JPS63110618A - Laminated microwave dielectric porcelain compound - Google Patents

Laminated microwave dielectric porcelain compound

Info

Publication number
JPS63110618A
JPS63110618A JP61256349A JP25634986A JPS63110618A JP S63110618 A JPS63110618 A JP S63110618A JP 61256349 A JP61256349 A JP 61256349A JP 25634986 A JP25634986 A JP 25634986A JP S63110618 A JPS63110618 A JP S63110618A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
ceramic composition
temperature coefficient
dielectric
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61256349A
Other languages
Japanese (ja)
Inventor
佐藤 豊作
鮎沢 一年
稔 斎藤
中山 松江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP61256349A priority Critical patent/JPS63110618A/en
Publication of JPS63110618A publication Critical patent/JPS63110618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Non-Reversible Transmitting Devices (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発f町は、マイクロ波用誘電体磁器組成物に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to dielectric ceramic compositions for microwave use.

(従来の技術) 現在、マイクロ波回路用の誘電体共振器或いは温度補償
用磁器コンデンサ等に誘電体磁器組成物が用いられてい
る。これらの用途のため、誘電体磁器組成物は、その比
:A電率ε「及び無負荷Q(Qu)が大きく、かつ、共
振周波数の温度係数τf (以下、単に温度係数でfと
称することもある。)に関しては、0を中心にして正ま
たは負の任、αの温度係数が得られることが必要とされ
ている。
(Prior Art) Currently, dielectric ceramic compositions are used in dielectric resonators for microwave circuits, temperature-compensating magnetic capacitors, and the like. For these uses, dielectric ceramic compositions have a large ratio: A electric constant ε' and no-load Q (Qu), and a temperature coefficient τf of the resonant frequency (hereinafter simply referred to as temperature coefficient f). ), it is necessary to obtain a temperature coefficient of positive or negative value α centered around 0.

従来、このような特性を有する誘電体磁器組成物として
、例えば、特開昭80−124033号公報に開示され
たものが知られている。この公知の組成物は、BaO−
TiO2系の誘電体磁器組成物に酸化サマリウム(51
1203)、酸化ガドリニウム(Gd203 )、酸化
ジスプロシウム([]y203) 、酸化ユーロピウム
(Eu2O3)等を添加、焼成して得ていた。
Hitherto, as a dielectric ceramic composition having such characteristics, for example, one disclosed in Japanese Patent Application Laid-Open No. 80-124033 is known. This known composition consists of BaO-
Samarium oxide (51
1203), gadolinium oxide (Gd203), dysprosium oxide ([]y203), europium oxide (Eu2O3), etc. were added and fired.

(発明が解決しようとする問題点) しかしながら、上述した従来の誘電体磁:AMI成物を
得る技術では、得られる特性は夫々の特性の範囲内でし
か達成できないため、ある特性を得るためには、その都
度、材料の組成比を検討しなければならないという問題
があった。例えば、前述の公報に開示される誘電体磁器
組成物では、比誘電率ε、は61〜72、温度係数τf
は−24〜+3 t (p pm/’0)の範囲内でし
か制御することができなかった。しかも、比誘電率ε「
と温度係数τ°fは、温度係数で〔を制御しようとすれ
ば、材料の組成比の制約を受けて比誘電率ε「が決定さ
れてしまうため、両者を同時に制御することができない
という欠点があった。
(Problems to be Solved by the Invention) However, with the above-mentioned conventional techniques for obtaining dielectric magnetic/AMI products, the characteristics obtained can only be achieved within the range of each characteristic. However, there was a problem in that the composition ratio of the materials had to be considered each time. For example, in the dielectric ceramic composition disclosed in the above-mentioned publication, the relative dielectric constant ε is 61 to 72, and the temperature coefficient τf
could only be controlled within the range of -24 to +3 t (pp pm/'0). Moreover, the relative permittivity ε'
and the temperature coefficient τ°f. If you try to control the temperature coefficient τ°f, the relative dielectric constant ε' will be determined by the constraints of the composition ratio of the material, so the disadvantage is that you cannot control both at the same time. was there.

