JPH0415963B2 - - Google Patents

Info

Publication number
JPH0415963B2
JPH0415963B2 JP58230597A JP23059783A JPH0415963B2 JP H0415963 B2 JPH0415963 B2 JP H0415963B2 JP 58230597 A JP58230597 A JP 58230597A JP 23059783 A JP23059783 A JP 23059783A JP H0415963 B2 JPH0415963 B2 JP H0415963B2
Authority
JP
Japan
Prior art keywords
mol
bao
dielectric
tio
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58230597A
Other languages
Japanese (ja)
Other versions
JPS60124304A (en
Inventor
Toyosaku Sato
Kazutoshi Ayusawa
Matsue Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP58230597A priority Critical patent/JPS60124304A/en
Publication of JPS60124304A publication Critical patent/JPS60124304A/en
Publication of JPH0415963B2 publication Critical patent/JPH0415963B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は比誘電率(εr)および無負荷Qが大き
く、かつ組成を変化させることにより、零を中心
にして正または負の任意の温度係数(ηf)が得ら
れるマイクロ波用誘電体セラミツクス組成物に関
するものである。 (技術的背景) 温度補償用磁器コンデンサやマイクロ波回路用
の誘電体共振器等では、誘電体セラミツクス組成
物として比誘電率(εr)および無負荷Qが大き
く、共振周波数の温度係数(ηf)としては、金属
の温度係数を考慮して、零を中心にして正または
負の任意の温度係数が得られることが必要とされ
ている。従来そのような誘電体セラミツクス組成
物としてBaO−TiO2系、MgTiO3−CaO系等を
使用していた。しかしながら、これらの組成物で
誘電体共振器やコンデンサを作つた場合、温度係
数(ηf)が0(ppm/℃)付近では、比誘電率
(εr)が20〜40と小さく、これらの材料を用いて
誘電体共振器等を作成した場合装置が大型化する
という欠点があつた。 (発明の目的) 本発明の目的はこれらの欠点を解決するため、
温度係数(ηf)が0(ppm/℃)付近に於いても
比誘電率(εr)および無負荷Qが大きい材料の組
成に関するもので以下詳細に説明する。 (発明の概要) 本発明は、BaO、TiO2及びLu2O3からなるも
のに、10モル%程度以下のCeO2もしくはSm2O3
を添加したものである。 (実施例) 第1実施例として、出発原料には高純度の
BaCO3、TiO2、CeO2、Lu2O3を第1表の組成比
率になるように混合し、空気中において1060℃の
温度で2時間仮焼した。
(Technical field) The present invention has a large relative dielectric constant (εr) and no-load Q, and by changing the composition, an arbitrary temperature coefficient (ηf) that is positive or negative around zero can be obtained. The present invention relates to a dielectric ceramic composition. (Technical background) In ceramic capacitors for temperature compensation and dielectric resonators for microwave circuits, dielectric ceramic compositions have large relative dielectric constants (εr) and no-load Q, and the temperature coefficient of resonance frequency (ηf) As such, it is necessary to take into account the temperature coefficient of the metal and obtain any positive or negative temperature coefficient centered around zero. Conventionally, BaO-TiO 2 type, MgTiO 3 -CaO type, etc. have been used as such dielectric ceramic compositions. However, when dielectric resonators and capacitors are made with these compositions, when the temperature coefficient (ηf) is around 0 (ppm/℃), the relative dielectric constant (εr) is as small as 20 to 40, making it difficult to use these materials. When a dielectric resonator or the like is created using this method, the disadvantage is that the device becomes larger. (Object of the invention) The object of the invention is to solve these drawbacks,
This relates to the composition of a material that has a large relative dielectric constant (εr) and no-load Q even when the temperature coefficient (ηf) is around 0 (ppm/°C), and will be described in detail below. (Summary of the invention) The present invention provides a method for adding CeO 2 or Sm 2 O 3 of about 10 mol % or less to BaO, TiO 2 and Lu 2 O 3.
is added. (Example) As the first example, high purity was used as the starting material.
BaCO 3 , TiO 2 , CeO 2 , and Lu 2 O 3 were mixed to have the composition ratios shown in Table 1, and calcined in air at a temperature of 1060° C. for 2 hours.

