JPH0567588B2 - - Google Patents
Info
- Publication number
- JPH0567588B2 JPH0567588B2 JP62125702A JP12570287A JPH0567588B2 JP H0567588 B2 JPH0567588 B2 JP H0567588B2 JP 62125702 A JP62125702 A JP 62125702A JP 12570287 A JP12570287 A JP 12570287A JP H0567588 B2 JPH0567588 B2 JP H0567588B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- composition
- temperature coefficient
- tio
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 claims description 24
- 239000000919 ceramic Substances 0.000 claims description 14
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 9
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052573 porcelain Inorganic materials 0.000 claims description 2
- 229910052689 Holmium Inorganic materials 0.000 claims 1
- 229910052772 Samarium Inorganic materials 0.000 claims 1
- OWCYYNSBGXMRQN-UHFFFAOYSA-N holmium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ho+3].[Ho+3] OWCYYNSBGXMRQN-UHFFFAOYSA-N 0.000 claims 1
- 244000005700 microbiome Species 0.000 claims 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 2
- JYTUFVYWTIKZGR-UHFFFAOYSA-N holmium oxide Inorganic materials [O][Ho]O[Ho][O] JYTUFVYWTIKZGR-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Description
(産業上の利用分野)
この発明は、マイクロ波用の誘電体磁器組成物
に関するものである。
(従来の技術)
マイクロ波回路用の誘電体共振器や温度補償用
磁器コンデンンなどでは、誘電体磁器組成物とし
て、比誘電率(εr)および無負荷Q(Qu)が大き
く、共振周波数の温度係数(τf)が金属などの温
度係数を考慮して0を中心にして正または負に任
意の温度係数が得られれることが必要とされてい
る。
従来、かかる誘電体磁器組成物としては、
BaO−TiO2系、MgTiO3−CaO系、TiO2−SnO2
−ZrO2系などが使用されていた。
(発明が解決しようとする問題点)
しかし、これらの誘電体磁器組成物を用いて誘
電体共振器やコンデンサを製造した場合は、その
温度係数(τf)が0pmm/℃付近ではその比誘電
率(εr)が20〜40と小さく、その結果、誘電体共
振器などの小形化が不可能であるという欠点があ
つた。
この発明は上記の点を鑑みなされたもので、温
度係数が0付近においても比誘電率(εr)および
無負荷Qが大きく、かつ組成変化によつて広範囲
に温度係数(τf)を変化させることのできるマイ
クロ波用誘電体磁器組成物を提供することを目的
とする。
(問題点を解決するための手段)
この発明のマイクロ波用誘電体磁器組成物は、
(BaO)・(TiO2)x系磁器組成物、酸化サマリウム
(Sm2O3)および酸化ホルミウム(Ho2O3)から
なる誘電体磁器組成物であつて、酸化物換算で
BaO:18.1〜22.1モル%
TiO2:61.8〜68.2モル%
Sm2O3:12〜19モル%
Ho2O3:1〜8モル%
の組成範囲としたことを特徴とするものである。
(作用)
上記のようなマイクロ波用誘電体磁器組成物
は、共振周波数の温度係数(τf)が0付近でも比
誘電率(εr)および無負荷Q(Qu)が大きく、か
つ組成変化によつて広範囲の温度係数(τf)が変
化する。
(実施例)
以下この発明の実施例を説明する。
出発原料として化学的に高純度のBaCO3、
TiO2、Sm2O3およびHo2O3を第1表および第2
表に示す組成比率にて混合し、空気中において
1060℃2時間仮焼した。
(Industrial Application Field) This invention relates to a dielectric ceramic composition for microwave use. (Prior art) In dielectric resonators for microwave circuits and ceramic capacitors for temperature compensation, dielectric ceramic compositions have large relative permittivity (ε r ) and no-load Q (Qu), and the resonance frequency is low. It is required that the temperature coefficient (τ f ) can be any positive or negative temperature coefficient centered around 0, taking into consideration the temperature coefficient of metals and the like. Conventionally, such dielectric ceramic compositions include:
BaO−TiO 2 system, MgTiO 3 −CaO system, TiO 2 −SnO 2
−ZrO 2 series etc. were used. (Problem to be solved by the invention) However, when dielectric resonators and capacitors are manufactured using these dielectric ceramic compositions, when the temperature coefficient (τ f ) is around 0 pmm/°C, the dielectric constant decreases. The ratio (ε r ) was as small as 20 to 40, and as a result, it had the disadvantage that it was impossible to miniaturize dielectric resonators and the like. This invention was made in view of the above points, and the relative permittivity (ε r ) and no-load Q are large even when the temperature coefficient is near 0, and the temperature coefficient (τ f ) can be varied over a wide range by changing the composition. The purpose of the present invention is to provide a dielectric ceramic composition for microwave use that can be used for microwaves. (Means for solving the problems) The microwave dielectric ceramic composition of the present invention is
A dielectric ceramic composition consisting of a ( BaO ) / (TiO 2 ) It is characterized by having a composition range of 22.1 mol% TiO2 : 61.8 to 68.2 mol% Sm2O3 : 12 to 19 mol% Ho2O3 : 1 to 8 mol%. (Function) The dielectric ceramic composition for microwaves as described above has a large relative permittivity (ε r ) and no-load Q (Qu) even when the temperature coefficient (τ f ) of the resonance frequency is around 0, and the composition does not change. The temperature coefficient (τ f ) varies over a wide range. (Example) Examples of the present invention will be described below. Chemically pure BaCO 3 as starting material,
TiO 2 , Sm 2 O 3 and Ho 2 O 3 in Tables 1 and 2
Mix at the composition ratio shown in the table and place in air.
