導入条件のみ第5
図乃至第8図まで変化させて作製した。
(Example 2) Under the same conditions as Example 1, only the hydrogen gas introduction conditions were changed to 5th.
It was produced by making changes from Fig. 8 to Fig. 8.

得られたサンプルNo、2−1乃至No、2−4につい
て評価した結果を第5表に示す。F含有量及び膜中の局
在準位密度は、約0.1μm深さの値である。実施例1
と同様に、膜厚方向に水素含有量に減少の傾向があり、
膜質も良好であることが判明した。
Table 5 shows the evaluation results for the obtained samples No. 2-1 to No. 2-4. The F content and the local level density in the film are values at a depth of approximately 0.1 μm. Example 1
Similarly, there is a tendency for the hydrogen content to decrease in the film thickness direction,
The film quality was also found to be good.

(実施例3) 第15図に示す薄膜トランジスタを作用で述べた作製工
程を用いて作製した。本実施例における半導体1505
の膜堆積の条件としては、サンプルNo、3−1は水素
導入の条件を実施例1と同じ第4図の条件に、サンプル
No、3−2は水素導入の条件を実施例2のサンプルN
o、2−4と同じ第8図の条件を採用した。作製された
薄膜トランジスタのドレイン電極を接地し、ソース電極
、ゲート電極に中電圧を変化させながら加えた  −と
きの特性を測定した。
(Example 3) The thin film transistor shown in FIG. 15 was manufactured using the manufacturing process described in the operation section. Semiconductor 1505 in this example
As for the film deposition conditions for sample No. 3-1, the hydrogen introduction conditions were the same as in Example 1, as shown in FIG. 4, and for sample No. 3-2, the hydrogen introduction conditions were the same as for sample N of Example 2.
The same conditions shown in Figure 8 as in 2-4 were used. The drain electrode of the fabricated thin film transistor was grounded, and the characteristics were measured when a medium voltage was applied to the source electrode and gate electrode while changing.

ドレイン電極io−ドレイン電圧vo特性では良好な飽
和特性が得られていて、ゲート電圧1゜V、ドレイン電
圧10Vで、5X10−”Aの高い電流が得られている
。ゲート電圧VGを変化させてドレイン電流IDを測定
した結果より得られたTPT特性を第3表に示す。
A good saturation characteristic is obtained in the drain electrode io-drain voltage vo characteristic, and a high current of 5×10-”A is obtained with a gate voltage of 1°V and a drain voltage of 10V.By changing the gate voltage VG, Table 3 shows the TPT characteristics obtained from the results of measuring the drain current ID.

以上より得られた多結晶シリコン膜を用いたTPTは良
好な特性を示すことが判明した。
It has been found that the TPT using the polycrystalline silicon film obtained above exhibits good characteristics.

(実施例4) 第2図に記した装置を用いて、前記の膜形成の方法を用
いて第7表の条件の下でガラス基板上に膜堆積を行い、
得られた膜の特性を第8表に示し、続いて作用で述べた
薄膜トランジスタの作製法を用いて作られたサンプルの
特性を第9表に示す。第7表の条件において第1表の条
件のうち、SiF4.H2の流量、放電電力及び基板温
度を変化させた。
(Example 4) Using the apparatus shown in FIG. 2, a film was deposited on a glass substrate using the film formation method described above under the conditions shown in Table 7,
Table 8 shows the properties of the obtained film, and Table 9 shows the properties of the sample made using the thin film transistor manufacturing method described in the operation section. Among the conditions in Table 7, SiF4. The H2 flow rate, discharge power, and substrate temperature were varied.

いずれも良質な膜が堆積できていて、TPT特性も非常
に良好であった。
In all cases, films of good quality were deposited, and the TPT characteristics were also very good.

(実施例5) 第2図の装置を用いて、第4図の様な条件で水素ガスを
減少させ、その他の過程では第3表と同様の条件で膜サ
ンプルを堆積して、評価を行った。その結果を第10図
と第17図に示す。第10図かられかるように、膜中の
フッ素含有量が導入フッ素量に従って膜厚方向で減少し
、基板側では多く、基板と反対側では少なく膜が作製で
きた。IRのスペクトル比(2000cm−’のピーク
の値/2100cm−’のピークの値)は0.8であっ
た。膜中の局在準位密度も1017cm−3eV−’以
下に減少し、膜厚方向で減少していることが示された。
(Example 5) Using the apparatus shown in Figure 2, hydrogen gas was reduced under the conditions shown in Figure 4, and film samples were deposited under the same conditions as in Table 3 for other processes, and evaluation was performed. Ta. The results are shown in FIGS. 10 and 17. As can be seen from FIG. 10, the fluorine content in the film decreased in the film thickness direction according to the amount of fluorine introduced, and the film was fabricated with more fluorine on the substrate side and less on the side opposite to the substrate. The IR spectral ratio (value of peak at 2000 cm-'/value of peak at 2100 cm-') was 0.8. The localized level density in the film also decreased to below 1017 cm-3 eV-', indicating that it decreases in the film thickness direction.

