JPH0567588B2 - - Google Patents

Info

Publication number
JPH0567588B2
JPH0567588B2 JP62125702A JP12570287A JPH0567588B2 JP H0567588 B2 JPH0567588 B2 JP H0567588B2 JP 62125702 A JP62125702 A JP 62125702A JP 12570287 A JP12570287 A JP 12570287A JP H0567588 B2 JPH0567588 B2 JP H0567588B2
Authority
JP
Japan
Prior art keywords
mol
composition
temperature coefficient
tio
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62125702A
Other languages
Japanese (ja)
Other versions
JPS63291861A (en
Inventor
Toyosaku Sato
Kazutoshi Ayusawa
Minoru Saito
Matsue Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP62125702A priority Critical patent/JPS63291861A/en
Publication of JPS63291861A publication Critical patent/JPS63291861A/en
Publication of JPH0567588B2 publication Critical patent/JPH0567588B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、マイクロ波用の誘電体磁器組成物
に関するものである。 (従来の技術) マイクロ波回路用の誘電体共振器や温度補償用
磁器コンデンンなどでは、誘電体磁器組成物とし
て、比誘電率(εr)および無負荷Q(Qu)が大き
く、共振周波数の温度係数(τf)が金属などの温
度係数を考慮して0を中心にして正または負に任
意の温度係数が得られれることが必要とされてい
る。 従来、かかる誘電体磁器組成物としては、
BaO−TiO2系、MgTiO3−CaO系、TiO2−SnO2
−ZrO2系などが使用されていた。 (発明が解決しようとする問題点) しかし、これらの誘電体磁器組成物を用いて誘
電体共振器やコンデンサを製造した場合は、その
温度係数(τf)が0pmm/℃付近ではその比誘電
率(εr)が20〜40と小さく、その結果、誘電体共
振器などの小形化が不可能であるという欠点があ
つた。 この発明は上記の点を鑑みなされたもので、温
度係数が0付近においても比誘電率(εr)および
無負荷Qが大きく、かつ組成変化によつて広範囲
に温度係数(τf)を変化させることのできるマイ
クロ波用誘電体磁器組成物を提供することを目的
とする。 (問題点を解決するための手段) この発明のマイクロ波用誘電体磁器組成物は、
(BaO)・(TiO2x系磁器組成物、酸化サマリウム
(Sm2O3)および酸化ホルミウム(Ho2O3)から
なる誘電体磁器組成物であつて、酸化物換算で BaO:18.1〜22.1モル% TiO2:61.8〜68.2モル% Sm2O3:12〜19モル% Ho2O3:1〜8モル% の組成範囲としたことを特徴とするものである。 (作用) 上記のようなマイクロ波用誘電体磁器組成物
は、共振周波数の温度係数(τf)が0付近でも比
誘電率(εr)および無負荷Q(Qu)が大きく、か
つ組成変化によつて広範囲の温度係数(τf)が変
化する。 (実施例) 以下この発明の実施例を説明する。 出発原料として化学的に高純度のBaCO3
TiO2、Sm2O3およびHo2O3を第1表および第2
表に示す組成比率にて混合し、空気中において
1060℃2時間仮焼した。
(Industrial Application Field) This invention relates to a dielectric ceramic composition for microwave use. (Prior art) In dielectric resonators for microwave circuits and ceramic capacitors for temperature compensation, dielectric ceramic compositions have large relative permittivity (ε r ) and no-load Q (Qu), and the resonance frequency is low. It is required that the temperature coefficient (τ f ) can be any positive or negative temperature coefficient centered around 0, taking into consideration the temperature coefficient of metals and the like. Conventionally, such dielectric ceramic compositions include:
BaO−TiO 2 system, MgTiO 3 −CaO system, TiO 2 −SnO 2
−ZrO 2 series etc. were used. (Problem to be solved by the invention) However, when dielectric resonators and capacitors are manufactured using these dielectric ceramic compositions, when the temperature coefficient (τ f ) is around 0 pmm/°C, the dielectric constant decreases. The ratio (ε r ) was as small as 20 to 40, and as a result, it had the disadvantage that it was impossible to miniaturize dielectric resonators and the like. This invention was made in view of the above points, and the relative permittivity (ε r ) and no-load Q are large even when the temperature coefficient is near 0, and the temperature coefficient (τ f ) can be varied over a wide range by changing the composition. The purpose of the present invention is to provide a dielectric ceramic composition for microwave use that can be used for microwaves. (Means for solving the problems) The microwave dielectric ceramic composition of the present invention is
A dielectric ceramic composition consisting of a ( BaO ) / (TiO 2 ) It is characterized by having a composition range of 22.1 mol% TiO2 : 61.8 to 68.2 mol% Sm2O3 : 12 to 19 mol% Ho2O3 : 1 to 8 mol%. (Function) The dielectric ceramic composition for microwaves as described above has a large relative permittivity (ε r ) and no-load Q (Qu) even when the temperature coefficient (τ f ) of the resonance frequency is around 0, and the composition does not change. The temperature coefficient (τ f ) varies over a wide range. (Example) Examples of the present invention will be described below. Chemically pure BaCO 3 as starting material,
TiO 2 , Sm 2 O 3 and Ho 2 O 3 in Tables 1 and 2
Mix at the composition ratio shown in the table and place in air.
Calcined at 1060°C for 2 hours.

