JPS63112459A - Dielectric ceramic composition for microwave - Google Patents

Dielectric ceramic composition for microwave

Info

Publication number
JPS63112459A
JPS63112459A JP61259685A JP25968586A JPS63112459A JP S63112459 A JPS63112459 A JP S63112459A JP 61259685 A JP61259685 A JP 61259685A JP 25968586 A JP25968586 A JP 25968586A JP S63112459 A JPS63112459 A JP S63112459A
Authority
JP
Japan
Prior art keywords
microwave
dielectric
dielectric ceramic
ceramic composition
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61259685A
Other languages
Japanese (ja)
Inventor
徳和 小湯原
博之 伊藤
隆 坪井
等 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Nippon Ferrite Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ferrite Ltd filed Critical Nippon Ferrite Ltd
Priority to JP61259685A priority Critical patent/JPS63112459A/en
Publication of JPS63112459A publication Critical patent/JPS63112459A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、マイクロ波回路素子、マイクロ波回路基板等
に用いられる誘電体材料に係り、金属酸化物を混合、焼
成して得られる誘電損失が小さく、誘電率が高く、かつ
誘電率の温度係数の小さいマイクロ波用誘電体磁器組成
物に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to dielectric materials used for microwave circuit elements, microwave circuit boards, etc. The present invention relates to a dielectric ceramic composition for microwave use that has a small dielectric constant, a high dielectric constant, and a small temperature coefficient of the dielectric constant.

(従来の技術) 近年、マイクロ波回路技術の進歩に伴い、回路の小型化
が図られている。
(Prior Art) In recent years, with advances in microwave circuit technology, circuits have been made smaller.

従来から、このマイクロ波周波数帯(300M Hz〜
30GH2)の回路には、空胴共振器、アンテナなどが
用いられて来たが、これらはマイクロ波の波長と同程度
の大きさになるため回路の小型化には不向きであった。
Conventionally, this microwave frequency band (300MHz ~
Cavity resonators, antennas, etc. have been used in circuits for 30GH2), but these are not suitable for miniaturizing circuits because their size is about the same as the wavelength of microwaves.

これに対し、近年、マイクロ波周波数帯で使用される誘
電体共振器を用いたマイクロ波フィルタ、発振器の周波
数安定化を計るための小型誘電体共振器、マイクロ波I
C用のコンデンサや基板等に用いられる誘電体磁器等、
マイクロ波回路に誘電体磁器を用いて回路の小型化を図
る応用がなされている。これらの磁器に要求される特性
は、マイクロ波周波数帯での誘電損失が小さく、使用周
波帯に適した高い誘電率をもち、誘電率の温度係数が小
さい事である。
In contrast, in recent years, microwave filters using dielectric resonators used in the microwave frequency band, small dielectric resonators for stabilizing the frequency of oscillators, microwave I
Dielectric ceramics used for C capacitors and substrates, etc.
Dielectric ceramics have been used in microwave circuits to reduce the size of the circuits. The characteristics required of these ceramics are that they have low dielectric loss in the microwave frequency band, a high dielectric constant suitable for the frequency band used, and a small temperature coefficient of dielectric constant.

従来からこれらの特性を満足する磁器材料として、Ti
O2系のものがよく使用されており、特にBa0−Ti
O,系磁器、およびその一部を他の元素で置換した磁器
、更に誘電率の温度係数を調整するために、負の温度係
数をもっているTie、と正の温度係数をもっている誘
電体磁器やガラスと組合わせたものが多数考案され応用
されて来た。
Ti has traditionally been used as a porcelain material that satisfies these characteristics.
O2-based materials are often used, especially Ba0-Ti
In order to adjust the temperature coefficient of dielectric constant, Tie, which has a negative temperature coefficient, and dielectric porcelain and glass, which have a positive temperature coefficient, are available. Many combinations have been devised and applied.

(発明示解決しようとする問題点) 従来のTiO□系、特にBad−Tie、系磁器材料で
は誘電率が十分に高くなかったり、誘電損失が十分に小
さくなかったり、所望の温度係数が得られないなど、す
べての特性を満足する材料を安定に得る事は困難であり
、実用上で問題点が多かった。
(Problems to be solved by the invention) Conventional TiO□-based, especially Bad-Tie, based porcelain materials do not have a sufficiently high dielectric constant, do not have a sufficiently small dielectric loss, or cannot obtain the desired temperature coefficient. It is difficult to stably obtain a material that satisfies all of the properties, such as the absence of carbon dioxide, and there are many problems in practical use.

