JPH0559070B2 - - Google Patents

Info

Publication number
JPH0559070B2
JPH0559070B2 JP62227393A JP22739387A JPH0559070B2 JP H0559070 B2 JPH0559070 B2 JP H0559070B2 JP 62227393 A JP62227393 A JP 62227393A JP 22739387 A JP22739387 A JP 22739387A JP H0559070 B2 JPH0559070 B2 JP H0559070B2
Authority
JP
Japan
Prior art keywords
composition
ceramic composition
temperature coefficient
present
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62227393A
Other languages
Japanese (ja)
Other versions
JPS6469565A (en
Inventor
Minoru Saito
Toyosaku Sato
Kazutoshi Ayusawa
Matsue Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP62227393A priority Critical patent/JPS6469565A/en
Publication of JPS6469565A publication Critical patent/JPS6469565A/en
Publication of JPH0559070B2 publication Critical patent/JPH0559070B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、誘電体磁器組成物に関するもので
ある。 (従来の技術) 現在、マイクロ波回路用の誘電体共振器或いは
温度補償用磁器コンデンサまたはその他の電子機
器に、誘電体磁器組成物(以下、単に磁器組成物
と称する場合も有る。)が用いられている。これ
らの用途のため、誘電体磁器組成物は、その比誘
電率εr及び無負荷Q,QUが大きく、かつ、共振
周波数の温度係数τf(以下、単に温度係数τfと称
することもある。)に関しては、0を中心にして
正または負の任意の温度係数が得られることが必
要とされている。 従来、これら特性上の要求のうち、比誘電率εr
及び無負荷Qが大きい磁器組成物として、例え
ば、文献I:特公昭61−14606号公報に開示され
る磁器組成物が知られている。 この公報に開示される磁器組成物は、酸化バリ
ウム(BaO)、二酸化チタン(TiO2)、三酸化サ
マリウム(Sm2O3)及び三酸化ランタン(La2
O3)を以つて構成され、比誘電率εrが約50〜80、
無負荷Qが約1500〜2200、及び温度係数τfが−15
〜10(ppm/℃)であり、前述した種々の機器の
小型化に適する大きな比誘電率εrと、当該機器の
使用時の温度条件による影響が少ない温度係数τf
とを有する。 しかしながら、近年、電子機器の超小型化の要
求に伴ない、一層大きな比誘電率εr(例えばεr
100)を有する誘電体磁器組成物に対する必要性
も増大している。 このように、比誘電率εrの大きな磁器組成物の
一例として、例えば酸化カルシウム(CaO)及び
二酸化チタン(TiO2)から構成されるもの(εr
=約100以上、QU=約1000以上、τf=約600
(ppm/℃)以上)、酸化ストロンチウム(SrO)
及び二酸化チタン(TiO2)から構成されるもの
(εr=約150以上、QU=約1000以上、τf=約1600
(ppm/℃)以上)及びその他、種々の磁器組成
物が知られている。 一方、この発明に係る出願人による特願昭61−
256349号(文献)に提案される技術によれば、
温度係数τfが異なる二種類以上の磁器組成物を積
層することによつて、少なくとも、全体としての
温度係数τfが各々の磁器組成物の温度係数の相加
平均に近い値を取るような磁器組成物を構成する
ことが可能である。 (発明が解決しようとする問題点) しかしながら、大きな比誘電率εrを有する従来
の誘電体磁器組成物は、温度係数τfで正であり、
かつ極めて大きな値(例えばτf≧900(ppm/℃))
を有し、温度特性に劣るという問題が有る。 さらに、これら正でありかつ大きな温度係数τf
と大きな比誘電率εrとを有する磁器組成物と組み
合わせて温度係数τfがO(ppm/℃)に近い値と
して構成するための、負でありかつ大きな温度係
数τfと大きな比誘電率εrとを有する磁器組成物が
見出されていないという問題点が有つた。 この発明の目的は、上述した従来の問題点に鑑
み、負でありかつ大きな温度係数τfと大きな比誘
電率εrとを有する磁器組成物を提供することに有
る。 (問題点を解決するための手段) この目的の達成を図るため、この発明の誘電体
磁器組成物によれば、 酸化鉛(PbO)と、二酸化ジルコニウム
(ZrO2)と、三酸化ツリウム(Tm2O3)とから成
り、その組成式が (PbO)X(ZrO2Y(Tm2O3Z で表わされ、かつ、その組成を示す原子団の係数
X、Y、Zがモル分率で 0.46≦X≦0.52 0.46≦Y≦0.52 0.002≦Z≦0.04 X+Y+Z=1 の範囲として成る ことを特徴としている。 (作用) この発明の誘電体磁器組成物の構成によれば、
酸化鉛(PbO)と、二酸化ジルコニウム(ZrO2
と、三酸化ツリウム(Tm2O3)との夫々を、所
定の組成範囲に亙つて混合・焼成する。これがた
め、負でありかつ大きな温度係数τfと大きな比誘
電率εrとを有する磁器組成物を提供することが可
能となる。 (実施例) 以下、この発明の実施例につき説明する。 製造方法 まず、この発明の誘電体磁器組成物の製造方法
につき説明する。 出発原料には化学的に高純度の酸化鉛(PbO)、
二酸化ジルコニウム(ZrO2)及び三酸化ツリウ
ム(Tm2O3)を使用する。 まず、これらの出発原料を後述の表Iに掲げた
ような各組成になるように、夫々、秤量した後、
混合して混合粉を得る。然る後、これら混合粉の
夫々を、空気雰囲気中、約850℃の温度で2時間
に亙つて焼成し、仮焼物を得る。 続いて、この仮焼物の夫々に純水を加え、ポツ
トミルを用いて湿式粉砕し、この粉砕物を脱水乾
燥した後、任意好適なバインダを添加して混練す
る。然る後、この混練物を32メツシユの篩にかけ
て整粒し、造粒粉とした。 次に、上述の造粒粉は、金型と油圧プレスとを
用いて1〜3ton/cm2の成形圧力を以つて成形し、
直径16mmで厚さ9mmの円板状の成形体とする。 このようにして得られた成形体を高純度のマグ
ネシア匣に入れて、1200℃〜1350℃の温度範囲の
任意好適な温度で2時間に亙つて焼成し、表I
(後述)に示す、この発明に係る実施例I〜の
誘電体磁器組成物を得た。 諸特性の測定 次に、上述した製造方法によつて得られた誘電
体磁器組成物に対し、ハツキ・コールマン
(Hakki−Coleman)法による測定を行つて、
夫々の磁器組成物の比誘電率εr及び無負荷Qを測
定した。 また、これら上述の特性に加えて、共振周波数
の温度係数τfは20℃における共振周波数を基準に
して、−30℃〜70℃の温度範囲における値から、
下記式によつて求め、これら3つの特性に関す
る測定結果を、各々の組成と共に次頁の表Iに示
した。尚、これらの測定における共振周波数は3
〜5GHzであつた。 τf=f(70)−f(−30)/f(20)・1/ΔT……
但し、ここで f(20):20℃に於ける共振周波数 f(70):70℃に於ける共振周波数 f(−30):−30℃に於ける共振周波数 ΔT:測定の温度範囲(ここでは100℃) として示す。