この発明の目的は、上述した従来の欠点に鑑み、比誘電
率ε「と温度係数τ「とを広範囲に渡って制御でき、し
かも、設計の自由度の高い誘電体磁器組成物を提供する
ことにある。
In view of the above-mentioned conventional drawbacks, an object of the present invention is to provide a dielectric ceramic composition in which the dielectric constant ε" and the temperature coefficient τ" can be controlled over a wide range, and which has a high degree of freedom in design. It is in.

(問題点を解決するための手段) この目的の達成を図るため、この発明によれば、 共振周波数の温度係数が正の値であり、かつ或る比誘電
率を有する第一誘電体磁器組成物と、共振周波数の温度
係数が負のイめであり、かつ上述の比誘電率の値と等し
いか又は異なる比誘電率を有する第二誘電体磁器組成物
とを積層してなることを特徴とする。
(Means for solving the problem) In order to achieve this object, according to the present invention, a first dielectric ceramic composition having a positive temperature coefficient of resonance frequency and a certain dielectric constant. and a second dielectric ceramic composition having a negative temperature coefficient of resonance frequency and having a relative permittivity equal to or different from the above-mentioned relative permittivity value. do.

尚、積層する層数、積層の順序等は、設計に応じて適宜
設定することができる。
Note that the number of layers to be laminated, the order of lamination, etc. can be appropriately set according to the design.

(作用) この発明のマイクロ波用積層型誘電体磁器組成物(以下
、単に積層型誘電体磁器組成物と称する場合もある。)
は、第一誘電体磁器組成物と、第二誘電体磁器組成物と
を積層して或るものであって、一方の誘電体磁器組成物
の温度係数を正の値とし、他方の誘電体磁器組成物温度
係数を負の値とすると共に、それぞれの誘電体磁器組成
物の比誘電率が、互いに異なるか或いは等しい値としで
あるので両者を積層し、両者の体積比を調整することに
よって所望の比誘電率及び温度係数を得ることができる
(Function) The multilayer dielectric ceramic composition for microwaves of the present invention (hereinafter sometimes simply referred to as the multilayer dielectric ceramic composition).
is made by laminating a first dielectric ceramic composition and a second dielectric ceramic composition, in which one dielectric ceramic composition has a positive temperature coefficient, and the other dielectric ceramic composition has a positive temperature coefficient. The temperature coefficient of the porcelain composition is set to a negative value, and the dielectric constants of the respective dielectric porcelain compositions are set to be different from each other or equal to each other, so by laminating the two and adjusting the volume ratio of the two. A desired dielectric constant and temperature coefficient can be obtained.

(実施例) 以下、図面を参照して、この発明の実施例につき説明す
る。尚、以下説明する実施例は、この発明の好適例であ
るにすぎず、従って、以下説明する数値的条件は何ら、
これに限定されるものではない。さらに、この実施例の
説明に当り、前述の第一誘電体磁器組成物をb材、第二
誘電体磁器組成物をa材として説明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the embodiments described below are merely preferred examples of the present invention, and therefore, the numerical conditions described below are
It is not limited to this. Furthermore, in explaining this example, the above-mentioned first dielectric ceramic composition will be described as material B, and the second dielectric ceramic composition will be described as material A.

先ず、この発明の誘電体磁器組成物の理解を容易にする
ため、その製造方法について説明する。
First, in order to facilitate understanding of the dielectric ceramic composition of the present invention, a manufacturing method thereof will be explained.