(問題点を解決するための手段) 発明者らは、これらの欠点を鑑み種々の組成系について
検討した結果、主成分組成が酸化チタンと酸化カルシウ
ムと酸化ネオジウムとから成り、その主成分組成をxc
ao−yTio、−zNdO,7,、x + y +z
=1(但し、X、y、zはモル比)と表わしたとき、0
.025≦x≦0.30.0.40≦y≦0.70.0
.2≦z≦0.40であるマイクロ波用誘電体磁器組成
物、及び、主成分組成が酸化チタンと酸化カルシウムと
酸化ネオジウムとから成り、その主成分組成をxcao
−yTioz−zNdozzz t X + y+ Z
 = 1  (但し、X。
(Means for solving the problem) As a result of studying various composition systems in view of these drawbacks, the inventors found that the main component composition consists of titanium oxide, calcium oxide, and neodymium oxide. xc
ao-yTio,-zNdO,7,, x + y +z
= 1 (where X, y, z are molar ratios), 0
.. 025≦x≦0.30.0.40≦y≦0.70.0
.. A microwave dielectric ceramic composition in which 2≦z≦0.40, and a main component composition consisting of titanium oxide, calcium oxide, and neodymium oxide, the main component composition being xcao
-yTioz-zNdozz t X + y+ Z
= 1 (However, X.

’J+Zはモル比)と表わしたとき、0.025≦x≦
0゜30、0.40≦y≦0.70.0.2≦z≦0.
40であり、酸化鉛が15%+1%以下(Oを含まず)
の範囲で添加含有されているマイクロ波用誘電体磁器組
成物が、誘電体共振器、マイクロ波用コンデンサ、基板
等に用いる誘電体磁器として優れた特性をもち、実用に
供するに適した材料である事を見出した。
'J+Z is molar ratio), 0.025≦x≦
0゜30, 0.40≦y≦0.70.0.2≦z≦0.
40, and lead oxide is 15% + 1% or less (not including O)
The dielectric ceramic composition for microwaves containing additives in the range of 100% has excellent properties as a dielectric ceramic composition used for dielectric resonators, microwave capacitors, substrates, etc., and is a material suitable for practical use. I discovered something.

(実施例) 以下本発明を実施例に従って説明する。(Example) The present invention will be explained below according to examples.

試料を作成するための出発原料は、99.5%以上の高
純度のTie□、 CaC0,、Nd、O,r PbO
の粉末を用い、所定の各組成になる様に各々秤量し、ボ
ールミルに純水とともに投入し湿式混合を行なった。
The starting materials for preparing the samples are Tie□, CaC0,, Nd, O, r PbO with a high purity of 99.5% or more.
Each of the powders was weighed so as to have a predetermined composition, and then put into a ball mill together with pure water for wet mixing.

この混合物を乾燥させた後、800℃〜1100℃で4
時間仮焼して得られた仮焼粉末を所定の各組成になる様
に調合して、再びボールミルに純水とともに投入し、湿
式粉砕を行なった。この様にして得られた粉砕物を乾燥
させた後、バインダ水溶液を添加混練して造粒粉末とし
、その後2ton/ciの圧力を加えて成形体を作成し
た。この成形体を、1200℃〜1400℃で2時間空
気中で焼成し、焼成体とした。得られた焼成体磁器を用
いて、誘電体共振器を構成し、誘電体共振器の共振周波
数と無負荷Qを測定して誘電率を求めた。得られた誘電
体共振器の共振周波数は3〜5 GHzであった。共振
周波数の温度依存性は、誘電体共振器の共振周波数の温
度変化を一20℃〜+60℃の間で測定して求めた。尚
、共振周波数の温度係数τfは、誘電率の温度係数τE
と近似的に次式によって結ばれる。
After drying this mixture, it was heated at 800℃ to 1100℃ for 4 hours.
The calcined powder obtained by calcining for a period of time was mixed to have each predetermined composition, and then put into the ball mill together with pure water again for wet pulverization. After drying the pulverized product thus obtained, an aqueous binder solution was added and kneaded to obtain a granulated powder, and then a pressure of 2 ton/ci was applied to form a molded product. This molded body was fired in air at 1200°C to 1400°C for 2 hours to obtain a fired body. A dielectric resonator was constructed using the obtained fired ceramic, and the resonant frequency and no-load Q of the dielectric resonator were measured to determine the dielectric constant. The resonant frequency of the obtained dielectric resonator was 3 to 5 GHz. The temperature dependence of the resonant frequency was determined by measuring the temperature change of the resonant frequency of the dielectric resonator between -20°C and +60°C. Note that the temperature coefficient τf of the resonance frequency is the temperature coefficient τE of the dielectric constant.
It is approximately connected by the following equation.