Calcined at 1060°C for 2 hours.
【表】【table】
【表】
得られた仮焼物をポツトミルで純水とともに湿
式粉砕し、脱水乾燥後バインダを添加し造粒し32
メツシユのふるいを通して整粒した。得られた造
粒粉は金型と油圧プレスを用いて成形圧力1〜
3ton/cm2で直径16mmφ厚さ9mmの円板状の成形体
とした。そして、この成形体を高純度をアルミナ
厘に入れ、1260℃〜1500℃2時間の焼成条件で焼
成し、誘電体磁器組成物を得た。
得られた磁器組成物についてハツキ・コールマ
ン法により比誘電率(εr)および無負荷Q(Qu)
を測定した。また、共振周波数の温度係数(τf)
は下記(1)式に従つて20℃における共振周波数を基
準にして−40℃〜80℃の温度範囲における値から
求めた。それらの結果を第2表に示す。これらの
測定における共振周波数は3〜5GHzであつた。
τf=f(80)−f(−40)/f(20)・1/△T(ppm
/℃)…(1)
ただし、
f(20):20℃における共振周波数
f(−40):−40℃における共振周波数
f(80):80℃における共振周波数
△T:測定温度差、ここでは80+40=120℃
第2表において、*印を付した試料番号のも
のは本発明の範囲外の比較例であり、それ以外の
試料が本発明範囲内の実施例である。
第1表及び第2表の結果によれば、(BaO)・
(TiO2)xが78モル%未満ならびに84モル%を超え
ると無負荷Q(Qu)が小さく、比誘電率(εr)も
小さくなり不適当である。また、Sm2O3が12モ
ル%未満ならびに19モル%を超える無負荷Q
(Qu)が小さく比誘電率(εr)も小さくなり、更
に温度係数(τf)も大きくなつて不適当である。
さらに、Ho2O3が1モル%未満ならびに8モル%
を超えると無負荷Q(Qu)が小さく、εrも小さく
なり不適当である。
したがつて、実用的にみて、(BaO)・(TiO2)
x:78〜84モル%、Sm2O3:12〜19モル%、
Ho2O3:1〜8モル%の範囲が適当である。ここ
で、(BaO)・(TiO2)のxのxは、x=3.8〜4.3モ
ルであることから、BaO:18.1〜22.1モル%、
TiO2:61.8〜68.2モル%、Sm2O3:12〜19モル
%、Ho2O3:1〜8モル%の範囲が適当である。
また、前記第2表によれば、本発明の磁器組成
物は、共振周波数の温度係数(τr)が0付近でも
大きな比誘電率(εr)と無負荷Q(Qu)が得られ
ていることが分り、さらに組成変化によつて広範
囲に温度係数が変化するこが分る。
(発明の効果)
以上のように、この発明のマイクロ波用誘電体
磁器組成物は、マイクロ波領域において、共振周
波数の温度係数が0付近においても無負荷Qおよ
び比誘電率が大きく、更に組成変化によつて広範
囲に温度係数τfを変化させることができる。よつ
て、マイクロ波誘電体共振器あるいは温度補償用
コンデンサなどの誘電体磁器組成物として利用し
てそれらの小型化を図ることができ、その工業的
価値は大である。[Table] The obtained calcined product was wet-pulverized with pure water in a pot mill, and after dehydration and drying, a binder was added and granulated.
The grains were sized through a mesh sieve. The obtained granulated powder is molded using a mold and a hydraulic press under a molding pressure of 1~
A disc-shaped molded product with a diameter of 16 mm and a thickness of 9 mm was made at 3 ton/cm 2 . Then, this molded body was placed in a high-purity alumina pot and fired under firing conditions of 1260°C to 1500°C for 2 hours to obtain a dielectric ceramic composition. The relative dielectric constant (ε r ) and unloaded Q (Qu) of the obtained porcelain composition were determined by the Hatsuki-Coleman method.
was measured. Also, the temperature coefficient of the resonant frequency (τ f )
was determined from values in the temperature range of -40°C to 80°C based on the resonance frequency at 20°C according to equation (1) below. The results are shown in Table 2. The resonant frequency in these measurements was 3-5 GHz. τ f = f(80)-f(-40)/f(20)・1/△T(ppm
/℃)...(1) However, f(20): Resonance frequency at 20℃ f(-40): Resonance frequency at -40℃ f(80): Resonance frequency at 80℃ △T: Measured temperature difference, here 80+40=120°C In Table 2, the sample numbers marked with * are comparative examples outside the scope of the present invention, and the other samples are examples within the scope of the present invention. According to the results in Tables 1 and 2, (BaO)・
(TiO 2 ) If x is less than 78 mol% or exceeds 84 mol%, the unloaded Q (Qu) will be small and the relative permittivity (ε r ) will also be small, which is inappropriate. In addition, unloaded Q with Sm 2 O 3 less than 12 mol % and more than 19 mol %
(Qu) is small, the dielectric constant (ε r ) is small, and the temperature coefficient (τ f ) is also large, which is inappropriate.