【表】 仮焼物はポツトミルで純水とともに湿式粉砕
し、脱水乾燥後バインダを添加し、32メツシユの
ふるいを通して造粒した。造粒粉体は金型と油圧
プレスを用いて成形し、圧力1〜3ton/cm2で直径
16mm厚さ9mmの円板状に成形した。成形体は高純
度のアルミナ匣に入れ、1260℃〜1500℃2時間の
条件で焼成し、誘電体セラミツクスを得た。得ら
れた誘電体セラミツクスはハツキ・コールマン法
による測定から比誘電率(εr)と無負荷Qを求め
た。 共振周波数の温度係数(ηf)は、20℃に於ける
共振周波数を基準にして−40℃〜80℃の温度範囲
に於ける値から求めた。これらの測定における共
振周波数は3〜7GHzであつた。 第2表に代表的な誘電体セラミツクスの特性測
定結果を示す。第2表において*印を付した試料
番号のものは本発明の範囲外の比較例であり、そ
れ以外の試料が本発明範囲内の実施例である。
[Table] The calcined product was wet-pulverized with pure water in a pot mill, dehydrated and dried, a binder was added, and the material was granulated through a 32-mesh sieve. The granulated powder is formed using a mold and a hydraulic press, and the diameter is
It was molded into a disk shape of 16 mm and 9 mm thick. The compact was placed in a high-purity alumina box and fired at 1260°C to 1500°C for 2 hours to obtain dielectric ceramics. The dielectric constant (εr) and no-load Q of the obtained dielectric ceramic were determined by measurement using the Hatsuki-Coleman method. The temperature coefficient (ηf) of the resonant frequency was determined from values in the temperature range of -40°C to 80°C based on the resonant frequency at 20°C. The resonant frequency in these measurements was between 3 and 7 GHz. Table 2 shows the results of characteristic measurements of typical dielectric ceramics. In Table 2, the sample numbers marked with * are comparative examples outside the scope of the present invention, and the other samples are examples within the scope of the present invention.

【表】 すなわち(BaO)(TiO2xが77モル%未満で
CeO2が18モル%を超える場合は無負荷Qが小さ
く使用出来ない。また、Lu2O3が2モル%未満の
場合は無負荷Qが小さくなる。 (BaO)(TiO2xが90モル%を超えCeO2が7
モル%未満の場合及びLu2O3が11モル%を超える
場合は測定不能で使用出来ない。 したがつて実用的にみて(BaO)(TiO2x:77
〜90モル%、CeO2:7〜18モル%、Lu2O3:2
〜11モル%の範囲が適当である。x=3.7〜4.3モ
ルであることからBaO:14.5〜19.0モル%、
TiO2:60.7〜73.0モル%、CeO2:7〜18モル%、
Lu2O3:2〜11モル%の範囲がマイクロ波用誘電
体セラミツクスとして適当である。 第2の実施例として、出発原料には化学的に高
純度のBaCO3、TiO2、Sm2O3、およびLu2O3
第3表の組成比率となるようにポツトミルで純水
とともに湿式混合し、脱水乾燥後空気中において
1060℃で2時間仮焼した。
[Table] That is, (BaO) (TiO 2 ) when x is less than 77 mol%
If CeO 2 exceeds 18 mol%, the unloaded Q is too small to use. Moreover, when Lu 2 O 3 is less than 2 mol %, the unloaded Q becomes small. (BaO) (TiO 2 ) x exceeds 90 mol% CeO 2 7
If it is less than mol% or if Lu 2 O 3 exceeds 11 mol%, it cannot be measured and cannot be used. Therefore, from a practical point of view (BaO) (TiO 2 ) x : 77
~90 mol%, CeO2 : 7-18 mol%, Lu2O3 : 2
A range of 11 mol % is suitable. Since x = 3.7 to 4.3 mol, BaO: 14.5 to 19.0 mol%,
TiO2 : 60.7 to 73.0 mol%, CeO2 : 7 to 18 mol%,
Lu 2 O 3 : A range of 2 to 11 mol % is suitable for dielectric ceramics for microwave use. As a second example, chemically high-purity BaCO 3 , TiO 2 , Sm 2 O 3 , and Lu 2 O 3 were wet-processed with pure water in a pot mill so that the composition ratios shown in Table 3 were obtained as starting materials. Mix, dehydrate and dry in air
It was calcined at 1060°C for 2 hours.

