JPH0460071B2 - - Google Patents

Info

Publication number
JPH0460071B2
JPH0460071B2 JP61025554A JP2555486A JPH0460071B2 JP H0460071 B2 JPH0460071 B2 JP H0460071B2 JP 61025554 A JP61025554 A JP 61025554A JP 2555486 A JP2555486 A JP 2555486A JP H0460071 B2 JPH0460071 B2 JP H0460071B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
temperature coefficient
composition
oxide
ceo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61025554A
Other languages
Japanese (ja)
Other versions
JPS62187162A (en
Inventor
Kazutoshi Ayusawa
Toyosaku Sato
Minoru Saito
Matsue Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP61025554A priority Critical patent/JPS62187162A/en
Publication of JPS62187162A publication Critical patent/JPS62187162A/en
Publication of JPH0460071B2 publication Critical patent/JPH0460071B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は誘電体磁器組成物に関するもので、
特に、大きな比誘電率及び無負荷Q(Qu)を有す
ると共に、共振周波数の温度係数が安定でかつそ
の温度係数を用途に応じて変化させることが出来
る誘電体磁器組成物に関する。 (従来の技術) 従来からマイクロ波帯用の誘電体共振器等に用
いるため、種々の誘電体磁器組成物が提案されて
いる。このような誘電体磁器組成物は、その比誘
電率(εr)及び無負荷Q(Qu)が大きく、かつ、
共振周波数の温度係数(ηf)に関しては、0温度
係数を中心として正又は負の任意の温度係数が得
られることが要求されている。 このような要求を満足することが出来る誘電体
磁器組成物としては、例えばこの出願の出願人に
係る特願昭60−013738(特開昭61−173408)に提
案されているBaO−TiO2Sm2O3−CeO2−La2O3
系のものがある。この誘電体磁器組成物は比誘電
率(εr)≒41〜99、無負荷Q(Qu)≒500〜4100及
び温度係数(ηf)≒−150〜+80というような電
気的特性を有しており、さらに、この組成物中に
含ませた稀土類酸化物Sm2O3,CeO2及びLa2O3
の配合モル分率を変えることによつて、大きな比
誘電率(εr)及び無負荷Q(Qu)を損ねることな
く、温度係数(ηf)のみを大きく変化させること
が可能なものである。これがため、マイクロ波用
共振器等に用いて好適な誘電体磁器組成物と云え
る。 (発明が解決しようとする問題点) しかしながら、上述したような誘電体磁器組成
物は、この組成物から成り温度係数の異る多種類
の組成物を作製する場合、前述した稀土類酸化物
のモル分率を要求される温度係数に応じてその都
度変更しなければならず、これがため、要求通り
の温度係数を有した誘電体磁器組成物を簡易に製
造することが出来ないという問題点があつた。 この発明の目的は、上述した従来の欠点に鑑
み、共振周波数の温度係数が安定で、かつ、用途
に応じこの温度係数を任意の値に容易に変更出
来、しかも、比誘電率(εr)及び無負荷Q(Qu
が大きい誘電体磁器組成物を提供することにあ
る。 (問題点を解決するための手段) この目的の達成を図るため、この発明の誘電体
磁器組成物は酸化バリウム(BaO)、二酸化チタ
ン(TiO2)、酸化サマリウム(Sm2O3)、酸化セ
リウム(CeO2)及び酸化ランタン(La2O3)か
ら成る主成分と、この主成分に対して添加された
酸化アルミニウム(Al2O3)とを含み、 この主成分の組成式を xBaO−yTiO2 −z{(Sm2O31−(w1+w2)(CeO2)w1(La2
O3)w2}と表したとき、モル分率でその成分組
成x,y,z,w1及びw2を 0.06≦x≦0.22 0.59≦y≦0.795 0.02≦z≦0.345 x+y+z=1 0<(w1+w2)≦0.95 (但し、w1=0及びw2=0を除く) の組成範囲とし、 さらに、この主成分に対してAl2O3を5重量%
以下(但し、0を除く)添加して成る。 (作用) この発明の誘電体磁器組成物は酸化バリウム、
二酸化チタン、酸化サマリウム、酸化セリウム及
び酸化ランタンから成る主成分と、この主成分に
添加された酸化アルミニウムとを有する混合物で
ある。しかしこの誘電体磁器組成物が大きな比誘