(Industrial Application Field) This invention relates to a dielectric ceramic composition. (Prior Art) Currently, dielectric ceramic compositions (hereinafter sometimes simply referred to as ceramic compositions) are used in dielectric resonators for microwave circuits, ceramic capacitors for temperature compensation, and other electronic devices. It is being For these uses, the dielectric ceramic composition has a large relative permittivity ε r and no-load Q, Q U , and a temperature coefficient τ f (hereinafter also simply referred to as temperature coefficient τ f) of the resonant frequency. ), it is required that any positive or negative temperature coefficient centered around 0 be obtained. Conventionally, among these characteristics requirements, the relative dielectric constant ε r
As a porcelain composition having a large no-load Q, for example, a porcelain composition disclosed in Document I: Japanese Patent Publication No. 14606/1988 is known. The porcelain composition disclosed in this publication contains barium oxide (BaO), titanium dioxide (TiO 2 ), samarium trioxide (Sm 2 O 3 ) and lanthanum trioxide (La 2
O 3 ), with a relative dielectric constant ε r of approximately 50 to 80,
No-load Q is approximately 1500 to 2200, and temperature coefficient τ f is -15
~10 (ppm/℃), and has a large relative permittivity ε r that is suitable for downsizing the various devices mentioned above, and a temperature coefficient τ f that is less affected by the temperature conditions when the device is used.
and has. However, in recent years, with the demand for ultra-miniaturization of electronic devices, the relative dielectric constant ε r (for example, ε r >
100) is also increasing. As described above, as an example of a ceramic composition with a large relative dielectric constant ε r , for example, one composed of calcium oxide (CaO) and titanium dioxide (TiO 2 ) (ε r
= about 100 or more, Q U = about 1000 or more, τ f = about 600
(ppm/℃) or more), strontium oxide (SrO)
and titanium dioxide (TiO 2 ) (ε r = about 150 or more, Q U = about 1000 or more, τ f = about 1600
(ppm/°C) or higher) and various other porcelain compositions are known. On the other hand, the applicant's patent application regarding this invention is
According to the technology proposed in No. 256349 (document),
By laminating two or more types of porcelain compositions with different temperature coefficients τ f , it is possible to create a structure in which at least the overall temperature coefficient τ f takes a value close to the arithmetic average of the temperature coefficients of the respective porcelain compositions. It is possible to compose a porcelain composition. (Problems to be Solved by the Invention) However, the conventional dielectric ceramic composition having a large relative permittivity ε r has a positive temperature coefficient τ f ;
and an extremely large value (e.g. τ f ≧900 (ppm/℃))
There is a problem that the temperature characteristics are inferior. Furthermore, these positive and large temperature coefficients τ f