出発原料には、化学的に高純度の炭酸バリウム(BaC
03)、二酸化チタン(Ti02) 、酸化サマリウム
(Sm703 )及び酸化ランタン(La2O3)を使
用する。まず、これらの出発原料を、(Ban) (T
i02)xが83.7モル%、S+B 03が15.0
モル%、La20:+が1.7モル%の組成になるよう
に秤硅し、これらの出発原料を純水と共にポットミルを
用いて20時間に亙り攪拌混合した。その後、この混合
物を脱水し、空気中にて1100℃の温度で2詩間に亙
って仮焼した。
The starting material is chemically highly purified barium carbonate (BaC).
03), titanium dioxide (Ti02), samarium oxide (Sm703) and lanthanum oxide (La2O3) are used. First, these starting materials are (Ban) (T
i02) x is 83.7 mol%, S+B 03 is 15.0
The starting materials were mixed together with pure water by stirring for 20 hours using a pot mill. Thereafter, this mixture was dehydrated and calcined in air at a temperature of 1100° C. for 2 hours.

次に、この仮焼物に純水を加え、ボットミルを用いて粉
砕し、脱水、乾燥した後、再度、純水を加えて造粒し、
32メツシユのふるいを通して整粒した。これによって
得られた造粒粉体は、金型と油圧プレスを用い、成形圧
力1〜3ton/cm2で、直径16mm、厚さ9mm
の円板状の成形体に成形された。さらに、この成形体を
高純度のアルミナ匣に入れ、1260〜1450℃の温
度で2時間に亙って焼成することにより、誘電体磁器組
成物を得た。
Next, pure water is added to this calcined product, pulverized using a bot mill, dehydrated and dried, and then pure water is added again to granulate it.
The particles were sized through a 32-mesh sieve. The resulting granulated powder was molded using a mold and a hydraulic press at a molding pressure of 1 to 3 tons/cm2 to a diameter of 16 mm and a thickness of 9 mm.
It was molded into a disk-shaped body. Further, this molded body was placed in a high purity alumina box and fired at a temperature of 1260 to 1450°C for 2 hours to obtain a dielectric ceramic composition.

上述の方法によって得られた誘電体磁器組成物は、ハー
フキー・コールマン(Hakki−Coleman)法
によって比誘電率ε7、無負荷Q (Qu )を測定し
、温度係数τ「は20℃における共振周波数を基準とし
て一30℃〜+70℃の温度範囲で求めた。その結果は
The dielectric ceramic composition obtained by the above method was measured for relative permittivity ε7 and no-load Q (Qu) by the Hakki-Coleman method, and the temperature coefficient τ' was determined to be the resonant frequency at 20°C. The results were determined in the temperature range of -30°C to +70°C as a reference.

ε、=75 Qu=2000 τr = −15(p pm/’0) であった、以下、こ0’) Ba0−T io?−8a
703−La203系誘電体磁器組成物をa材と称する
ε, = 75 Qu = 2000 τr = -15 (ppm/'0) (hereinafter referred to as 0') Ba0-Tio? -8a
The 703-La203-based dielectric ceramic composition is referred to as a material.

次に、他方の誘電体磁器組成物(以下、この誘電体磁器
組成物をb材と称する。)として、CaO−TiO2系
の誘電体磁器組成物を用いた。このb材の組成がCa0
15モル%、T10285モル%となるように出発原料
の炭酸カルシウム(CaCO3)及び二酸化チタン(T
i02)を秤量し、上述同様の方法により、焼結した誘
電体磁器組成物を得た。
Next, a CaO-TiO2-based dielectric ceramic composition was used as the other dielectric ceramic composition (hereinafter, this dielectric ceramic composition is referred to as material b). The composition of this b material is Ca0
The starting materials calcium carbonate (CaCO3) and titanium dioxide (T
i02) was weighed, and a sintered dielectric ceramic composition was obtained by the same method as described above.

これによって得られたb材の諸特性は、r2123 Qu=3190 τf=650 (P pm/’C) と求められた。The properties of the b material obtained in this way are r2123 Qu=3190 τf=650 (Ppm/'C) was asked.

次に、この発明の積層型誘電体磁器組成物の実施例を説
明する。
Next, examples of the laminated dielectric ceramic composition of the present invention will be described.

上述の方法によって得られたa材及びb材を、夫々、直
径16mm及び厚さinmの板状に切断して、積層に用
いるだめの板状誘電体磁器組成物とした。
Materials A and B obtained by the above method were each cut into plates with a diameter of 16 mm and a thickness of inm to obtain a final plate-shaped dielectric ceramic composition used for lamination.