また、σdも8X10−’(Ω・cm)””の値を示し
、結晶粒径も5μmあり、良質な膜が得られていること
が判明した。
Further, σd also showed a value of 8×10−′ (Ω·cm)”, and the crystal grain size was 5 μm, indicating that a good quality film was obtained.

(実施例6) 実施例5と同一の条件で、F2ガスの導入条件のみ第5
図〜第8図まで変化させて作製した結果、実施例1と同
様に膜厚方向に水素含有量に減少の傾向があり、膜質も
良好であることが判明した。その結果を第10表に示す
。H含有量及び膜中の局在準位密度は約0.1μm深さ
の値である。
(Example 6) Same conditions as Example 5, only F2 gas introduction condition was changed to 5th.
As a result of fabrication with the changes shown in FIGS. 8 to 8, it was found that the hydrogen content tended to decrease in the film thickness direction, similar to Example 1, and the film quality was also good. The results are shown in Table 10. The H content and the local level density in the film have values at a depth of approximately 0.1 μm.

(実施例7) 第15図に示す薄膜トランジスタを作用で述べた作製工
程を用いて作製した。本実施例における半導体1505
の膜堆積の条件としては、サンプルNo、7−1はフッ
素導入の条件を実施例5と同じ第4図の条件に、サンプ
ルNo、7−2はフッ素導入の条件を実施例6のサンプ
ルNo。
(Example 7) The thin film transistor shown in FIG. 15 was manufactured using the manufacturing process described in the operation section. Semiconductor 1505 in this example
As for the film deposition conditions for sample No. 7-1, the fluorine introduction conditions were the same as those in Example 5, as shown in FIG. 4, and for sample No. 7-2, the fluorine introduction conditions were the same as for sample No. .

6−4と同じ第8図の条件を採用した。作成された薄膜
トランジスタのドレイン電極を設置し、ソース電極、ゲ
ート電極に十電圧を変化させながら加えたときの特性を
測定した。
The same conditions shown in Figure 8 as in 6-4 were adopted. The drain electrode of the fabricated thin film transistor was installed, and the characteristics were measured when varying ten voltages were applied to the source electrode and gate electrode.

ドレイン電極ID−ドレイン電圧V。特性では良好な飽
和特性が得られていて、ゲート電圧10Vドレイン電圧
10Vで5X10弓Aの高い電流が得られている。ゲー
ト電圧V。を変化させてドレイン電流10を測定した結
果より得られたTPT特性を第3表に示す。
Drain electrode ID-drain voltage V. Good saturation characteristics were obtained, and a high current of 5×10 arc A was obtained with a gate voltage of 10 V and a drain voltage of 10 V. Gate voltage V. Table 3 shows the TPT characteristics obtained from the results of measuring the drain current 10 while varying the .

以上より得られた多結晶シリコン膜を用いたTPTは良
好な特性を示すことが判明した。
It has been found that the TPT using the polycrystalline silicon film obtained above exhibits good characteristics.

(実施例8) 第2図に示した装置を用いて、作用で述べた膜形成の方
法を用いて第12表の条件の下でガラス基板上に膜堆積
を行い、得られた膜の特性を第13表に示し、続いて作
用で述べた薄膜トランジスタの作製法を用いて作られた
サンプルの特性を第14表に示す。第12表においては
、第3表の条件のうち、S iF4 、H2の流量、放
電電力及び基板温度を変化させた。
(Example 8) Using the apparatus shown in FIG. 2, a film was deposited on a glass substrate under the conditions shown in Table 12 using the film formation method described in the section, and the characteristics of the obtained film were Table 13 shows the characteristics of the sample made using the thin film transistor manufacturing method described in the operation section, followed by Table 14. In Table 12, among the conditions in Table 3, the flow rates of SiF4 and H2, discharge power, and substrate temperature were changed.

いずれも良好な膜が堆積できていて、TPTの特性も非
常に良好であった。
In all cases, good films were deposited, and the TPT properties were also very good.

(実施例9) 次に、実施例5で用いた製膜条件にいおて水素の導入と
同時にフッ素も導入して得た膜でTPTを作製した。
(Example 9) Next, a TPT was manufactured using a film obtained by introducing hydrogen and simultaneously introducing fluorine under the film forming conditions used in Example 5.

