JPH033628B2 - - Google Patents

Info

Publication number
JPH033628B2
JPH033628B2 JP61125275A JP12527586A JPH033628B2 JP H033628 B2 JPH033628 B2 JP H033628B2 JP 61125275 A JP61125275 A JP 61125275A JP 12527586 A JP12527586 A JP 12527586A JP H033628 B2 JPH033628 B2 JP H033628B2
Authority
JP
Japan
Prior art keywords
dielectric
titanate
temperature coefficient
microwave
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61125275A
Other languages
Japanese (ja)
Other versions
JPS62283863A (en
Inventor
Hiroyuki Ito
Hitoshi Ueda
Takashi Tsuboi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Ferrite Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ferrite Ltd filed Critical Hitachi Ferrite Ltd
Priority to JP61125275A priority Critical patent/JPS62283863A/en
Publication of JPS62283863A publication Critical patent/JPS62283863A/en
Publication of JPH033628B2 publication Critical patent/JPH033628B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はマイクロ波用回路素子、マイクロ波回
路基盤などに用いられる誘電体材料に係り、金属
酸化物を焼成して得られる高誘電率で誘電損失が
小さく、誘電率の温度係数の小さい誘電体磁器組
成物に関する。 (従来の技術) 近年、マイクロ波回路技術の進歩に伴い、回路
の小型化が図られている。 従来から、このマイクロ波周波数帯(300MHz
〜30GHz)の回路には、空胴共振器、アンテナな
どが用いられて来たが、これらはマイクロ波の波
長と同程度の大きさになるため回路の小型化には
不向きであつた。これに対し、近年、マイクロ波
周波数帯で使用される誘電体共振器を用いたマイ
クロ波フイルタ、発振器の周波数安定化を計るた
めの小型誘電体共振器、マイクロ波IC用のコン
デンサや基盤等に用いられる誘電体磁器等、マイ
クロ波回路に誘電体磁器を用いて回路の小型化を
図る応用がなされている。これらの磁器に要求さ
れる特性は、マイクロ波周波数帯での誘電損失が
小さく、使用周波帯に適した高い誘電率をもち、
誘電率の温度係数が小さい事である。 従来からこれらの特性を満足する磁器材料とし
て、TiO2系のものがよく使用されており、特に
BaO−TiO2系磁器、およびその一部を他の元素
で置換した磁器、更に誘電率の温度係数を調整す
るために、負の温度係数をもつているTiO2と正
の温度係数をもつている誘電体磁器やガラスと組
合わせたものが多数考案され応用されて来た。 (発明が解決しようとする問題点) 従来のTiO2系、特にBaO−TiO2系磁器材料で
は誘電率が高くなかつたり、誘電損失が十分に小
さくなかつたり、所望の温度係数が得られないな
ど、すべての特性を満足する材料を安定に得る事
は困難であり、実用上で問題点が多かつた。 (問題点を解決するための手段) 発明者らは、これらの欠点を鑑み種々の組成系
について検討した結果、主成分組成が、チタン酸
カルシウム〔CaTiO3〕とチタン酸ランタン
〔La2Ti2O7〕とマグネシウムチタン酸ネオジウム
(Nd(Mg1/2Ti1/2)O3〕とチタン酸マグネシウ
ム酸化亜鉛の混合物(MgTiO3・1/2ZnO〕から
なり、その主成分組成をx〔CaTiO3〕・y
〔La2Ti2O7〕・z〔Nd(Mg1/2Ti1/2)O3〕+w
〔MgTiO3・1/2ZnO〕、x+y+z+w=100(た
だしx、y、z、wはモル比)と表わしたとき、
x、y、z、wが10≦x≦75、0<y≦25、15≦
z≦75、5≦w≦40であり、チタン酸鉛
〔PbTiO3〕がOを含まない20wt%の範囲で添加
含有されている誘電体磁器組成物が、誘電体共振
器、マイクロ波用コンデンサ、基盤等に用いる誘
電体磁気として優れた特性をもち、実用に供する
に適した材料である事を見出した。 (実施例) 以下本発明を実施例に従つて説明する。 試料を作成するための出発原料は、99.9%以上
の高純度のMgO、CaCO3、TiO2、Nd2O3
La2O3、ZnOおよびPbOの粉末を用い、CaTiO3
とLa2Ti2O7とNd(Mg1/2Ti1/2)O3とMgTiO3
1/2ZnOとPbTiO3の各組成になる様に各々秤量
し、ボールミルに純水とともに投入し湿式混合を
行つた。この混合物を乾燥させた後、800〜1100
℃で4時間仮焼して得られた仮焼粉末を所定の各
組成になる様に調合して、再びボールミルに純水
とともに投入し、湿式粉砕を行なつた。この様に
して得られた粉砕物を乾燥させた後、バインダ水
溶液を添加混練して得た造粒粉末を1.5ton/cm2
圧力を加えて得られた成形体を1200℃〜1500℃で
2時間空気中で焼成を行なつて焼成体を得た。そ
の後、得られた磁器を用いて誘電体共振器を構成
し、誘電体共振器の共振周波数と無負荷Qを測定
して誘電率を求めた。得られた誘電体共振器の共
振周波数は5〜8GHzであつた。共振周波数の温
度依存性は誘電体共振器の共振周波数の温度変化
を+25℃〜+85℃の間で測定して求めた。尚、共
振周波数の温度係数τfは、誘電率の温度係数τεと
近似的に次式によつて結ばれる。 τf=−1/2τε−α ただし、 τf:共振周波数の温度係数 τε:誘電率の温度係数 α:磁器の熱膨張係数 得られた試料での測定結果を第1表に示す。こ
の表中で*印を付した試料は本発明の範囲外の比
較例であり、これ以外の試料が本発明の範囲内の
実施例である。 第1表に示される様に本発明の誘電体磁器組成
物は比誘電率としては、34以上の値をもち、しか
も誘電率の温度係数は広い温度範囲にわたりおよ
そ±100ppm/℃の範囲におさえてなおかつ、誘
電体の損失を表わすQ値は、マイクロ波帯の周波
数でおよそ2000以上の大きな値を得ることができ
る材料であることがわかる。 また、本発明において、成分範囲の限定理由
は、以下による。〔CaTiO3〕については、10モ
ルより少ないとQが低くなり、75モルより多いと
温度係数が大きくなり、〔La2Ti2O7〕について
は、これを含まない場合τfがマイナス側に大き
く、25モルより多いとQが低くなり、〔Nd(Mg1/
2Ti1/2)O3〕については、15モルより少ないと
温度係数が大きくなり、75モルより多いとQが小
さくなり、〔MgTiO3・1/2ZnO〕については、5