A negative and large temperature coefficient τ f and a large relative permittivity in order to configure a temperature coefficient τ f close to O (ppm/°C) in combination with a ceramic composition having a large relative permittivity ε r and a large relative permittivity ε r. There was a problem in that a porcelain composition having ε r had not been found. In view of the above-mentioned conventional problems, an object of the present invention is to provide a ceramic composition having a negative and large temperature coefficient τ f and a large relative dielectric constant ε r . (Means for Solving the Problems) In order to achieve this object, the dielectric ceramic composition of the present invention contains lead oxide (PbO), zirconium dioxide (ZrO 2 ), and thulium trioxide (Tm 2 O 3 ), whose compositional formula is represented by (PbO) X (ZrO 2 ) Y (Tm 2 O 3 ) Z , and whose coefficients It is characterized by having a fraction within the following range: 0.46≦X≦0.52 0.46≦Y≦0.52 0.002≦Z≦0.04 X+Y+Z=1. (Function) According to the structure of the dielectric ceramic composition of the present invention,
Lead oxide (PbO) and zirconium dioxide (ZrO 2 )
and thulium trioxide (Tm 2 O 3 ) are mixed and fired over a predetermined composition range. This makes it possible to provide a ceramic composition that is negative and has a large temperature coefficient τ f and a large relative dielectric constant ε r . (Examples) Examples of the present invention will be described below. Manufacturing Method First, the method for manufacturing the dielectric ceramic composition of the present invention will be explained. Starting materials include chemically high-purity lead oxide (PbO),
Zirconium dioxide (ZrO 2 ) and thulium trioxide (Tm 2 O 3 ) are used. First, these starting materials were weighed so as to have the respective compositions listed in Table I below, and then
Mix to obtain mixed powder. Thereafter, each of these mixed powders is fired in an air atmosphere at a temperature of about 850°C for 2 hours to obtain a calcined product. Subsequently, pure water is added to each of the calcined products, wet pulverization is performed using a pot mill, and after the pulverized products are dehydrated and dried, an arbitrary suitable binder is added and kneaded. Thereafter, this kneaded material was passed through a 32-mesh sieve and sized to obtain granulated powder. Next, the above-mentioned granulated powder is molded using a mold and a hydraulic press at a molding pressure of 1 to 3 tons/ cm2 ,
A disc-shaped molded body with a diameter of 16 mm and a thickness of 9 mm is made. The molded body thus obtained was placed in a high-purity magnesia box and fired at any suitable temperature within the temperature range of 1200°C to 1350°C for 2 hours.
Dielectric ceramic compositions of Examples I to 1 according to the present invention shown in (described later) were obtained. Measurement of various properties Next, the dielectric ceramic composition obtained by the above-mentioned manufacturing method was measured by the Hakki-Coleman method.
The relative dielectric constant ε r and no-load Q of each ceramic composition were measured. In addition to these above-mentioned characteristics, the temperature coefficient τ f of the resonant frequency is calculated from the value in the temperature range of -30°C to 70°C, based on the resonant frequency at 20°C.
The results of measurements regarding these three properties are shown in Table I on the next page along with their respective compositions. Note that the resonant frequency in these measurements is 3
It was ~5GHz. τ f = f(70)-f(-30)/f(20)・1/ΔT...
However, here f(20): Resonant frequency at 20°C f(70): Resonant frequency at 70°C f(-30): Resonant frequency at -30°C ΔT: Measurement temperature range (here 100℃).