電率(εr)及び大きな無負荷Q(Qu)を有すると
共に共振周波数の温度係数(ηf)が安定でしかも
組成を変化させることによつて零を中心として正
又は負の任意の温度係数が得られるためには、混
合物中に占めるそれぞれの構成成分の割合はその
主成分の組成式を xBaO−yTiO2 −z{(Sm2O31−(w1+w2)(CeO2)w1(La2
O3)w2}と表わしたとき、その成分組成x,y,
z,w1,w2はモル分率で 0.06≦x≦0.22 0.59≦y≦0.795 0.02≦z≦0.345 x+y+z=1 0<(w1+w2)≦0.95 (但し、w1=0及びw2=0を除く) の範囲にあることが必要である。さらに、この主
成分に対して添加するAl2O3の添加量は5重量%
以下(但し、0は除く)である必要がある。これ
らの範囲以外のものにあつては上述したような比
誘電率、無負荷、共振周波数の温度係数に関して
の要求をみたすことが出来ない。 又、この誘電体磁器組成物の共振周波数の温度
係数(ηf)は前述の主成分に対して添加するAl2
O3の添加量に応じた値に変化する。 (実施例) 以下、この発明の実施例につき説明する。 先ず、この発明の誘電体磁器組成物の製造方法
につき説明する。 出発原料には化学的に高純度の炭酸バリウム
(BaCO3)、二酸化チタン(TiO2)、酸化サマリウ
ム(Sm2O3)、酸化セリウム(CeO2)、酸化ラン
タン(La2O3)及び酸化アルミニウム(Al2O3
を使用する。これらの出発原料を用い互いに組成
の異る複数の試料(誘電体磁器組成物)を作製す
るため、これら出発原料を所定の組成(詳細は後
述する)になるようにそれぞれ秤量する。 これら各出発原料の組成につき説明する。先
ず、この発明の誘電体磁器組成物の主成分を構成
するBaO,TiO2及び稀土類酸化物(Sm2O3
CeO2及びLa2O3)の好適な組成範囲については、
その詳細な検討がこの出願の出願人に係る特願昭
60−013738においてなされている。この検討によ
れば、この主成分の組成式を xBaO−yTiO2 −z{(Sm2O31−(w1+w2) (CeO2)w1(La2O3)w2} と表わしたとき、BaOの量xが0.22モル分率より
大きいか、或いは、TiO2の量yが0.59モル分率
より小さいか、或いは、希土類酸化物(Sm2O3
CeO2,La2O3)の合計量zが0.02モル分率より小
さくなると、無負荷Q(Qu)が低下してマイクロ
波用に不適当な誘電体磁器となると共に、共振周
波数の温度係数も大きくなる。 このxが0.06モル分率より小さいか、或いは、
yが0.795モル分率よりも大きいか、或いは、z
が0.345モル分率より大きくなると、無負荷Q
(Qu)が低下して測定不能となる。 又、CeO2の量w1とLa2O3の量w2の合計量が
0.95モル分率より大きいと、共振周波数の温度係
数が大きくなつて不適当になる。 よつて、主成分の組成範囲としては上述したこ
れらの組成範囲はこの発明から除外される。 従つて、各試料の主成分のx,y,z,w1
びw2の組成範囲は上述した好適な組成範囲内の
二種類の条件とした。つまり、一方の条件とは別
表1に示す試料番号1〜5のような構成であり、
他方の条件とは別表1に示す試料番号6〜10のよ
うな組成である。 一方、これら組成の異る二種類の主成分に対し
て添加するAl2O3の量を変えて種々の組成の誘電
体磁器組成物を作製するため、Al2O3を種々の量
に秤量し用意した。尚、各Al2O3の秤量を、主成
分に対して重量(wt)%で所定量となるように
行つた。 前述したように秤量した主成分を構成する各材
料をゴム内張りしたボールミルで純水とともに混
合し、脱水乾燥後、空気雰囲気において1000℃で
2時間仮焼した。 次に、この仮焼物をボールミルで純水とともに
湿式粉砕した後脱水乾燥し、主成分としての粉体
を得た。 次に、この粉体(以下、主成分と称する。)に
対して、前述のAl2O3を所定の比率(重量%)で
添加した後、これら主成分及びAl2O3を充分に混
合する。その後、この混合物にバインダを加えて
造粒し顆粒状の造粒粉を得た。この造粒粉を、金
型と油圧プレスとを用い、成形圧力を1〜3ton/
cm2として、直径16mmで厚さ9mmの円板状に成形し
た。このようにして得られた成形体を高純度のア
ルミナ匣に入れて、1200〜1350℃の温度で2時間
の条件で焼成し、よつて互いに組成の異る多種類
の誘電体磁器組成物を得た。 このようにして得られた各誘電体磁器組成物に
対しハツキ・コールマン(Hakki−Coleman)
法による測定をそれぞれ行つて、これら誘電体磁
器組成物の比誘電率(εr)及び無負荷Q(Qu)を
得た。又、共振周波数の温度係数(ηf)は20℃に
おける共振周波数を基準にして、−40℃〜+80℃
の温度範囲における値から求めた。尚、これらの
測定における共振周波数は3〜7GHzであつた。 上述したように作製した誘電体磁器組成物の中
の代表的な誘電体磁器組成物について、その組成
と、その比誘電率(εr)、無負荷Q(Qu)及び温度
係数(ηf)とを別表1にそれぞれ示す。 尚、別表1の左側の欄に示す番号は試料番号で
あり、*印を付した試料番号のものは、この発明