第1図(A)〜(E)は、これらの板状誘電体磁器組成
物を種々の組み合わせによって積層して得た、積層型誘
電体磁器組成物の構造例を示す断面図である。尚、この
図中、11はa材、13はb材、15は積層型誘電体磁
器組成物を示し、さらにb材13に関してはハツチング
を付すことにより示しである。以下、この図面を参照し
て、第1図(A)〜(E)に示した積層様式を持つ積層
型誘電体磁器組成物各々について説明する。尚、この図
中及び以下の説明の中では、誘電体磁器組成物を積層し
た際に、その積層面を接している各部分が同一の特性を
有する誘電体である場合においても各層を区別して説明
しているが、これら各部分が一体であるとしても、この
発明の目的の範囲を越えるものではないことを理解され
たい。
FIGS. 1A to 1E are cross-sectional views showing structural examples of laminated dielectric ceramic compositions obtained by laminating these plate-shaped dielectric ceramic compositions in various combinations. In this figure, 11 indicates material A, 13 indicates material B, and 15 indicates a laminated dielectric ceramic composition, and material B 13 is indicated by hatching. Hereinafter, each of the laminated dielectric ceramic compositions having the lamination styles shown in FIGS. 1(A) to (E) will be described with reference to this drawing. In addition, in this figure and in the following explanation, when dielectric ceramic compositions are laminated, even if the parts touching the laminated surfaces are dielectrics with the same characteristics, each layer is not distinguished. Although described, it should be understood that even if these parts are integrated, it does not go beyond the scope of the invention.

まず、第1図(A)は、a材11を三層積み。First, in Fig. 1(A), three layers of A materials 11 are stacked.

その上側にb材13を一層積み、さらに、その−上側に
a材11を二層積んだような構造となっており、a材1
1全体とb材13全体との体積比を5=1とした時の積
層状態を示している。但し、上述の通り、b材13の体
積の5倍の体積を持つa材11からなる誘電体磁器組成
物を一層として構成しても良く、以下、これに類する場
合には説明を省略するが、同様な取り扱いとして理解さ
れたい。この図に示すように積層した後、この積層型誘
電体磁器組成物15の側面を約1mmの幅でエポキシ樹
脂を用いて両端を固定(図示せず。)し、前述の方法に
よって諸特性を測定した。その結果、εr=83 Qυ=2038 τr = 101 (p pm/”0)であった。
The structure is such that one layer of B material 13 is stacked on top of that, and two layers of A material 11 are stacked on top of that.
The stacked state is shown when the volume ratio of the entire B material 1 to the entire B material 13 is 5=1. However, as mentioned above, the dielectric ceramic composition made of material A 11 having a volume five times the volume of material B 13 may be constructed as a single layer, and the explanation will be omitted below for cases similar to this. , should be understood as the same treatment. After laminating as shown in this figure, the sides of the laminated dielectric ceramic composition 15 are fixed at both ends with a width of about 1 mm using epoxy resin (not shown), and various properties are determined by the method described above. It was measured. As a result, εr=83 Qυ=2038 τr=101 (p pm/”0).

次に第1図CB)は、a材11全体とb材13全体との
体積比を2:1(4:2)とした場合を示している。こ
の場合、同様な′測定方法で得られた積層型誘電体磁器
組成物15の諸特性は、ε、=89 Qu=2421 TT □ 210 (P pm/’0)であった。
Next, FIG. 1 CB) shows a case where the volume ratio of the entire A material 11 to the entire B material 13 is set to 2:1 (4:2). In this case, the properties of the laminated dielectric ceramic composition 15 obtained by the same measuring method were ε, = 89 Qu = 2421 TT □ 210 (P pm/'0).