モルより少ないと高い焼結温度が必要であり、40
モルより多いとεが低くなりかつ温度係数が大き
くなり、〔PbTiO3〕については、これを含まな
いとεrが小さく、20モルより大きいとQが小さく
なりかつ温度係数が大きくなるからである。
(Industrial Application Field) The present invention relates to dielectric materials used in microwave circuit elements, microwave circuit boards, etc. The present invention relates to a dielectric ceramic composition having a small temperature coefficient. (Prior Art) In recent years, with advances in microwave circuit technology, circuits have been made smaller. Traditionally, this microwave frequency band (300MHz
Cavity resonators, antennas, etc. have been used in circuits of up to 30 GHz), but these are not suitable for miniaturizing circuits because their size is about the same as the wavelength of microwaves. In contrast, in recent years, microwave filters using dielectric resonators used in the microwave frequency band, small dielectric resonators for stabilizing the frequency of oscillators, capacitors and boards for microwave ICs, etc. Applications have been made to miniaturize circuits by using dielectric ceramics in microwave circuits. The characteristics required of these porcelains are low dielectric loss in the microwave frequency band, high dielectric constant suitable for the frequency band used,
The temperature coefficient of dielectric constant is small. Traditionally, TiO2 - based materials have been commonly used as porcelain materials that satisfy these characteristics, especially
BaO−TiO 2 -based porcelain, porcelain in which part of it has been replaced with other elements, and TiO 2 with a negative temperature coefficient and TiO 2 with a positive temperature coefficient in order to adjust the temperature coefficient of dielectric constant. Many combinations of dielectric materials such as porcelain and glass have been devised and applied. (Problems to be solved by the invention) Conventional TiO 2 -based, especially BaO-TiO 2 -based porcelain materials have problems such as not having a high dielectric constant, not having a sufficiently small dielectric loss, not being able to obtain a desired temperature coefficient, etc. However, it is difficult to stably obtain a material that satisfies all the properties, and there are many problems in practical use. (Means for Solving the Problems) In view of these drawbacks, the inventors studied various composition systems and found that the main component composition was calcium titanate [CaTiO 3 ] and lanthanum titanate [La 2 Ti 2 O 7 ], magnesium neodymium titanate (Nd(Mg1/2Ti1/2)O 3 ), and magnesium titanate zinc oxide (MgTiO 3 1/2ZnO), whose main component composition is x [CaTiO 3 ]. y
[La 2 Ti 2 O 7 ]・z[Nd(Mg1/2Ti1/2)O 3 ]+w
[MgTiO 3 1/2ZnO], when expressed as x + y + z + w = 100 (x, y, z, w are molar ratios),
x, y, z, w are 10≦x≦75, 0<y≦25, 15≦
A dielectric ceramic composition in which z≦75, 5≦w≦40 and in which lead titanate [PbTiO 3 ] is added in a range of 20 wt% excluding O can be used for dielectric resonators and microwave capacitors. It was discovered that this material has excellent properties as a dielectric magnet for use in substrates, etc., and is suitable for practical use. (Example) The present invention will be described below with reference to Examples. The starting materials for making the samples are MgO, CaCO 3 , TiO 2 , Nd 2 O 3 , with a purity of 99.9% or more.