【表】 仮焼物は第1実施例と同様にして焼成し、誘電
体セラミツクスを得た。得られた誘電体セラミツ
クスは第1実施例と同様にして比誘電率と無負荷
Qを求めた。 第4表に代表的な誘電体セラミツクスの特性測
定結果を示す。第4表において*印を付した試料
番号のものは、本発明の範囲外の比較例であり、
それ以外の試料が、本発明範囲内の実施例であ
る。
[Table] The calcined product was fired in the same manner as in the first example to obtain dielectric ceramics. The dielectric constant and no-load Q of the obtained dielectric ceramic were determined in the same manner as in the first example. Table 4 shows the results of characteristic measurements of typical dielectric ceramics. Sample numbers marked with * in Table 4 are comparative examples outside the scope of the present invention.
The other samples are examples within the scope of the present invention.

【表】 すなわちSm2O3が15モル%を超える場合は無
負荷Qが小さく温度係数は負に大きい。 Lu2O3が10モル%を超えると無負荷Qが小さく
温度係数が大きくなる。また、(BaO)(TiO2x
が90モル%を超えSm2O3が7モル%未満の場合
及び(BaO)(TiO2xが78モル%未満でLu2O3
10モル%を超える場合は無負荷Qが小さく温度係
数も大きくなる。Lu2O3が2モル%以下の場合、
無負荷Qが小さく使用出来ない。 したがつて実用的にみて(BaO)(TiO2x:78
〜90モル%、Sm2O3:7〜15モル%、Lu2O3:2
〜10モル%の範囲が適当である。x=3.7〜4.3よ
り、BaO:15.0〜19.0モル%、TiO2:61.5〜73.0
モル%、Sm2O3:7〜15モル%、Lu2O3:2〜10
モル%の範囲がマイクロ波用誘電体セラミツクス
として適当である。 (発明の効果) 本発明は、マイクロ波領域において、比誘電率
εr、及び無負荷Qが大きく、さらに組成によつて
温度係数を変化させることができるので、マイク
ロ波用誘電体共振器あるいは、温度補償用コンデ
ンサ等の誘電体セラミツクスとして利用すること
ができる。
[Table] That is, when Sm 2 O 3 exceeds 15 mol %, the no-load Q is small and the temperature coefficient is negatively large. When Lu 2 O 3 exceeds 10 mol %, the unloaded Q becomes small and the temperature coefficient becomes large. Also, (BaO) (TiO 2 ) x
exceeds 90 mol% and Sm 2 O 3 is less than 7 mol%, and (BaO) (TiO 2 ) x is less than 78 mol% and Lu 2 O 3
If it exceeds 10 mol%, the no-load Q will be small and the temperature coefficient will also be large. When Lu 2 O 3 is 2 mol% or less,
Cannot be used due to small no-load Q. Therefore, from a practical point of view (BaO) (TiO 2 ) x : 78
~90 mol% , Sm2O3 : 7-15 mol%, Lu2O3 : 2
A range of 10 mol % is suitable. From x=3.7-4.3, BaO: 15.0-19.0 mol%, TiO2 : 61.5-73.0
Mol%, Sm 2 O 3 : 7 to 15 mol %, Lu 2 O 3 : 2 to 10
A range of mol % is suitable for dielectric ceramics for microwave use. (Effects of the Invention) The present invention has a large relative permittivity εr and no-load Q in the microwave region, and the temperature coefficient can be changed depending on the composition. It can be used as dielectric ceramics for temperature compensation capacitors, etc.