さらに、第1図(C)の場合は、a材11全体とb材1
3全体との体積比をl+1(3:3)として積層型誘電
体Bi塁組成物15を構成した状態を示しており、諸特
性は、 ε、=95 Qu=2150 τt  =380  (ppm/’C)であった。
Furthermore, in the case of FIG. 1(C), the entire a material 11 and the b material 1
The figure shows the laminated dielectric Bi base composition 15 having a volume ratio of l+1 (3:3) to the whole of 3, and the various characteristics are: ε, = 95 Qu = 2150 τt = 380 (ppm/' C).

第1図(D)は、a材11全体とb材13全体との体積
比をl:2(2:4)とした場合であり、その場合の諸
特性は、 e、=to6 Qυ=2423 −rr = 450 (ppm/”C)であった。
Figure 1 (D) shows the case where the volume ratio of the entire A material 11 to the entire B material 13 is l:2 (2:4), and the various characteristics in that case are: e,=to6 Qυ=2423 -rr = 450 (ppm/"C).

また、第1図(E)は、a材11全体とb材13全体と
の体積比が1:5の場合であり、諸特性は、ε、=11
2 Qu=2430 τ(= 550 (p pm/℃) であった。
In addition, FIG. 1(E) shows the case where the volume ratio of the entire A material 11 to the entire B material 13 is 1:5, and the various characteristics are ε, = 11
2 Qu = 2430 τ (= 550 (p pm/°C)).

以上、積層して得られた諸特性のうち、比誘電率ε「と
積層型1誘電体磁憲組成物15の体積に対するb材13
の体積百分率との関係を第2図(A)に比1″A電車の
特性曲線図として示す。この図において、縦軸は比誘電
率6r、横軸は上述の体積百分率を取って示しである。
As mentioned above, among the various properties obtained by laminating, the relative permittivity ε'' and the volume of the laminated type 1 dielectric magnetic composition 15 of the b material 13
Figure 2 (A) shows the relationship between the volume percentage of be.

この図からも理解できるように、比誘電率ε、は、この
発明の積層型誘電体磁器組成物15を構成するa材11
及びb材13の体積組成比にほぼ比例している。
As can be understood from this figure, the relative dielectric constant ε is the value of the a-material 11 constituting the laminated dielectric ceramic composition 15 of the present invention.
and is almost proportional to the volume composition ratio of material b 13.

また、第2図(B)では、縦軸を温度係数τfとし、横
軸を第2図(A)同様、b材の体積組成百分率で示しで
ある。この特性曲線からも理解できるように、やはり比
誘電率と同様、体積組成比と温度係数の関係がほぼ比例
することが理解できる。
In addition, in FIG. 2(B), the vertical axis is the temperature coefficient τf, and the horizontal axis is the volume composition percentage of material b, as in FIG. 2(A). As can be understood from this characteristic curve, it can be seen that the relationship between the volume composition ratio and the temperature coefficient is almost proportional, similar to the relative dielectric constant.

以上説明した実施例では、ハラキー・コールマン(Ha
kki−Coleman)法等によッテ諸特性を測定す
るに当り、各構成成分である板状の誘電体磁器組成物を
固定するためにエポキシ樹脂を仮どめとして用いたが、
実際に製品とするには、従来性なわれているように、電
極等を配設した後、合成樹脂茅によって製品として形成
すれば良い。また、この実施例では、第1図(A)〜(
E)に示した通りの配列の順序によって説明したが、こ
れらの配置関係を変更した場合、それぞれの体積比にお
ける特性に数%程度の変動(例えば、温度係数の場合で
は8〜11 (p pm/’O) )が見られたが、実
用上、これらの値は無視し得る範囲の値である。
In the embodiment described above, Haraki Coleman (Ha
When measuring various properties using the Kki-Coleman method, etc., epoxy resin was used as a temporary fixing to fix the plate-shaped dielectric porcelain composition that was each component.
In order to actually manufacture a product, it is only necessary to arrange electrodes and the like and then form the product using synthetic resin sow, as is conventional practice. In addition, in this example, FIGS. 1(A) to (
Although the explanation has been made using the arrangement order as shown in E), if these arrangement relationships are changed, the characteristics at each volume ratio will vary by several percent (for example, in the case of temperature coefficient, 8 to 11 (pp pm) /'O)), but these values are in a negligible range in practice.