の範囲外の比較例を示し、それ以外は試料番号の
ものがこの発明の範囲内の実施例である。 次に、別表1の各実施例の誘電体磁器組成物の
実験結果を検討する。すなわち、主成分に対する
Al2O3の添加量が5重量%以下の場合は比誘電率
(εr)及び無負荷Q(Qu)の低下が少なく、さら
に、添加量が1重量%以下の場合は無負荷Q
(Qu)が大きくなる。又、別表1の試料番号1〜
5の試料では添加量の増加に従い温度係数(ηf
が負の大きな値に変化し、試料番号6〜10の試料
では零温度係数を中心として温度係数(ηf)が正
の値から負の値へと変化していることからも分か
るように、添加量の増加に伴い共振周波数の温度
係数(ηf)が負の値に変化する。 一方、添加量が5重量%より多い場合比誘電率
(εr)及び無負荷Q(Qu)が小さくなると共に、温
度係数(ηf)が負に著しく大きな値となることが
分かる。よつて、5重量%より多いAl2O3の添加
量はこの発明から除かれる。 上述した実験結果から、実用的に見て、主成分
の組成式を xBaO−yTiO2 −z{(Sm2O31−(w1+w2) (CeO2)w1(La2O3)w2} と表わしたとき、 0.06≦x≦0.22 0.59≦y≦0.795 0.02≦z≦0.345 x+y+z=1 0<(w1+w2)≦0.95 (但し、w1=0及びw2=0を除く) の範囲とし、この主成分に対してAl2O3を5重量
%以下(但し0を除く)添加して成る誘電体磁器
組成物がマイクロ波用誘電体磁器組成物として適
当であることが分つた。 尚、上述した実施例を、本発明の範囲内の好ま
しい特定の条件の下で、説明したが、それは単な
る例示にすぎないものであり、この発明がこの実
施例にのみ限定されるものでないこと明らかであ
る。 (発明の効果) 上述した説明からも明らかなように、この発明
の誘電体磁器組成物は、大きな比誘電率(εr)及
び無負荷Q(Qu)を有する。さらに、BaO,
TiO2,Sm2O3,CeO2及びLa2O3を所定のモル分
率で混合し仮焼・粉砕した主成分(粉体)を予め
作製しておき、この主成分に対して適量のAl2O3
を添加し焼成するだけで、共振周波数の温度係数
等の電気的特性を所望とする値にすることが出来
る。 これがため、共振周波数の温度係数が安定で、
かつ、用途に応じこの温度係数を任意の値に容易
に変更出来、しかも、比誘電率(εr)及び無負荷
Q(Qu)が大きい誘電体磁器組成物を提供するこ
とが出来る。 従つて、この誘電体組成物から成り例えば異る
温度係数を有した多種類の誘電体磁器組成物を少
量でも多量でも簡易に製造することが可能とな
り、この発明の工業的利用価値は非常に高い。 【表】
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a dielectric ceramic composition,
In particular, the present invention relates to a dielectric ceramic composition that has a large relative permittivity and a high unloaded Q (Q u ), has a stable temperature coefficient of resonance frequency, and is capable of changing the temperature coefficient depending on the application. (Prior Art) Various dielectric ceramic compositions have been proposed for use in dielectric resonators and the like for microwave bands. Such a dielectric ceramic composition has a large relative dielectric constant (ε r ) and no-load Q (Q u ), and
Regarding the temperature coefficient (η f ) of the resonant frequency, it is required that any positive or negative temperature coefficient can be obtained around the 0 temperature coefficient. An example of a dielectric ceramic composition that can satisfy such requirements is BaO-TiO 2 Sm, which is proposed in Japanese Patent Application No. 60-013738 (Japanese Unexamined Patent Publication No. 61-173408) filed by the applicant of this application. 2 O 3 −CeO 2 −La 2 O 3
