JPH0567591B2 - - Google Patents

Info

Publication number
JPH0567591B2
JPH0567591B2 JP62206438A JP20643887A JPH0567591B2 JP H0567591 B2 JPH0567591 B2 JP H0567591B2 JP 62206438 A JP62206438 A JP 62206438A JP 20643887 A JP20643887 A JP 20643887A JP H0567591 B2 JPH0567591 B2 JP H0567591B2
Authority
JP
Japan
Prior art keywords
mol
ceramic composition
composition
pbo
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62206438A
Other languages
Japanese (ja)
Other versions
JPS6451374A (en
Inventor
Minoru Saito
Toyosaku Sato
Kazutoshi Ayusawa
Matsue Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP62206438A priority Critical patent/JPS6451374A/en
Publication of JPS6451374A publication Critical patent/JPS6451374A/en
Publication of JPH0567591B2 publication Critical patent/JPH0567591B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明はマイクロ波用誘電体セラミツクスと
して用いられる磁器組成物に関するものである。 (従来の技術) マイクロ波回路用の誘電体共振器や温度補償用
磁器コンデンサなどでは、誘電体磁器組成物とし
て、その比誘電率εrおよび無負荷Qが大きく、更
に共振周波数の温度係数τfが0を中心にして正又
は負の任意の値が得られることが必要とされてい
る。 従来、かかる磁器組成物としては、BaTi4O9
(εr=39、τf=0)、MgTiO3(εr=20、τf=0)、
ZrO2・SnO2・TiO2(εr=38、τf=0)、特公昭61
−14606号公報に開示されるBaO・TiO2
Sm2O3・La2O3(εr=50〜80、τf=0)などが使用
されていた。 (発明が解決しようとする問題点) しかしながら、これらの磁器組成物を用いて誘
電体共振器やコンデンサを製造した場合は、共振
周波数の温度係数τfが0付近で誘導率εrは40〜80
であり十分な小形化ができない問題点があり、一
層の小形化を達成するためには、εrが100以上の
材料が必要である。ここで、εrが100〜150の材料
としては、例えばCaTiO3、SrTiO3があるが、こ
れらはτfがそれぞれ800ppm/℃、1600ppm/℃
と大きく、使用することはできない。しかし、εr
が大きく、かつτfがマイナスに大きい材料が開発
できれば、これらの材料と組合わせることによつ
て新しい最適な磁器組成物を得ることができる。 この発明は上記の点に鑑みなれたもので、比誘
電率εrが大きく、かつ共振周波数の温度係数τf
マイナスに大きい磁器組成物を提供することを目
的とする。 (問題点を解決するための手段) この発明の磁器組成物は、酸化鉛(PbO)、酸
化ジルコニウム(ZrO2)および酸化アルミニウ
ム(Al2O3)からなる磁器組成物であつて、
(PbO)x・(ZrO2y・(Al2O3zと表わしたとき、モ
ル分率で 45.0≦x≦55.0 45.0≦y≦55.0 0.2≦z≦6.0 となることを特徴とするものである。 (作用) 上記のような磁器組成物は、比誘電率εrが大き
く、かつ共振周波数の温度係数τfがマイナスに大
きい。したがつて、共振周波数の温度係数τfがプ
ラスに大きく、かつ無負荷Q(Qu)も大きな既存
の材料と組合わせることにより、τfが0ppm/℃
付近においてもεrとQuの大きな磁器組成物が構
成される。 (実施例) 以下この発明の実施例を詳細に説明する。 出発原料として高純度の酸化鉛(PbO)、酸化
ジルコニウム(ZrO2)および酸化アルミニウム
(Al2O3)を第1表に示す組成比率にて混合し、
空気中において850℃2時間仮焼した。
(Industrial Application Field) This invention relates to a ceramic composition used as a dielectric ceramic for microwaves. (Prior art) In dielectric resonators for microwave circuits, ceramic capacitors for temperature compensation, etc., the dielectric ceramic composition has a large relative permittivity ε r and no-load Q, and also has a large temperature coefficient τ of the resonant frequency. It is required that f can take any positive or negative value centered around 0. Conventionally, such porcelain compositions include BaTi 4 O 9
r =39, τ f =0), MgTiO 3r =20, τ f =0),
ZrO 2・SnO 2・TiO 2r = 38, τ f = 0), Special Publication Showa 61
− BaO・TiO 2・ disclosed in Publication No. 14606
Sm 2 O 3 ·La 2 O 3r =50 to 80, τ f =0), etc. were used. (Problems to be Solved by the Invention) However, when dielectric resonators and capacitors are manufactured using these ceramic compositions, the temperature coefficient τ f of the resonant frequency is around 0, and the dielectric constant ε r is 40 to 40. 80
Therefore, there is a problem that sufficient miniaturization is not possible, and in order to achieve further miniaturization, a material with ε r of 100 or more is required. Here, examples of materials with ε r of 100 to 150 include CaTiO 3 and SrTiO 3 , which have τ f of 800 ppm/°C and 1600 ppm/°C, respectively.
It's too big and can't be used. However, ε r
If a material with a large τ f and a negative τ f can be developed, a new optimal porcelain composition can be obtained by combining these materials. The present invention has been made in view of the above points, and an object of the present invention is to provide a ceramic composition having a large relative permittivity ε r and a negative temperature coefficient τ f of the resonance frequency. (Means for Solving the Problems) The porcelain composition of the present invention is a porcelain composition consisting of lead oxide (PbO), zirconium oxide (ZrO 2 ) and aluminum oxide (Al 2 O 3 ),
When expressed as ( PbO ) It is. (Function) The above-mentioned ceramic composition has a large relative permittivity ε r and a negative temperature coefficient τ f of the resonance frequency. Therefore, by combining existing materials with a positive temperature coefficient τ f of the resonance frequency and a large no-load Q (Qu), τ f can be reduced to 0 ppm/°C.
A ceramic composition with large ε r and Qu is also formed in the vicinity. (Example) Examples of the present invention will be described in detail below. As starting materials, high purity lead oxide (PbO), zirconium oxide (ZrO 2 ) and aluminum oxide (Al 2 O 3 ) were mixed at the composition ratio shown in Table 1.
It was calcined in air at 850°C for 2 hours.