水素とフッ素を第3図及び第4図のプロファイルの流量
で流入した場合の膜中の水素及びフッ素の膜中の分布及
び局在準位密度の分布をそれぞれ第18図及び第19図
、第20図及び第21図に示す。
The distribution of hydrogen and fluorine in the film and the distribution of local level density when hydrogen and fluorine are introduced at the flow rates of the profiles shown in Figs. 3 and 4 are shown in Figs. 18 and 19, respectively. This is shown in FIGS. 20 and 21.

いずれの場合にも膜中の水素含有量の減少に伴い局在準
位密度が大幅に減少し、1017以下に゛なっているこ
とが示された。また、この膜を用いた薄膜トランジスタ
は第15表の様に良好な特性を示した。
In each case, it was shown that as the hydrogen content in the film decreased, the local level density decreased significantly and became 1017 or less. Further, the thin film transistor using this film showed good characteristics as shown in Table 15.

[発明の効果] 以上、本発明の半導体装置は、欠陥密度の非常に少ない
、また基板に対する密着性の高い多結晶シリコンからな
る半導体層を有しており、当該半導体装置として例えば
薄膜トランジスタは高い移動度を有し、デイスプレィや
センサの駆動用として多大な効果を得ることができる。
[Effects of the Invention] As described above, the semiconductor device of the present invention has a semiconductor layer made of polycrystalline silicon with very low defect density and high adhesion to the substrate. It can be used to drive displays and sensors with great effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装置の平面図、第2図は本発明
半導体装置の製造装置の断面図、第3図乃至第8図は成
膜時の水素ガス又はフッ素ガスの流量変化曲線のグラフ
、第9図乃至第14図及び第18図乃至第19図は堆積
膜中の水素又はフッ素の深さ方向の含有量分布をSIM
Sによって分析した結果のグラフ、第15図は本発明方
法により形成された薄、膜トランジスタの斜視部分図、
第16図乃至第17図及び第20図乃至第21図は局在
準位密度の膜厚方向の分布を示すのグラフである。 101・・・基板、102・・・堆積膜、201・・・
堆積室、202・・・基板、203・・・堆積膜、20
4・・・基板加熱用ヒーター、206〜211・・・ガ
ス供給源、214・・・活性化室(A)、223・・・
活性化室(B)、217・・・光エネルギー発生装置、
1500・・・薄膜トランジスタ、1501・・・ゲー
ト電極、1502・・・ソース電極、1503・・・ド
レイン電極、1504・・・絶縁層、1505・・・半
導体層、1506・・・基板、1507−1・・・n中
層、1507−2=・n4−層、1508 ・・・表面
層。 FIG。3      FIG。4 H2ガス又はF2ガスの流量 (SCCm)                  (
SCCm3(原子比 )              
  (原子比 )(原子比 )           
     (原子比 )(原子比 )        
        (原子比 )膜厚   (μm) (cm’ev’・) (原子比 ) Ccm−3ev−1) (原子比 )
FIG. 1 is a plan view of a semiconductor device of the present invention, FIG. 2 is a cross-sectional view of a manufacturing apparatus for a semiconductor device of the present invention, and FIGS. 3 to 8 are flow rate change curves of hydrogen gas or fluorine gas during film formation. The graphs, Figures 9 to 14 and Figures 18 to 19, show the content distribution of hydrogen or fluorine in the depth direction in the deposited film using SIM.
A graph of the results analyzed by S, FIG. 15 is a perspective partial view of a thin film transistor formed by the method of the present invention,
FIGS. 16 to 17 and 20 to 21 are graphs showing the distribution of localized level density in the film thickness direction. 101...Substrate, 102...Deposited film, 201...
Deposition chamber, 202... Substrate, 203... Deposited film, 20
4... Heater for heating the substrate, 206-211... Gas supply source, 214... Activation chamber (A), 223...
Activation chamber (B), 217... light energy generator,
1500... Thin film transistor, 1501... Gate electrode, 1502... Source electrode, 1503... Drain electrode, 1504... Insulating layer, 1505... Semiconductor layer, 1506... Substrate, 1507-1 ... n middle layer, 1507-2=・n4- layer, 1508 ... surface layer. FIG. 3 FIG. 4 Flow rate of H2 gas or F2 gas (SCCm) (
SCCm3 (atomic ratio)
(atomic ratio) (atomic ratio)
(atomic ratio) (atomic ratio)
(Atomic ratio) Film thickness (μm) (cm'ev'・) (Atomic ratio) Ccm-3ev-1) (Atomic ratio)

Claims (6)