Using powders of La 2 O 3 , ZnO and PbO, CaTiO 3
and La 2 Ti 2 O 7 and Nd(Mg1/2Ti1/2)O 3 and MgTiO 3
Each composition was weighed to have a composition of 1/2 ZnO and PbTiO 3 and put into a ball mill together with pure water for wet mixing. After drying this mixture, 800-1100
The calcined powder obtained by calcining at ℃ for 4 hours was mixed to have each predetermined composition, and then put into the ball mill together with pure water again for wet pulverization. After drying the pulverized product obtained in this way, a pressure of 1.5 ton/cm 2 was applied to the granulated powder obtained by adding and kneading an aqueous binder solution. Firing was performed in air for 2 hours to obtain a fired body. Thereafter, a dielectric resonator was constructed using the obtained ceramic, and the resonant frequency and no-load Q of the dielectric resonator were measured to determine the dielectric constant. The resonant frequency of the obtained dielectric resonator was 5 to 8 GHz. The temperature dependence of the resonant frequency was determined by measuring the temperature change of the resonant frequency of the dielectric resonator between +25°C and +85°C. Note that the temperature coefficient τf of the resonance frequency is approximately connected to the temperature coefficient τε of the dielectric constant by the following equation. τf=−1/2τε−α where τf: Temperature coefficient of resonance frequency τε: Temperature coefficient of permittivity α: Coefficient of thermal expansion of porcelain The measurement results for the obtained samples are shown in Table 1. The samples marked with * in this table are comparative examples outside the scope of the present invention, and the other samples are examples within the scope of the present invention. As shown in Table 1, the dielectric ceramic composition of the present invention has a relative dielectric constant of 34 or more, and the temperature coefficient of the dielectric constant is kept within a range of approximately ±100 ppm/°C over a wide temperature range. Furthermore, it can be seen that the material is capable of obtaining a large Q value of approximately 2000 or more at frequencies in the microwave band. Further, in the present invention, the reason for limiting the component range is as follows. For [CaTiO 3 ], if it is less than 10 moles, the Q will be low, if it is more than 75 moles, the temperature coefficient will be large, and for [La 2 Ti 2 O 7 ], if it is not included, τf will be large on the negative side. , if the amount is more than 25 mol, Q will be low, and [Nd(Mg1/
2Ti1/2)O 3 ], if it is less than 15 moles, the temperature coefficient becomes large, if it is more than 75 moles, Q becomes small, and for [MgTiO 3 1/2ZnO], the temperature coefficient becomes large.
Less than 40 mol requires higher sintering temperatures;
This is because if the amount is more than 20 moles, ε will be low and the temperature coefficient will be large; for [PbTiO 3 ], if it is not included, εr will be small, and if it is more than 20 moles, Q will be small and the temperature coefficient will be large.