There is a system. This dielectric ceramic composition has electrical properties such as a relative dielectric constant (ε r )≒41 to 99, an unloaded Q (Q u )≒500 to 4100, and a temperature coefficient (η f )≒−150 to +80. Furthermore, rare earth oxides Sm 2 O 3 , CeO 2 and La 2 O 3 contained in this composition
By changing the blended molar fraction of , it is possible to greatly change only the temperature coefficient (η f ) without impairing the large relative permittivity (ε r ) and unloaded Q (Q u ). be. Therefore, it can be said that the dielectric ceramic composition is suitable for use in microwave resonators and the like. (Problems to be Solved by the Invention) However, when producing many types of compositions having different temperature coefficients from the dielectric ceramic composition as described above, it is difficult to use the rare earth oxide as described above. The mole fraction must be changed each time according to the required temperature coefficient, and this poses the problem that it is not possible to easily produce a dielectric ceramic composition having the required temperature coefficient. It was hot. In view of the above-mentioned drawbacks of the conventional technology, it is an object of the present invention to have a stable temperature coefficient of resonance frequency, to be able to easily change this temperature coefficient to any value depending on the application, and to have a relative dielectric constant (ε r ). and no-load Q (Q u )
The object of the present invention is to provide a dielectric porcelain composition that has a large capacity. (Means for solving the problem) In order to achieve this object, the dielectric ceramic composition of the present invention contains barium oxide (BaO), titanium dioxide (TiO 2 ), samarium oxide (Sm 2 O 3 ), It contains a main component consisting of cerium (CeO 2 ) and lanthanum oxide (La 2 O 3 ), and aluminum oxide (Al 2 O 3 ) added to this main component, and the compositional formula of this main component is xBaO− yTiO 2 −z{(Sm 2 O 3 ) 1 −(w 1 +w 2 )(CeO 2 )w 1 (La 2
0.06 ≦x≦0.22 0.59≦y≦0.795 0.02 z≦0.345 x+y+z= 1 0< The composition range is (w 1 + w 2 )≦0.95 (excluding w 1 =0 and w 2 =0), and in addition, 5% by weight of Al 2 O 3 is added to this main component.