【表】 得られた仮焼物をポツトミルで純水とともに湿
式粉砕し、脱水乾燥後バインダを添加し、32メツ
シユのフルイを通して整粒した。得られた造粒粉
は、金型と油圧プレス用いて成形圧力1〜3ton/
cm2で直径16mm厚さ9mmの円板状の成形体とした。
そして、この成形体を高純度のマグネシア匣に入
れ1200℃〜1350℃2時間の焼成条件で焼成し磁器
組成物を得た。 得られた磁器組成物についてハツキ・コールマ
ン法により比誘電率εrと無負荷Q(Qu)を測定し
た。また、共振周波数の温度係数τfは下記(1)式に
従つて20℃における共振周波数を基準にして−30
℃〜70℃の温度範囲における値から求めた。それ
らの結果を第1表に示す。これらの測定における
共振周波数は3〜5GHzであつた。 τf=f(70)−f(−30)/f(20)・1/△t(ppm
/℃) ……(1) ただし、 f(20):20℃における共振周波数 f(−30):−30℃における共振周波数 f(70):70℃における共振周波数 △t:測定温度差、ここでは70+30=100℃ 第1表において、*印を付した試料番号のもの
は、本発明の範囲外の比較例であり、それ以外の
試料が本発明範囲内の実施例である。 第1表の結果によれば、酸化鉛が45モル%未満
で酸化ジルコニウムが55モル%を超えると無負荷
Q(Qu)が小さくなり測定が不能となる。また、
酸化鉛が55モル%を超え、酸化ジルコニウムが45
モル%未満の場合もQuが小さくなり、不適当で
ある。また、酸化アルミニウムが0.2モル%未満
でもQuが小さく不適当である。さらに、酸化ア
ルミニウムが6モル%を超えると焼結性が悪くな
り測定ができない。 したがつて、実用的にみて、PbO:45〜55モル
%、ZrO2:45〜55モル%、Al2O3:0.2〜6モル
%の範囲が磁器組成物として適当であり、この範
囲では比誘導率εrが100以上と大きく、かつ共振
周波数の温度係数τfが−860以上とマイナスに大
きい。 次に、焼結後従来材料と積層することによつて
磁器組成物を作成した。まず、第1表中試料番号
4の焼結体を直径10mm厚さ1mmに数枚加工した。
一方、CaO・TiO系の磁器(εr=123、Qu=
3190、τf=610)を直径10mm厚さ1mmに数枚加工
した。そして、前記加工した試料番号4の試料を
CaO・TiO2で狭む状態で積層し、円周部分の一
部をエポキシ樹脂で固定し誘電特性を測定した。
その結果、比誘電率εr=124、無負荷Q(Qu)=
1020、τf−45ppm/℃と、τfが0ppm/℃付近でεr
とQuの大きい磁器組成物を得ることができた。
すなわち、本発明のPbO−ZrO2−Al2O3系磁器組
成物は有効であるということができる。 (発明の効果) 以上のようにこの発明の磁器組成物は、マイク
ロ波領域においてεrが大きく、かつτfがマイナス
に大きい磁器組成物であつて、現在開発されてい
るτfがプラスに大きく、かつQuも大きな材料と
組合わせることによつて、τfが0ppm/℃付近に
おいてもεrとQuの大きな磁器組成物を作ること
ができるので、マイクロ波用誘電体共振器あるい
は温度補償用コンデンサなどの誘電体磁器組成物
として非常に好適に利用することができ、その工
業的価値は著しく高い。
[Table] The obtained calcined product was wet-milled with pure water in a pot mill, dehydrated and dried, a binder was added, and the powder was sized through a 32-mesh sieve. The obtained granulated powder is molded using a mold and a hydraulic press under a molding pressure of 1 to 3 tons/
A disk - shaped molded body with a diameter of 16 mm and a thickness of 9 mm was obtained.
Then, this molded body was placed in a high-purity magnesia box and fired under firing conditions of 1200°C to 1350°C for 2 hours to obtain a porcelain composition. The relative dielectric constant ε r and the no-load Q (Qu) of the obtained ceramic composition were measured by the Hatsuki-Coleman method. In addition, the temperature coefficient τ f of the resonant frequency is −30% based on the resonant frequency at 20°C according to equation (1) below.
It was determined from the values in the temperature range from ℃ to 70℃. The results are shown in Table 1. The resonant frequency in these measurements was 3-5 GHz. τ f = f(70)-f(-30)/f(20)・1/△t(ppm