【表】 (発明の効果) 以上のように、本発明にかかる誘電体磁器組成
物は、マイクロ波周波数において誘電率が50程度
と大きく、かつ誘電体損失が小さいと同時に、誘
電率の温度係数が小さい材料であることがわか
る。これらはマイクロ波周波数帯で使用される回
路素子、基盤として極めて有用な誘電体磁器材料
であることは明白である。なお本材料は低周波領
域でも誘電損失が小さく、Q値の高いコンデンサ
材料としても優れた材料であることを確認した。
[Table] (Effects of the Invention) As described above, the dielectric ceramic composition according to the present invention has a large dielectric constant of about 50 at microwave frequencies, a small dielectric loss, and a temperature coefficient of the dielectric constant. It can be seen that this is a small material. It is clear that these dielectric ceramic materials are extremely useful as circuit elements and substrates used in the microwave frequency band. It was confirmed that this material has low dielectric loss even in the low frequency range and is an excellent material for capacitors with a high Q value.

Claims (1)

【特許請求の範囲】 1 主成分組成がチタン酸カルシウム
〔CaTiO3〕とチタン酸ランタン〔La2Ti2O7〕と
マグネシウムチタン酸ネオジウム〔Nd(Mg1/2
Ti1/2O3〕とチタン酸マグネシウムと酸化亜鉛の
混合物〔MgTiO3・1/2ZnO〕からなり、その主
成分組成をx〔CaTiO3〕・y〔La2Ti2O7〕・z〔Nd
(Mg1/2Ti1/2)O3〕+w〔MgTiO3・1/2ZnO〕、
x+y+z+w=100(ただしx、y、z、wはモ
ル比)と表わしたとき、x、y、z、wが10≦x
≦75、0<y≦25、15≦z≦75、5≦w≦40であ
り、チタン酸鉛〔PbTiO3〕がOを含まない20wt
%以下の範囲で添加含有されていることを特徴と
するマイクロ波用誘電体磁器組成物。
[Claims] 1. Main component composition is calcium titanate [CaTiO 3 ], lanthanum titanate [La 2 Ti 2 O 7 ], and magnesium neodymium titanate [Nd (Mg1/2
Ti1/2O 3 ] and a mixture of magnesium titanate and zinc oxide [MgTiO 3 1/2ZnO], whose main component composition is x[CaTiO 3 ]・y[La 2 Ti 2 O 7 ]・z[Nd
(Mg1/2Ti1/2)O 3 〕+w〔MgTiO 3・1/2ZnO〕,
When expressed as x+y+z+w=100 (x, y, z, w are molar ratios), x, y, z, w are 10≦x
≦75, 0<y≦25, 15≦z≦75, 5≦w≦40, and lead titanate [PbTiO 3 ] is 20wt containing no O.
A dielectric ceramic composition for microwave use, characterized in that the dielectric ceramic composition is added in a range of % or less.
JP61125275A 1986-05-29 1986-05-29 Dielectric ceramic composition for microwave Granted JPS62283863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61125275A JPS62283863A (en) 1986-05-29 1986-05-29 Dielectric ceramic composition for microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125275A JPS62283863A (en) 1986-05-29 1986-05-29 Dielectric ceramic composition for microwave

Publications (2)

Publication Number Publication Date
JPS62283863A JPS62283863A (en) 1987-12-09
JPH033628B2 true JPH033628B2 (en) 1991-01-21

Family

ID=14906040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125275A Granted JPS62283863A (en) 1986-05-29 1986-05-29 Dielectric ceramic composition for microwave

Country Status (1)

Country Link
JP (1) JPS62283863A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2413127B (en) * 2004-04-13 2008-04-02 Filtronic Comtek Microwave dielectric ceramic
CN107955963A (en) * 2017-12-18 2018-04-24 中国科学院上海硅酸盐研究所 A kind of La of float-zone method growth doping various concentrations Ta2Ti2O7The method of monocrystalline

Also Published As

Publication number Publication date
JPS62283863A (en) 1987-12-09

Similar Documents

Publication Publication Date Title
JP2974829B2 (en) Microwave dielectric porcelain composition
US4717694A (en) Dielectric ceramic composition for high frequencies
JPH0256305B2 (en)
JP4131996B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JPH11130528A (en) Dielectric ceramic composition and dielectric resonator produced by using the composition
JPH033628B2 (en)
JPH0952762A (en) Aluminous ceramic composition
JPH0231029B2 (en)
JPH0415963B2 (en)
JPH0236546B2 (en)
JPH06102572B2 (en) High frequency dielectric ceramic composition
JPH0644404B2 (en) Dielectric porcelain composition for microwave
JPH0519501B2 (en)
JPS63112459A (en) Dielectric ceramic composition for microwave
JPH0757708B2 (en) High frequency dielectric ceramic composition
JPS6221748B2 (en)
JPS63112458A (en) Dielectric ceramic composition for microwave
JPH0547921B2 (en)
JPS63138605A (en) Dielectric ceramic composition for microwave
JPS6348132B2 (en)
JPH069124B2 (en) High frequency dielectric ceramic composition
JPS6343338B2 (en)
JPS61291453A (en) Dielectric ceramic ceramic composition
JPS61291454A (en) Dielectric ceramic ceramic composition
JPH069125B2 (en) High frequency dielectric ceramic composition