【表】【table】

【表】 得られた仮焼物をポツトミルで純水とともに湿
式粉砕し、脱水乾燥後バインダを添加し造粒し32
メツシユのふるいを通して整粒した。得られた造
粒粉は金型と油圧プレスを用いて成形圧力1〜
3ton/cm2で直径16mmφ厚さ9mmの円板状の成形体
とした。そして、この成形体を高純度をアルミナ
厘に入れ、1260℃〜1500℃2時間の焼成条件で焼
成し、誘電体磁器組成物を得た。 得られた磁器組成物についてハツキ・コールマ
ン法により比誘電率(εr)および無負荷Q(Qu)
を測定した。また、共振周波数の温度係数(τf
は下記(1)式に従つて20℃における共振周波数を基
準にして−40℃〜80℃の温度範囲における値から
求めた。それらの結果を第2表に示す。これらの
測定における共振周波数は3〜5GHzであつた。 τf=f(80)−f(−40)/f(20)・1/△T(ppm
/℃)…(1) ただし、 f(20):20℃における共振周波数 f(−40):−40℃における共振周波数 f(80):80℃における共振周波数 △T:測定温度差、ここでは80+40=120℃ 第2表において、*印を付した試料番号のも
のは本発明の範囲外の比較例であり、それ以外の
試料が本発明範囲内の実施例である。 第1表及び第2表の結果によれば、(BaO)・
(TiO2xが78モル%未満ならびに84モル%を超え
ると無負荷Q(Qu)が小さく、比誘電率(εr)も
小さくなり不適当である。また、Sm2O3が12モ
ル%未満ならびに19モル%を超える無負荷Q
(Qu)が小さく比誘電率(εr)も小さくなり、更
に温度係数(τf)も大きくなつて不適当である。
さらに、Ho2O3が1モル%未満ならびに8モル%
を超えると無負荷Q(Qu)が小さく、εrも小さく
なり不適当である。 したがつて、実用的にみて、(BaO)・(TiO2
:78〜84モル%、Sm2O3:12〜19モル%、
Ho2O3:1〜8モル%の範囲が適当である。ここ
で、(BaO)・(TiO2)のxのxは、x=3.8〜4.3モ
ルであることから、BaO:18.1〜22.1モル%、
TiO2:61.8〜68.2モル%、Sm2O3:12〜19モル
%、Ho2O3:1〜8モル%の範囲が適当である。 また、前記第2表によれば、本発明の磁器組成
物は、共振周波数の温度係数(τr)が0付近でも
大きな比誘電率(εr)と無負荷Q(Qu)が得られ
ていることが分り、さらに組成変化によつて広範
囲に温度係数が変化するこが分る。 (発明の効果) 以上のように、この発明のマイクロ波用誘電体
磁器組成物は、マイクロ波領域において、共振周
波数の温度係数が0付近においても無負荷Qおよ
び比誘電率が大きく、更に組成変化によつて広範
囲に温度係数τfを変化させることができる。よつ
て、マイクロ波誘電体共振器あるいは温度補償用
コンデンサなどの誘電体磁器組成物として利用し
てそれらの小型化を図ることができ、その工業的
価値は大である。
[Table] The obtained calcined product was wet-pulverized with pure water in a pot mill, and after dehydration and drying, a binder was added and granulated.
The grains were sized through a mesh sieve. The obtained granulated powder is molded using a mold and a hydraulic press under a molding pressure of 1~
A disc-shaped molded product with a diameter of 16 mm and a thickness of 9 mm was made at 3 ton/cm 2 . Then, this molded body was placed in a high-purity alumina pot and fired under firing conditions of 1260°C to 1500°C for 2 hours to obtain a dielectric ceramic composition. The relative dielectric constant (ε r ) and unloaded Q (Qu) of the obtained porcelain composition were determined by the Hatsuki-Coleman method.
was measured. Also, the temperature coefficient of the resonant frequency (τ f )
was determined from values in the temperature range of -40°C to 80°C based on the resonance frequency at 20°C according to equation (1) below. The results are shown in Table 2. The resonant frequency in these measurements was 3-5 GHz. τ f = f(80)-f(-40)/f(20)・1/△T(ppm
/℃)...(1) However, f(20): Resonance frequency at 20℃ f(-40): Resonance frequency at -40℃ f(80): Resonance frequency at 80℃ △T: Measured temperature difference, here 80+40=120°C In Table 2, the sample numbers marked with * are comparative examples outside the scope of the present invention, and the other samples are examples within the scope of the present invention. According to the results in Tables 1 and 2, (BaO)・
(TiO 2 ) If x is less than 78 mol% or exceeds 84 mol%, the unloaded Q (Qu) will be small and the relative permittivity (ε r ) will also be small, which is inappropriate. In addition, unloaded Q with Sm 2 O 3 less than 12 mol % and more than 19 mol %
(Qu) is small, the dielectric constant (ε r ) is small, and the temperature coefficient (τ f ) is also large, which is inappropriate.
Furthermore, Ho 2 O 3 is less than 1 mol % and 8 mol %
If it exceeds, the no-load Q (Qu) will be small and ε r will also be small, which is inappropriate. Therefore, from a practical point of view, (BaO)・(TiO 2 )
x : 78 to 84 mol%, Sm2O3 : 12 to 19 mol%,
Ho 2 O 3 : A range of 1 to 8 mol % is suitable. Here, since x of x in (BaO)/(TiO 2 ) is x = 3.8 to 4.3 mol, BaO: 18.1 to 22.1 mol%,
Suitable ranges are TiO2 : 61.8 to 68.2 mol%, Sm2O3 : 12 to 19 mol%, and Ho2O3 : 1 to 8 mol%. Furthermore, according to Table 2, the ceramic composition of the present invention has a large relative dielectric constant (ε r ) and no-load Q (Qu) even when the temperature coefficient (τ r ) of the resonance frequency is around 0. It can be seen that the temperature coefficient changes over a wide range as the composition changes. (Effects of the Invention) As described above, the microwave dielectric ceramic composition of the present invention has a large no-load Q and a large dielectric constant even when the temperature coefficient of the resonant frequency is around 0 in the microwave region, and the composition The temperature coefficient τ f can be changed over a wide range by changing the temperature coefficient τ f . Therefore, it can be used as a dielectric ceramic composition for microwave dielectric resonators, temperature compensation capacitors, etc. to reduce their size, and its industrial value is great.