【表】 *1:各々の組成は、各出発現料の全体に
対するモル分率で表している。
以下、前記表Iを参照して、この発明の誘電体
磁器組成物の特性につき説明する。尚、この表I
には、この発明の理解を容易とするため、この発
明に係る実施例I〜と同様な前述の製造方法に
従つて作製した比較例I〜をも示している。 既に説明したように、この発明に係る誘電体磁
器組成物は(PbO)X(ZrO2Y(Tm2O3Zの組成
式で表され、その組成を示す原子団の係数X、
Y、Zがモル分率で 0.46≦X≦0.52 0.46≦Y≦0.52 0.002≦Z≦0.04 X+Y+Z=1 の範囲となることを特徴としている。 この組成範囲を有する実施例I〜のうち、例
えば上述のXが0.46である実施例Iの場合、比誘
電率εrは91、無負荷Qは155、温度係数τfは−810
(ppm/℃)と優れた特性を示す。 これに対して、当該Xの値を0.42とし、かつY
の値が0.56とした比較例Iの場合、無負荷Qの値
が低くなり測定不能と成つた。 さらに、表Iから理解できるように、酸化鉛の
組成を上述の範囲内で増加させ、かつ二酸化ジル
コニウムに係る範囲内でYの値を減少せしめるに
従つて実施例〜として示す磁器組成物の諸特
性は向上し、当該実施例乃至実施例を上限と
して実施例に係る磁器組成物(X=0.52,Y=
0.46)に亙つては、比誘電率εr、無負荷Q及び温
度係数τfが、係数Xの増加及びYの減少に従つて
劣化する傾向に有る。 一方、Xが上述の範囲を超えて0.56であり、か
つYが上述の範囲より低い0.42とし、かつ三酸化
ツリウムを上述の範囲内で添加した比較例で
は、比誘電率εrが75と低い値を示すのが理解でき
る。 また、三酸化ツリウムに係る係数Zの組成範囲
について検討すれば、上述した係数X及びYの値
が前述の条件を満たし、かつ当該Zの値が0.002
≦Z≦0.04を満足する実施例I〜実施例の場合
には、比誘電率εr、無負荷Q及び温度係数τfが優
れた特性を有する。これに対して、当該組成範囲
を超えた場合としての比較例の磁器組成物と、
三酸化ツリウムを添加しない場合としての比較例
の磁器組成物では無負荷Qが低くなることが理
解できる。 以上、総体的に見て、この発明に係る実施例I
〜の磁器組成物は、負でありかつ大きな温度係
数τf(約−805〜−960(ppm/℃))と、大きな比
誘電率εr(約100〜120)と無負荷Q(約150〜225)
とを有することが理解できる。 次に、この発明に係る磁器組成物と、従来の磁
器組成物とを、前述の文献に提案される技術に
より積層して試料を作製した場合の諸特性の測定
結果につき、簡単に説明する。尚、この発明に係
る磁器組成物として、上述の実施例に係る組成
物を用いると共に、従来の磁器組成物としては、
酸化カルシウム(CaO)及び二酸化チタン
(TiO2)から構成される組成物を用いた。 始めに、前述した製造方法に従つて、これら磁
器組成物を別々に焼成し、夫々、直径10mm及び厚
さ1mmの円板状の焼結体を得る。 このようにして得たCaO−TiO2焼結体の特性
は、比誘電率εrが123、無負荷Qが3190及び温度
係数τfが610(ppm/℃)であり、実施例に係る
焼結体は、前述と同様の値(表I参照)を示して
いた。 続いて、実施例に係る焼結体をCaO−TiO2
焼結体によつて両側から挟み、挟んだ焼結体を一
括して、円周部の一部分にエポキシ樹脂を塗布す
ることにより固定する(図示省略)。 このようにして得た積層型の磁器組成物の諸特
性を、前述の方法によつて測定したところ、比誘
電率εrが114、無負荷Qが940及び温度係数τfは+
9(ppm/℃)であつた。 この測定結果からも理解できるように、この発
明に係る誘電体磁器組成物によれば、正でありか
つ大きな温度係数τfと大きな比誘電率εrとを有す
る磁器組成物と積層することにより、温度係数τf
が0(ppm/℃)に近い値として構成することが
可能である。 以上、この発明の実施例につき説明したが、こ
の発明の誘電体磁器組成物は、上述の実施例にの
み限定されるものではない。例えば、表Iに示す
ように、この実施例では、酸化鉛(PbO)と、二
酸化ジルコニウム(ZrO2)と、三酸化ツリウム
(Tm2O3)との組成が、前述の範囲内の特定の数
値を有する磁器組成物を例示して、その特性につ
き説明した。しかしながら、この発明の磁器組成
物は、これら組成にのみ限定されるものではな
く、前述の範囲内の如何なる組成を以つて構成し
た場合でも、上述の実施例と同様な効果を得るこ
とができる。 また、磁器組成物を製造するに当り、説明の理
解を容易とするため、材料、温度条件及びその他
の特性の条件によつて説明したが、これら条件に
限定して実施するものではない。 これら材料、数値的条件及びその他の条件は、
この発明の目的の範囲内で、任意好適な変形及び
変更を行なうことができること明らかである。 (発明の効果) 上述した説明からも明らかなように、この発明
の誘電体磁器組成物によれば、酸化鉛(PbO)
と、二酸化ジルコニウム(ZrO2)と、三酸化ツ
リウム(Tm2O3)との夫々を、所定の組成範囲
に亙つて混合・焼成することにより、負でありか
つ大きな温度係数τfと、大きな比誘電率εr及び無
負荷Qとを有する磁器組成物を得ることができ
る。 従つて、この発明に係る誘電体磁器組成物と、
正でありかつ大きな温度係数τfと大きな比誘電率
εrとを有する磁器組成物とを組み合わせることに
よつて、大きな比誘電率εrと、0(ppm/℃)に
近い温度係数τfとを有する誘電体磁器組成物を得
ることが可能となり、温度特性に優れ、かつ超小
型の電子部品を提供することができる。
[Table] *1: Each composition is expressed as a molar fraction of the total amount of each starting material.
Hereinafter, with reference to Table I above, the characteristics of the dielectric ceramic composition of the present invention will be explained. Furthermore, this Table I
In order to facilitate understanding of the present invention, Comparative Examples I~ produced according to the above-described manufacturing method similar to Examples I~ according to the present invention are also shown. As already explained, the dielectric ceramic composition according to the present invention is represented by the composition formula ( PbO )
It is characterized in that the mole fractions of Y and Z are in the following ranges: 0.46≦X≦0.52 0.46≦Y≦0.52 0.002≦Z≦0.04 X+Y+Z=1. Among Examples I ~ having this composition range, for example, in the case of Example I in which the above-mentioned
(ppm/℃) and exhibits excellent characteristics. On the other hand, if the value of X is 0.42, and Y
In the case of Comparative Example I in which the value of Q was 0.56, the value of no-load Q was so low that it became impossible to measure. Furthermore, as can be understood from Table I, the composition of the porcelain compositions shown in Examples 1 to 3 was improved by increasing the composition of lead oxide within the above-mentioned range and decreasing the value of Y within the range related to zirconium dioxide. The properties improved, and the porcelain composition according to the example (X = 0.52, Y =
0.46), the relative dielectric constant ε r , no-load Q and temperature coefficient τ f tend to deteriorate as the coefficient X increases and Y decreases. On the other hand, in a comparative example in which X is 0.56, which exceeds the above range, and Y is 0.42, which is lower than the above range, and thulium trioxide is added within the above range, the relative dielectric constant ε r is as low as 75. I can understand that it indicates a value. Furthermore, if we consider the composition range of the coefficient Z related to thulium trioxide, we can find that the values of the coefficients X and Y mentioned above satisfy the above-mentioned conditions, and the value of Z is 0.002