さらに、ここで述べた実施例は、この発明の好ましい特
定の数値的条件5材料、その他の条件の下で説明したが
、これらは単なる一例にすぎず、この発明は、これらの
実施例にのみ限定されるものではない、従って、これら
の条件は、この発明の目的の範囲内で設計の変更等が回
部であること明らかである。
Further, although the embodiments described here have been explained under specific numerical conditions, materials, and other conditions that are preferable to the present invention, these are merely examples, and the present invention applies only to these embodiments. It will be understood that these conditions are not limiting and that modifications of the design and the like may be made within the scope of the invention.

(発明の効果) 1述した説明からも明らかなように、この発明の積層型
マイクロ波用誘電体磁器組成物は、温度係数が正の値を
持つ誘電体磁器組成物と温度係数が負のイ1を持つ誘電
体磁器組成物とにおいて、比誘電率が異なるか或いは等
しい両者を積層し、両者の体積組成比を調整することに
よって、所望の比誘電率及び温度係数を得ることができ
るので、製品の規格設計の自由度を大幅に向−ヒさせる
ことができる。
(Effects of the Invention) 1. As is clear from the above description, the multilayer microwave dielectric ceramic composition of the present invention has a dielectric ceramic composition with a positive temperature coefficient and a dielectric ceramic composition with a negative temperature coefficient. A desired relative permittivity and temperature coefficient can be obtained by laminating the dielectric ceramic composition having different or equal relative permittivity and adjusting the volume composition ratio of both. , the degree of freedom in product standard design can be greatly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(E)は、この発明の詳細な説明に供す
る、積層型誘電体磁器組成物の断面図、 第2図(A)及び(B)は、この発明の詳細な説明に供
する積層型誘電体磁器組成物の特性曲線図である。 11・・・・a材 13・・・・b材 15・・・・積層型誘電体磁器組成物。 特許出願人   沖電気工業株式会社 0   20   40   1yOgO10θb石−
縁Iす欅(vol靭 t)8の坏#bh牢(Vo/’り ごΦ不明の大ホ4T)のε茫β目f:僕す3パMLめ乃
b!第2図
FIGS. 1(A) to (E) are cross-sectional views of a laminated dielectric ceramic composition, which provides a detailed explanation of the present invention. FIGS. 2(A) and (B) provide a detailed explanation of the present invention. FIG. 3 is a characteristic curve diagram of a laminated dielectric ceramic composition to be used. 11...A material 13...B material 15... Laminated dielectric ceramic composition. Patent applicant Oki Electric Industry Co., Ltd. 0 20 40 1yOgO10θb stone-
En Isu Keyaki (vol. t) 8 no Kyo #bh prison (Vo/'rigo Φ unknown big ho 4T)'s ε 茫β eyes f: Bokusu 3pa ML Meno b! Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)共振周波数の温度係数が正の値であって、かつ或
る比誘電率を有する第一誘電体磁器組成物と、 共振周波数の温度係数が負の値であって、かつ前記比誘
電率の値と等しいか又は異なる比誘電率を有する第二誘
電体磁器組成物と を積層してなる ことを特徴とする積層型マイクロ波用誘電体磁器組成物
(1) A first dielectric ceramic composition having a positive temperature coefficient of resonance frequency and a certain dielectric constant, and a first dielectric ceramic composition having a negative temperature coefficient of resonance frequency and a certain dielectric constant; 1. A multilayer dielectric ceramic composition for microwave use, characterized in that it is formed by laminating a second dielectric ceramic composition having a dielectric constant equal to or different from the dielectric constant.
JP61256349A 1986-10-28 1986-10-28 Laminated microwave dielectric porcelain compound Pending JPS63110618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61256349A JPS63110618A (en) 1986-10-28 1986-10-28 Laminated microwave dielectric porcelain compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61256349A JPS63110618A (en) 1986-10-28 1986-10-28 Laminated microwave dielectric porcelain compound

Publications (1)

Publication Number Publication Date
JPS63110618A true JPS63110618A (en) 1988-05-16