Claims (1)

【特許請求の範囲】 1 (BaO)・(TiO2x系磁器組成物、酸化サマ
リウム(Sm2O3)および酸化ホルミウム
(Ho2O3)からなる誘電体磁器組成物であつて、
酸化物換算で BaO:18.1〜22.1モル% TiO2:61.8〜68.2モル% Sm2O3:12〜19モル% Ho2O3:1〜8モル% の組成範囲としたことを特徴とするマイクロ波用
誘電体磁器組成物。
[Claims] 1 A dielectric ceramic composition comprising a (BaO)/(TiO 2 ) x -based ceramic composition, samarium oxide (Sm 2 O 3 ) and holmium oxide (Ho 2 O 3 ),
A microorganism characterized by having a composition range of BaO: 18.1 to 22.1 mol% TiO 2 : 61.8 to 68.2 mol% Sm 2 O 3 : 12 to 19 mol% Ho 2 O 3 : 1 to 8 mol% in terms of oxides. Dielectric porcelain composition for waves.
JP62125702A 1987-05-25 1987-05-25 Dielectric porcelaneous composition for microwave Granted JPS63291861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62125702A JPS63291861A (en) 1987-05-25 1987-05-25 Dielectric porcelaneous composition for microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125702A JPS63291861A (en) 1987-05-25 1987-05-25 Dielectric porcelaneous composition for microwave

Publications (2)

Publication Number Publication Date
JPS63291861A JPS63291861A (en) 1988-11-29
JPH0567588B2 true JPH0567588B2 (en) 1993-09-27

Family

ID=14916606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125702A Granted JPS63291861A (en) 1987-05-25 1987-05-25 Dielectric porcelaneous composition for microwave

Country Status (1)

Country Link
JP (1) JPS63291861A (en)

Also Published As

Publication number Publication date
JPS63291861A (en) 1988-11-29

Similar Documents

Publication Publication Date Title
JPS5937526B2 (en) dielectric magnetic composition
JPS6118283B2 (en)
JP2731940B2 (en) Dielectric ceramics for microwave
JP2501649B2 (en) Microwave dielectric ceramics
JPH0567588B2 (en)
JPH0415963B2 (en)
JPS5951096B2 (en) dielectric porcelain composition
JPH0742165B2 (en) Microwave dielectric ceramics
JPS6112865B2 (en)
JPS5951095B2 (en) dielectric porcelain composition
JPS5951088B2 (en) dielectric porcelain material
JPH0567589B2 (en)
JPH0785363B2 (en) Microwave dielectric ceramics
JPH0563882B2 (en)
JPS6054269B2 (en) dielectric porcelain composition
JPH0415962B2 (en)
JPH0256305B2 (en)
JPS6141863B2 (en)
JPS62187161A (en) Dielectric ceramic composition
JPH0126123B2 (en)
JPS63291865A (en) Microwave porcelaneous composition
JPS63291866A (en) Porcelaneous composition
JPS6348132B2 (en)
JPH0567591B2 (en)
JPH0815007B2 (en) Dielectric porcelain composition