Examples I to Examples satisfying ≦Z≦0.04 have excellent properties in relative dielectric constant ε r , no-load Q, and temperature coefficient τ f . On the other hand, a comparative example of a porcelain composition exceeding the composition range,
It can be seen that the no-load Q is low in the comparative ceramic composition in which thulium trioxide is not added. Overall, as described above, Example I according to the present invention
The porcelain composition of ~ has a negative and large temperature coefficient τ f (approximately −805 to −960 (ppm/℃)), a large relative dielectric constant ε r (approximately 100 to 120), and an unloaded Q (approximately 150 ~225)
It can be understood that it has the following. Next, a brief explanation will be given of the measurement results of various properties when a sample was prepared by laminating the ceramic composition according to the present invention and a conventional ceramic composition using the technique proposed in the above-mentioned literature. In addition, as the porcelain composition according to the present invention, the composition according to the above-mentioned example is used, and as the conventional porcelain composition,
A composition composed of calcium oxide (CaO) and titanium dioxide (TiO 2 ) was used. First, these porcelain compositions are fired separately according to the manufacturing method described above to obtain disk-shaped sintered bodies each having a diameter of 10 mm and a thickness of 1 mm. The characteristics of the CaO-TiO 2 sintered body obtained in this way are that the relative dielectric constant ε r is 123, the no-load Q is 3190, and the temperature coefficient τ f is 610 (ppm/℃), and the sintered body according to the example The concretions showed values similar to those described above (see Table I). Subsequently, the sintered body according to the example was treated with CaO-TiO 2
The sintered bodies are sandwiched from both sides, and the sandwiched sintered bodies are fixed together by applying epoxy resin to a portion of the circumference (not shown). The properties of the laminated ceramic composition obtained in this way were measured using the method described above, and the dielectric constant ε r was 114, the no-load Q was 940, and the temperature coefficient τ f was +
It was 9 (ppm/°C). As can be understood from this measurement result, the dielectric ceramic composition according to the present invention can be laminated with a ceramic composition having a positive and large temperature coefficient τ f and a large relative permittivity ε r . , temperature coefficient τ f
can be configured to have a value close to 0 (ppm/°C). Although the embodiments of the present invention have been described above, the dielectric ceramic composition of the present invention is not limited to the above-mentioned embodiments. For example, as shown in Table I, in this example, the compositions of lead oxide (PbO), zirconium dioxide (ZrO 2 ), and thulium trioxide (Tm 2 O 3 ) were selected within the aforementioned ranges. A ceramic composition having a numerical value was illustrated and its characteristics were explained. However, the porcelain composition of the present invention is not limited to these compositions, and even if it has any composition within the above-mentioned range, the same effects as in the above-mentioned embodiments can be obtained. Furthermore, in order to make the explanation easier to understand, the production of the porcelain composition has been explained using conditions of materials, temperature conditions, and other characteristics, but the present invention is not limited to these conditions. These materials, numerical conditions and other conditions are as follows:
It will be obvious that any suitable modifications and changes may be made within the scope of the invention. (Effects of the Invention) As is clear from the above explanation, according to the dielectric ceramic composition of the present invention, lead oxide (PbO)
By mixing and firing zirconium dioxide (ZrO 2 ), and thulium trioxide (Tm 2 O 3 ) over a predetermined composition range, a negative and large temperature coefficient τ f and a large A ceramic composition having a relative dielectric constant ε r and an unloaded Q can be obtained. Therefore, the dielectric ceramic composition according to the present invention,
By combining a ceramic composition with a positive and large temperature coefficient τ f and a large relative permittivity ε r , a large relative permittivity ε r and a temperature coefficient τ f close to 0 (ppm/°C) can be achieved. It becomes possible to obtain a dielectric ceramic composition having the following properties, and it is possible to provide an ultra-small electronic component with excellent temperature characteristics.