/℃) ...(1) However, f (20): Resonance frequency at 20℃ f (-30): Resonance frequency at -30℃ f (70): Resonance frequency at 70℃ △t: Measured temperature difference, here Then, 70+30=100°C In Table 1, the sample numbers marked with * are comparative examples outside the scope of the present invention, and the other samples are examples within the scope of the present invention. According to the results in Table 1, when lead oxide is less than 45 mol% and zirconium oxide is more than 55 mol%, the unloaded Q (Qu) becomes small and measurement becomes impossible. Also,
Lead oxide exceeds 55 mol%, zirconium oxide exceeds 45 mol%
If it is less than mol%, Qu will also be small, which is inappropriate. Furthermore, even if the aluminum oxide content is less than 0.2 mol%, Qu is small and unsuitable. Furthermore, if aluminum oxide exceeds 6 mol %, sinterability deteriorates and measurement cannot be performed. Therefore, from a practical point of view, a range of PbO: 45 to 55 mol%, ZrO2 : 45 to 55 mol%, and Al2O3 : 0.2 to 6 mol% is suitable for a porcelain composition; The specific inductivity ε r is large at 100 or more, and the temperature coefficient τ f of the resonance frequency is negative at -860 or more. Next, a porcelain composition was created by laminating it with a conventional material after sintering. First, several pieces of the sintered body of sample number 4 in Table 1 were processed to have a diameter of 10 mm and a thickness of 1 mm.
On the other hand, CaO/TiO-based porcelain (ε r = 123, Qu =
3190, τ f = 610) were machined into several pieces with a diameter of 10 mm and a thickness of 1 mm. Then, the processed sample number 4 was
The dielectric properties were measured by laminating CaO and TiO 2 in a narrowed state and fixing a part of the circumference with epoxy resin.
As a result, relative permittivity ε r = 124, no-load Q (Qu) =
1020, τ f −45ppm/℃ and ε r when τ f is around 0ppm/℃
And large porcelain compositions of Qu could be obtained.
That is, it can be said that the PbO- ZrO2 - Al2O3 - based ceramic composition of the present invention is effective. (Effects of the Invention) As described above, the ceramic composition of the present invention has a large ε r and a negative τ f in the microwave region, and the currently developed ceramic composition has a positive τ f . By combining a large material with a large Qu, it is possible to create a ceramic composition with large ε r and Qu even when τ f is around 0 ppm/°C. It can be very suitably used as a dielectric ceramic composition for capacitors, etc., and its industrial value is extremely high.