Furthermore, Ho 2 O 3 is less than 1 mol % and 8 mol %
If it exceeds, the no-load Q (Qu) will be small and ε r will also be small, which is inappropriate. Therefore, from a practical point of view, (BaO)・(TiO 2 )
x : 78 to 84 mol%, Sm2O3 : 12 to 19 mol%,
Ho 2 O 3 : A range of 1 to 8 mol % is suitable. Here, since x of x in (BaO)/(TiO 2 ) is x = 3.8 to 4.3 mol, BaO: 18.1 to 22.1 mol%,
Suitable ranges are TiO2 : 61.8 to 68.2 mol%, Sm2O3 : 12 to 19 mol%, and Ho2O3 : 1 to 8 mol%. Furthermore, according to Table 2, the ceramic composition of the present invention has a large relative dielectric constant (ε r ) and no-load Q (Qu) even when the temperature coefficient (τ r ) of the resonance frequency is around 0. It can be seen that the temperature coefficient changes over a wide range as the composition changes. (Effects of the Invention) As described above, the microwave dielectric ceramic composition of the present invention has a large no-load Q and a large dielectric constant even when the temperature coefficient of the resonant frequency is around 0 in the microwave region, and the composition The temperature coefficient τ f can be changed over a wide range by changing the temperature coefficient τ f . Therefore, it can be used as a dielectric ceramic composition for microwave dielectric resonators, temperature compensation capacitors, etc. to reduce their size, and its industrial value is great.
Claims (1)
リウム(Sm2O3)および酸化ホルミウム
(Ho2O3)からなる誘電体磁器組成物であつて、
酸化物換算で BaO:18.1〜22.1モル% TiO2:61.8〜68.2モル% Sm2O3:12〜19モル% Ho2O3:1〜8モル% の組成範囲としたことを特徴とするマイクロ波用
誘電体磁器組成物。[Claims] 1 A dielectric ceramic composition comprising a (BaO)/(TiO 2 ) x -based ceramic composition, samarium oxide (Sm 2 O 3 ) and holmium oxide (Ho 2 O 3 ),
A microorganism characterized by having a composition range of BaO: 18.1 to 22.1 mol% TiO 2 : 61.8 to 68.2 mol% Sm 2 O 3 : 12 to 19 mol% Ho 2 O 3 : 1 to 8 mol% in terms of oxides. Dielectric porcelain composition for waves.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62125702A JPS63291861A (en) | 1987-05-25 | 1987-05-25 | Dielectric porcelaneous composition for microwave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62125702A JPS63291861A (en) | 1987-05-25 | 1987-05-25 | Dielectric porcelaneous composition for microwave |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63291861A JPS63291861A (en) | 1988-11-29 |
JPH0567588B2 true JPH0567588B2 (en) | 1993-09-27 |
Family
ID=14916606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62125702A Granted JPS63291861A (en) | 1987-05-25 | 1987-05-25 | Dielectric porcelaneous composition for microwave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63291861A (en) |
-
1987
- 1987-05-25 JP JP62125702A patent/JPS63291861A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS63291861A (en) | 1988-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5937526B2 (en) | dielectric magnetic composition | |
JPS6118283B2 (en) | ||
JP2731940B2 (en) | Dielectric ceramics for microwave | |
JP2501649B2 (en) | Microwave dielectric ceramics | |
JPH0567588B2 (en) | ||
JPH0415963B2 (en) | ||
JPS5951096B2 (en) | dielectric porcelain composition | |
JPH0742165B2 (en) | Microwave dielectric ceramics | |
JPS6112865B2 (en) | ||
JPS5951095B2 (en) | dielectric porcelain composition | |
JPS5951088B2 (en) | dielectric porcelain material | |
JPH0567589B2 (en) | ||
JPH0785363B2 (en) | Microwave dielectric ceramics | |
JPH0563882B2 (en) | ||
JPS6054269B2 (en) | dielectric porcelain composition | |
JPH0415962B2 (en) | ||
JPH0256305B2 (en) | ||
JPS6141863B2 (en) | ||
JPS62187161A (en) | Dielectric ceramic composition | |
JPH0126123B2 (en) | ||
JPS63291865A (en) | Microwave porcelaneous composition | |
JPS63291866A (en) | Porcelaneous composition | |
JPS6348132B2 (en) | ||
JPH0567591B2 (en) | ||
JPH0815007B2 (en) | Dielectric porcelain composition |