Claims (1)

【特許請求の範囲】 1 BaO14.5〜19.0モル%、TiO260.7〜73.0モル
%、CeO27〜18モル%、Lu2O32〜11モル%から
なるマイクロ波用誘電体セラミツクス。 2 BaO15.0〜19.0モル%、TiO261.5〜73.0モル
%、Sm2O37〜15モル%、Lu2O32〜10モル%から
なるマイクロ波用誘電体セラミツクス。
[Claims] 1. Microwave dielectric ceramics comprising 14.5 to 19.0 mol% of BaO, 60.7 to 73.0 mol% of TiO2, 7 to 18 mol% of CeO2, and 2 to 11 mol% of Lu2O3 . 2 Dielectric ceramic for microwaves consisting of 15.0 to 19.0 mol% BaO , 61.5 to 73.0 mol% TiO2, 7 to 15 mol % Sm2O3 , and 2 to 10 mol% Lu2O3.
JP58230597A 1983-12-08 1983-12-08 Dielectric ceramics for microwave Granted JPS60124304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58230597A JPS60124304A (en) 1983-12-08 1983-12-08 Dielectric ceramics for microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58230597A JPS60124304A (en) 1983-12-08 1983-12-08 Dielectric ceramics for microwave

Publications (2)

Publication Number Publication Date
JPS60124304A JPS60124304A (en) 1985-07-03
JPH0415963B2 true JPH0415963B2 (en) 1992-03-19

Family

ID=16910234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58230597A Granted JPS60124304A (en) 1983-12-08 1983-12-08 Dielectric ceramics for microwave

Country Status (1)

Country Link
JP (1) JPS60124304A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2938671B2 (en) * 1992-03-25 1999-08-23 太陽誘電株式会社 Porcelain capacitor and method of manufacturing the same
JP3029502B2 (en) * 1992-03-25 2000-04-04 太陽誘電株式会社 Porcelain capacitor and method of manufacturing the same
JP2938673B2 (en) * 1992-03-25 1999-08-23 太陽誘電株式会社 Porcelain capacitor and method of manufacturing the same
JP2938672B2 (en) * 1992-03-25 1999-08-23 太陽誘電株式会社 Porcelain capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
JPS60124304A (en) 1985-07-03

Similar Documents

Publication Publication Date Title
JPS5937526B2 (en) dielectric magnetic composition
JPS6118283B2 (en)
JPH0415963B2 (en)
JP2501649B2 (en) Microwave dielectric ceramics
JPS5951096B2 (en) dielectric porcelain composition
JP2731940B2 (en) Dielectric ceramics for microwave
JPS5951088B2 (en) dielectric porcelain material
JPS6112865B2 (en)
JPH0742165B2 (en) Microwave dielectric ceramics
JPS5951095B2 (en) dielectric porcelain composition
JPH0256305B2 (en)
JPH0415962B2 (en)
JPH0126123B2 (en)
JPH0785363B2 (en) Microwave dielectric ceramics
JPS62187161A (en) Dielectric ceramic composition
JPS6343338B2 (en)
JPH033628B2 (en)
JPH0460071B2 (en)
JPS6348132B2 (en)
JPH06102572B2 (en) High frequency dielectric ceramic composition
JPH0815007B2 (en) Dielectric porcelain composition
JPH0567588B2 (en)
JPS5937524B2 (en) dielectric porcelain composition
JPH0460072B2 (en)
JPH0644404B2 (en) Dielectric porcelain composition for microwave