Claims (1)

【特許請求の範囲】 1 酸化鉛(PbO)、酸化ジルコニウム(ZrO2
および酸化アルミニウム(Al2O3)からなる磁器
組成物であつて、(PbO)x・(ZrO2y・(Al2O3z
表わしたとき、モル分率で 45.0≦x≦55.0 45.0≦y≦55.0 0.2≦z≦6.0 となることを特徴とする磁器組成物。
[Claims] 1. Lead oxide (PbO), zirconium oxide (ZrO 2 )
and aluminum oxide (Al 2 O 3 ), where the molar fraction is 45.0≦x≦55.0 when expressed as (PbO) x・(ZrO 2 ) y・(Al 2 O 3 ) z A porcelain composition characterized in that 45.0≦y≦55.0 0.2≦z≦6.0.
JP62206438A 1987-08-21 1987-08-21 Porcelain composition Granted JPS6451374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62206438A JPS6451374A (en) 1987-08-21 1987-08-21 Porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62206438A JPS6451374A (en) 1987-08-21 1987-08-21 Porcelain composition

Publications (2)

Publication Number Publication Date
JPS6451374A JPS6451374A (en) 1989-02-27
JPH0567591B2 true JPH0567591B2 (en) 1993-09-27

Family

ID=16523379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62206438A Granted JPS6451374A (en) 1987-08-21 1987-08-21 Porcelain composition

Country Status (1)

Country Link
JP (1) JPS6451374A (en)

Also Published As

Publication number Publication date
JPS6451374A (en) 1989-02-27

Similar Documents

Publication Publication Date Title
JPS5937526B2 (en) dielectric magnetic composition
JPS6118283B2 (en)
JPH0568802B2 (en)
JPS6410467B2 (en)
JP2501649B2 (en) Microwave dielectric ceramics
JP2554478B2 (en) Microwave dielectric porcelain composition
JPH0567591B2 (en)
JPH0415963B2 (en)
JPS5951096B2 (en) dielectric porcelain composition
JPH0742165B2 (en) Microwave dielectric ceramics
JPH0745339B2 (en) Porcelain composition
JPS6112865B2 (en)
JPS6141863B2 (en)
JPH0785363B2 (en) Microwave dielectric ceramics
JPS58126610A (en) Dielectric porcelain composition
JPH0126123B2 (en)
JPS63291865A (en) Microwave porcelaneous composition
JPH0415962B2 (en)
JP2514354B2 (en) Dielectric ceramic composition and method for producing the same
JPH0237645B2 (en)
JPS63236214A (en) Ceramic composition
JPH0567589B2 (en)
JPS5860668A (en) Dielectric ceramic composition
JPH0580764B2 (en)
JPH0567588B2 (en)