The following (excluding 0) are added. (Function) The dielectric ceramic composition of the present invention contains barium oxide,
It is a mixture having main components consisting of titanium dioxide, samarium oxide, cerium oxide, and lanthanum oxide, and aluminum oxide added to the main components. However, this dielectric ceramic composition has a large relative permittivity (ε r ) and a large unloaded Q (Q u ), and the temperature coefficient (η f ) of the resonant frequency is stable and can be reduced to zero by changing the composition. In order to obtain an arbitrary positive or negative temperature coefficient centered on , the proportion of each component in the mixture must be expressed as −(w 1 +w 2 )(CeO 2 )w 1 (La 2
O 3 ) w 2 }, its component composition x, y,
z, w 1 , w 2 are mole fractions: 0.06≦x≦0.22 0.59≦y≦0.795 0.02≦z≦0.345 x+y+z=1 0<(w 1 +w 2 )≦0.95 (However, w 1 =0 and w 2 (excluding 0). Furthermore, the amount of Al 2 O 3 added to this main component is 5% by weight.
It must be less than or equal to (excluding 0). If it is outside these ranges, it will not be possible to meet the above-mentioned requirements regarding relative dielectric constant, no-load, and temperature coefficient of resonance frequency. Moreover, the temperature coefficient (η f ) of the resonant frequency of this dielectric ceramic composition is determined by the Al 2 added to the above-mentioned main component.
The value changes depending on the amount of O 3 added. (Examples) Examples of the present invention will be described below. First, the method for producing the dielectric ceramic composition of the present invention will be explained. Starting materials include chemically high-purity barium carbonate (BaCO 3 ), titanium dioxide (TiO 2 ), samarium oxide (Sm 2 O 3 ), cerium oxide (CeO 2 ), lanthanum oxide (La 2 O 3 ), and Aluminum (Al 2 O 3 )
use. In order to produce a plurality of samples (dielectric ceramic compositions) having mutually different compositions using these starting materials, these starting materials are each weighed so as to have a predetermined composition (details will be described later). The composition of each of these starting materials will be explained. First, BaO, TiO 2 and rare earth oxides (Sm 2 O 3 ,
Regarding the preferred composition range of CeO 2 and La 2 O 3 ),
A detailed examination of the matter is provided in the patent application filed by the applicant of this application.
60-013738. According to this study, the compositional formula of this main component can be expressed as When expressed, the amount x of BaO is greater than 0.22 mole fraction, or the amount y of TiO 2 is less than 0.59 mole fraction, or rare earth oxides (Sm 2 O 3 ,
When the total amount z of CeO 2 , La 2 O 3 ) becomes smaller than 0.02 mole fraction, the unloaded Q (Q u ) decreases, making the dielectric ceramic unsuitable for microwave applications, and the temperature at the resonance frequency decreases. The coefficient also becomes larger. This x is less than 0.06 mole fraction, or
y is greater than 0.795 mole fraction, or z
When is greater than 0.345 mole fraction, the unloaded Q
(Q u ) decreases and becomes unmeasurable. Also, the total amount of CeO 2 amount w 1 and La 2 O 3 amount w 2 is
If the mole fraction is larger than 0.95, the temperature coefficient of the resonance frequency becomes large and becomes inappropriate. Therefore, the above-mentioned composition ranges of the main components are excluded from this invention. Therefore, the composition ranges of the main components x, y, z, w 1 and w 2 of each sample were set to two conditions within the above-mentioned preferred composition range. In other words, one condition is a configuration like sample numbers 1 to 5 shown in Attached Table 1,
The other condition is the composition as shown in sample numbers 6 to 10 shown in Attached Table 1. On the other hand, in order to create dielectric ceramic compositions with various compositions by changing the amount of Al 2 O 3 added to these two types of main components with different compositions, Al 2 O 3 was weighed in various amounts. I prepared it. In addition, each Al 2 O 3 was weighed so as to be a predetermined amount in weight (wt) % relative to the main component. The materials constituting the main components weighed as described above were mixed with pure water in a rubber-lined ball mill, dehydrated and dried, and then calcined at 1000° C. for 2 hours in an air atmosphere. Next, this calcined product was wet-pulverized with pure water in a ball mill, and then dehydrated and dried to obtain a powder as a main component. Next, after adding the aforementioned Al 2 O 3 at a predetermined ratio (wt%) to this powder (hereinafter referred to as the main component), these main components and Al 2 O 3 are thoroughly mixed. do. Thereafter, a binder was added to this mixture and the mixture was granulated to obtain granulated powder. This granulated powder is molded using a mold and a hydraulic press at a pressure of 1 to 3 tons/
cm 2 , it was molded into a disk shape with a diameter of 16 mm and a thickness of 9 mm. The molded body thus obtained is placed in a high-purity alumina box and fired for 2 hours at a temperature of 1200 to 1350°C, thereby producing a wide variety of dielectric ceramic compositions with different compositions. Obtained. For each dielectric ceramic composition obtained in this way, Hakki-Coleman
The relative permittivity (ε r ) and unloaded Q (Q u ) of these dielectric ceramic compositions were obtained by measurement using the method. Also, the temperature coefficient (η f ) of the resonant frequency is -40°C to +80°C, based on the resonant frequency at 20°C.