Claims (1)

【特許請求の範囲】 1 酸化鉛(PbO)と、二酸化ジルコニウム
(ZrO2)と、三酸化ツリウム(Tm2O3)とから成
り、その組成式が (PbO)X(ZrO2Y(Tm2O3Z で表わされ、かつ、その組成を示す原子団の係数
X、Y、Zがモル分率で 0.46≦X≦0.52 0.46≦Y≦0.52 0.002≦Z≦0.04 X+Y+Z=1 の範囲として成る ことを特徴とする誘電体磁器組成物。
[Claims] 1 Consists of lead oxide (PbO), zirconium dioxide (ZrO 2 ), and thulium trioxide (Tm 2 O 3 ), whose composition formula is (PbO) X (ZrO 2 ) Y (Tm 2 O 3 ) The coefficients X, Y, and Z of the atomic group represented by Z and indicating its composition are in the following range as molar fraction: 0.46≦X≦0.52 0.46≦Y≦0.52 0.002≦Z≦0.04 X+Y+Z=1 A dielectric ceramic composition characterized by comprising:
JP62227393A 1987-09-10 1987-09-10 Porcelain composition of dielectric material Granted JPS6469565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62227393A JPS6469565A (en) 1987-09-10 1987-09-10 Porcelain composition of dielectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62227393A JPS6469565A (en) 1987-09-10 1987-09-10 Porcelain composition of dielectric material