【特許請求の範囲】[Claims] (1)半導体装置、において、所定の基板上に多結晶シ
リコンからなる半導体層を有し、当該半導体層が多結晶
シリコンの粒界近傍に水素及びフッ素を含有し、前記水
素及び前記フッ素の濃度のいずれか一方が前記半導体層
の層厚方向に分布していることを特徴とする半導体装置
(1) A semiconductor device, which has a semiconductor layer made of polycrystalline silicon on a predetermined substrate, the semiconductor layer containing hydrogen and fluorine near the grain boundaries of the polycrystalline silicon, and the concentration of the hydrogen and the fluorine. A semiconductor device characterized in that either one of these is distributed in the thickness direction of the semiconductor layer.
(2)半導体層中の水素の最大濃度が10原子比以下で
ある請求項1記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the maximum concentration of hydrogen in the semiconductor layer is 10 atomic ratio or less.
(3)半導体層中の水素の濃度が5原子比以下である請
求項1または請求項2記載の半導体装置。
(3) The semiconductor device according to claim 1 or 2, wherein the concentration of hydrogen in the semiconductor layer is 5 atomic ratio or less.
(4)半導体層中の水素濃度またはフッ素濃度が基板側
で多く、基板と反対側で少ない請求項1乃至請求項3の
いずれか1項に記載の半導体装置。
(4) The semiconductor device according to any one of claims 1 to 3, wherein the hydrogen concentration or fluorine concentration in the semiconductor layer is high on the substrate side and low on the side opposite to the substrate.
(5)半導体層中の赤外吸収スペクトルにおいて、20
00cm^−^1におけるピークと2100cm^−^
1におけるピークとの比が1以下である請求項1乃至請
求項4のいずれか1項に記載の半導体装置。
(5) In the infrared absorption spectrum in the semiconductor layer, 20
Peak at 00cm^-^1 and 2100cm^-^
5. The semiconductor device according to claim 1, wherein the ratio to the peak at 1 is 1 or less.
(6)半導体層中の局在準位密度が10^1^7cm^
−^3eV^−^1以下である請求項1乃至請求項5に
記載の半導体装置。
(6) Localized level density in the semiconductor layer is 10^1^7 cm^
6. The semiconductor device according to claim 1, wherein the voltage is -^3eV^-^1 or less.
JP6916988A 1987-03-23 1988-03-23 Semiconductor device Pending JPS64766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6916988A JPS64766A (en) 1987-03-23 1988-03-23 Semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP62-68305 1987-03-23
JP6830587 1987-03-23
JP62-69776 1987-03-24
JP6916988A JPS64766A (en) 1987-03-23 1988-03-23 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH01766A true JPH01766A (en) 1989-01-05
JPS64766A JPS64766A (en) 1989-01-05

Family

ID=26409522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6916988A Pending JPS64766A (en) 1987-03-23 1988-03-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS64766A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992839A (en) * 1987-03-23 1991-02-12 Canon Kabushiki Kaisha Field effect thin film transistor having a semiconductor layer formed from a polycrystal silicon film containing hydrogen atom and halogen atom and process for the preparation of the same
CN101052832B (en) 2004-11-02 2011-12-07 株式会社小松制作所 Bearing seal
JP2012019146A (en) * 2010-07-09 2012-01-26 Sony Corp Imaging device, display image device and electronic equipment

Similar Documents

Publication Publication Date Title
US4363828A (en) Method for depositing silicon films and related materials by a glow discharge in a disiland or higher order silane gas
KR100818311B1 (en) Substrate having silicon dots
EP1043762B1 (en) Polycrystalline silicon thin film forming method and thin film forming apparatus
US5965904A (en) Semiconductor device comprising silicon semiconductor layer
US20020098297A1 (en) Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
US20100210093A1 (en) Method for forming silicon-based thin film by plasma cvd method
JP4497068B2 (en) Silicon dot forming method and silicon dot forming apparatus
US4898118A (en) Apparatus for forming functional deposited film by microwave plasma CVD process
US20070007123A1 (en) Silicon dot forming method and silicon dot forming apparatus
US7521341B2 (en) Method of direct deposition of polycrystalline silicon
US4992839A (en) Field effect thin film transistor having a semiconductor layer formed from a polycrystal silicon film containing hydrogen atom and halogen atom and process for the preparation of the same
US5443030A (en) Crystallizing method of ferroelectric film
EP0946783B1 (en) Semiconducting devices and method of making thereof
JPH01766A (en) semiconductor equipment
Hatta et al. Electrical Properties of B-doped homoepitaxial diamond films grown from UHP gas sources
JP2758247B2 (en) Organic metal gas thin film forming equipment
JPH07221026A (en) Method for forming quality semiconductor thin film
JPH0587171B2 (en)
JP2726149B2 (en) Thin film forming equipment
JP3024543B2 (en) Crystalline silicon film and method of manufacturing the same
JP3040247B2 (en) Manufacturing method of silicon thin film
JPH0682616B2 (en) Deposited film formation method
JPH05259458A (en) Manufacture of semiconductor device
JPH1055971A (en) Method for piling semiconductor thin film
JPH11150284A (en) Manufacture of polycrystalline silicon thin film