It was determined from the values in the temperature range of Note that the resonance frequency in these measurements was 3 to 7 GHz. The composition, relative dielectric constant (ε r ), no-load Q (Q u ), and temperature coefficient (η f ) are shown in Attached Table 1. The numbers shown in the left column of Attached Table 1 are sample numbers, and sample numbers marked with an asterisk (*) indicate comparative examples outside the scope of this invention. This is an example within the range. Next, the experimental results of the dielectric ceramic compositions of each example in Attached Table 1 will be discussed. That is, for the principal components
When the amount of Al 2 O 3 added is 5% by weight or less, the relative dielectric constant (ε r ) and no-load Q (Q u ) decrease little, and when the amount added is 1% by weight or less, the no-load Q decreases.
(Q u ) increases. In addition, sample numbers 1 to 1 in Attached Table 1
In sample No. 5, the temperature coefficient (η f ) increases as the amount added increases.
As can be seen from the fact that the temperature coefficient (η f ) changes from a positive value to a negative value around the zero temperature coefficient for samples No. 6 to 10, As the amount added increases, the temperature coefficient (η f ) of the resonance frequency changes to a negative value. On the other hand, it can be seen that when the amount added is more than 5% by weight, the relative dielectric constant (ε r ) and the unloaded Q (Q u ) become small, and the temperature coefficient (η f ) becomes a significantly large negative value. Therefore, additions of more than 5% by weight of Al 2 O 3 are excluded from this invention. From the above experimental results, from a practical point of view, the compositional formula of the main component can be expressed as ) w 2 }, 0.06≦x≦0.22 0.59≦y≦0.795 0.02≦z≦0.345 x+y+z=1 0<(w 1 +w 2 )≦0.95 (However, w 1 =0 and w 2 =0 ), and a dielectric ceramic composition in which 5% by weight or less (excluding 0) of Al 2 O 3 is added to this main component is suitable as a dielectric ceramic composition for microwave use. I understood. Although the above-mentioned embodiments have been described under specific preferred conditions within the scope of the present invention, these are merely illustrative and the present invention is not limited only to these embodiments. it is obvious. (Effects of the Invention) As is clear from the above description, the dielectric ceramic composition of the present invention has a large relative dielectric constant (ε r ) and an unloaded Q (Q u ). Furthermore, BaO,
A main component (powder) is prepared in advance by mixing, calcining and pulverizing TiO 2 , Sm 2 O 3 , CeO 2 and La 2 O 3 at a predetermined molar fraction, and then adding an appropriate amount of powder to the main component. Al2O3 _
By simply adding and firing, electrical characteristics such as the temperature coefficient of resonance frequency can be set to desired values. Because of this, the temperature coefficient of the resonant frequency is stable,