Publications (2)

Publication Number Publication Date
JPS6469565A JPS6469565A (en) 1989-03-15
JPH0559070B2 true JPH0559070B2 (en) 1993-08-30

Family

ID=16860119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62227393A Granted JPS6469565A (en) 1987-09-10 1987-09-10 Porcelain composition of dielectric material

Country Status (1)

Country Link
JP (1) JPS6469565A (en)

Also Published As

Publication number Publication date
JPS6469565A (en) 1989-03-15

Similar Documents

Publication Publication Date Title
EP0412440A2 (en) Dielectric ceramic for microwave applications
JPH0568802B2 (en)
JPS6118283B2 (en)
US5561090A (en) Dielectric ceramic composition for high frequencies and method for preparation of the same
JP2501649B2 (en) Microwave dielectric ceramics
JPH0559070B2 (en)
JPH0742165B2 (en) Microwave dielectric ceramics
JPH0460071B2 (en)
JPH06309926A (en) Dielectric ceramic composition
JPH07114824A (en) Dielectric ceramic composition
JPH0580764B2 (en)
JPH04265269A (en) Dielectric ceramic for microwave
JPH06275126A (en) Dielectric ceramic composition
JPH06325620A (en) Dielectric ceramic composition
JP2001302333A (en) Dielectric ceramic composition
JPH0280366A (en) Dielectric porcelain composition
JPH0765627A (en) Dielectric ceramic for microwave
JPH0764630B2 (en) Dielectric porcelain composition
JPS6221748B2 (en)
JPH0737423A (en) Dielectric ceramic composition for high-frequency
JPH033628B2 (en)
JPH06215624A (en) High-frequency dielectric porcelain composition
JPS63291866A (en) Porcelaneous composition
JPH0818863B2 (en) Dielectric ceramics for microwave
JPH0828129B2 (en) Dielectric porcelain composition