Family

ID=17291443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61256349A Pending JPS63110618A (en) 1986-10-28 1986-10-28 Laminated microwave dielectric porcelain compound

Country Status (1)

Country Link
JP (1) JPS63110618A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001047A1 (en) * 1989-07-07 1991-01-24 Ngk Spark Plug Co., Ltd. Microwave strip line filter of temperature compensation type
US6477036B2 (en) 2000-08-25 2002-11-05 Alps Electric Co., Ltd. Temperature compensating thin-film capacitor
US6556421B2 (en) 2000-12-21 2003-04-29 Alps Electric Co., Ltd. Temperature-compensating thin-film capacitor and electronic device
US6605515B2 (en) 2001-03-27 2003-08-12 Alps Electric Co., Ltd. Method for manufacturing thin-film capacitor for performing temperature compensation of junction capacitance of semiconductor device
US6750739B2 (en) 2000-06-15 2004-06-15 Matsushita Electric Industrial Co., Ltd. Resonator and high-frequency filter
EP1187184A3 (en) * 2000-08-30 2005-05-25 Alps Electric Co., Ltd. Thin film capacitor for temperature compensation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001047A1 (en) * 1989-07-07 1991-01-24 Ngk Spark Plug Co., Ltd. Microwave strip line filter of temperature compensation type
US5235298A (en) * 1989-07-07 1993-08-10 Ngk Spark Plug Co., Ltd. Temperature compensated stripline filter for microwaves
US6750739B2 (en) 2000-06-15 2004-06-15 Matsushita Electric Industrial Co., Ltd. Resonator and high-frequency filter
US6933811B2 (en) 2000-06-15 2005-08-23 Matsushita Electric Industrial Co., Ltd. Resonator and high-frequency filter
US6477036B2 (en) 2000-08-25 2002-11-05 Alps Electric Co., Ltd. Temperature compensating thin-film capacitor
EP1182696A3 (en) * 2000-08-25 2005-05-25 Alps Electric Co., Ltd. Temperature compensating thinfilm capacitor
EP1187184A3 (en) * 2000-08-30 2005-05-25 Alps Electric Co., Ltd. Thin film capacitor for temperature compensation
US6556421B2 (en) 2000-12-21 2003-04-29 Alps Electric Co., Ltd. Temperature-compensating thin-film capacitor and electronic device
US6605515B2 (en) 2001-03-27 2003-08-12 Alps Electric Co., Ltd. Method for manufacturing thin-film capacitor for performing temperature compensation of junction capacitance of semiconductor device
US6747334B2 (en) 2001-03-27 2004-06-08 Alps Electric Co., Ltd Thin-film capacitor device

Similar Documents

Publication Publication Date Title
JPH0568802B2 (en)
JPS63110618A (en) Laminated microwave dielectric porcelain compound
JPS6118283B2 (en)
US5304318A (en) Sintered ferrite materials and chip parts
EP0169077B1 (en) Dielectric porcelain material
US4717694A (en) Dielectric ceramic composition for high frequencies
JPS63117958A (en) Dielectric ceramic composition for microwave
JPH0369560A (en) Microwave dielectric ceramics
US5444027A (en) Compositions of high frequency dielectric ceramics
JPS6056306A (en) Dielectric porcelain composition
JPH04265269A (en) Dielectric ceramic for microwave
JPH0415963B2 (en)
JPS63112449A (en) Manufacture of composite dielectric ceramics
JPS5860668A (en) Dielectric ceramic composition
JPH0280366A (en) Dielectric porcelain composition
JPH05298922A (en) Dielectric ceramic for microwave
JPS6065763A (en) Dielectric ceramics for microwave
JPH0559070B2 (en)
JPS62191463A (en) Dielectric ceramics composition for microwave
JPH0580764B2 (en)
JPH0460071B2 (en)
JPS61259405A (en) Dielectric ceramic composition for high frequency
JPS6337508A (en) Dielectric ceramics
JPS63291866A (en) Porcelaneous composition
JPH0415962B2 (en)