Moreover, it is possible to easily change this temperature coefficient to any value depending on the application, and to provide a dielectric ceramic composition having a large relative dielectric constant (ε r ) and a large no-load Q (Q u ). Therefore, it is possible to easily produce many types of dielectric ceramic compositions made of this dielectric composition and having, for example, different temperature coefficients, in both small and large quantities, and the industrial utility value of this invention is extremely high. expensive. 【table】

Claims (1)

【特許請求の範囲】 1 酸化バリウム(BaO)、二酸化チタン
(TiO2)、酸化サマリウム(Sm2O3)、酸化セリウ
ム(CeO2)及び酸化ランタン(La2O3)から成
る主成分を含み、 該主成分の組成式を xBaO−yTiO2 −z{(Sm2O31−(w1+w2)(CeO2)w1(La2
O3)w2}と表したとき、モル分率でその成分組
成x,y,z,w1及びw2を 0.06≦x≦0.22 0.59≦y≦0.795 0.02≦z≦0.345 x+y+z=1 0<(w1+w2)≦0.95 (但し、w1=0及びw2=0を除く) の組成範囲とし、 前記主成分に対して酸化アルミニウム(Al2
O3)を5重量%以下(但し、0を除く)添加し
て成ることを特徴とする誘電体磁器組成物。
[Claims] 1. Contains main components consisting of barium oxide (BaO), titanium dioxide (TiO 2 ), samarium oxide (Sm 2 O 3 ), cerium oxide (CeO 2 ) and lanthanum oxide (La 2 O 3 ). , the compositional formula of the main component is xBaO−yTiO 2 −z{(Sm 2 O 3 ) 1 −(w 1 +w 2 )(CeO 2 )w 1 (La 2
0.06 ≦x≦0.22 0.59≦y≦0.795 0.02 z≦0.345 x+y+z= 1 0< The composition range is (w 1 + w 2 )≦0.95 (excluding w 1 =0 and w 2 =0), and aluminum oxide (Al 2
A dielectric ceramic composition characterized in that it contains 5% by weight or less (excluding 0) of O 3 ).
JP61025554A 1986-02-07 1986-02-07 Dielectric ceramic composition Granted JPS62187162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025554A JPS62187162A (en) 1986-02-07 1986-02-07 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025554A JPS62187162A (en) 1986-02-07 1986-02-07 Dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS62187162A JPS62187162A (en) 1987-08-15
JPH0460071B2 true JPH0460071B2 (en) 1992-09-25

Family

ID=12169171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025554A Granted JPS62187162A (en) 1986-02-07 1986-02-07 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS62187162A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183657A (en) * 1989-12-13 1991-08-09 Oki Electric Ind Co Ltd Dielectric ceramics for microwave
JP2501649B2 (en) * 1989-12-20 1996-05-29 沖電気工業株式会社 Microwave dielectric ceramics

Also Published As

Publication number Publication date
JPS62187162A (en) 1987-08-15

Similar Documents

Publication Publication Date Title
JPS61173408A (en) Dielectric ceramics composition for microwave
JPS6118283B2 (en)
US5561090A (en) Dielectric ceramic composition for high frequencies and method for preparation of the same
JP2001114553A (en) Microwave dielectric substance ceramic composition
EP0169077B1 (en) Dielectric porcelain material
JP2501649B2 (en) Microwave dielectric ceramics
JPH0460071B2 (en)
JPH0255884B2 (en)
JP2731940B2 (en) Dielectric ceramics for microwave
JPH06333426A (en) Dielectric ceramic composition for high frequency
JP2974823B2 (en) Microwave dielectric porcelain composition
JPH0415963B2 (en)
JPH0369560A (en) Microwave dielectric ceramics
JPH04265269A (en) Dielectric ceramic for microwave
JP3324244B2 (en) Dielectric porcelain composition
JP2001302331A (en) Dielectric ceramic composition
JPH0785363B2 (en) Microwave dielectric ceramics
JPS6227373A (en) Dielectric ceramic
JPH06325620A (en) Dielectric ceramic composition
JPH06275126A (en) Dielectric ceramic composition
JPH0460072B2 (en)
JPH04243966A (en) Dielectric ceramic composition
JPH0415962B2 (en)
JPH04104947A (en) Dielectric porcelain composition
JP2001302333A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term