でf=−−τε−α ま ただし、τf: 共振周波数の温度係数τε: 誘電率
の温度係数 α: 磁器の熱膨張係数 得られた試料での測定結果を第1表に示す。この表中で
申開を付した試料は本発明の範囲外の比較例であり、こ
れ以外の試料が本発明の範囲内の実施例である。この実
施例の中で、PbOの添加量が0のものが本願の第1発
明の実施例であり、その他のものが本願の第2発明の実
施例である。
f=--τε-α where τf: Temperature coefficient of resonance frequency τε: Temperature coefficient of dielectric constant α: Coefficient of thermal expansion of porcelain The measurement results for the obtained samples are shown in Table 1. The samples marked with disclosure in this table are comparative examples outside the scope of the present invention, and the other samples are examples within the scope of the present invention. Among these examples, those in which the amount of PbO added is 0 are examples of the first invention of the present application, and the others are examples of the second invention of the present application.

第1表に示される様に本発明の誘電体磁器組成物は比誘
電率としては、50以上の値をもち、しかも誘it率の
温度係数は広い温度範囲にわたり±1100pp/’C
の範囲におさえてなおかつ、誘電体の損失を表わすQ値
は、マイクロ波帯の周波数で1000以上の大きな値を
得ることができる材料である事がわかる。
As shown in Table 1, the dielectric ceramic composition of the present invention has a relative dielectric constant of 50 or more, and the temperature coefficient of dielectric constant is ±1100 pp/'C over a wide temperature range.
It can be seen that this material can be kept within the range of 1,000 or more at frequencies in the microwave band, and the Q value representing the loss of the dielectric material can be kept within the range of 1,000 or more.

第  1  表 本願の第1発明において、Cab、 Tie、、 Nd
O,7゜の組成範囲を限定した理由は以下のとおりであ
る。
Table 1 In the first invention of the present application, Cab, Tie, Nd
The reason for limiting the composition range of O, 7° is as follows.

つまりCaOが所定量をはずれると、εr及びQが低下
し、TiO□が所定量をはずれるとεrが低下し、Nd
03/2が0.2より少ないと、τfが+1100pp
/ ”Cより大きくなり、Nd01/□が0.4より多
いとτfが一100ppm/’Cより小さくなるからで
ある。
In other words, when CaO deviates from the predetermined amount, εr and Q decrease, and when TiO□ deviates from the predetermined amount, εr decreases, and Nd
If 03/2 is less than 0.2, τf is +1100pp
/''C, and if Nd01/□ is more than 0.4, τf becomes less than 1100 ppm/'C.

また1本願の第2発明において、Cab、 Tie、、
 Nd01/2の組成範囲を限定した理由は、上記の理
由のとおりであり、PbOの添加量を15wt%以下と
したのは、それ以上添加するとQが低下するからである
Further, in the second invention of the present application, Cab, Tie,...
The reason why the composition range of Nd01/2 was limited is the same as the above reason, and the reason why the amount of PbO added was set to 15 wt% or less is that if more than this amount is added, the Q will decrease.

(発明の効果) 以上のように、本発明にかかる誘電体磁器組成物は、マ
イクロ波周波数において誘電率が50以上と大きく、か
つ誘電体損失が小さいと同じに、誘電率の温度係数が小
さい材料であることがわかる。
(Effects of the Invention) As described above, the dielectric ceramic composition according to the present invention has a large dielectric constant of 50 or more at microwave frequencies, a small dielectric loss, and a small temperature coefficient of the dielectric constant. You can see that it is the material.

これらはマイクロ波周波数帯で使用される回路素子、基
板として極めて有用な誘電体磁器材料であることは明白
である。なお本材料は低周波領域でもvI電損失がtJ
%さく、Q値の高いコンデンサ材料としても優れた材料
であることを確認した。
It is clear that these dielectric ceramic materials are extremely useful as circuit elements and substrates used in the microwave frequency band. Note that this material has a vI electric loss of tJ even in the low frequency range.
It was confirmed that it is an excellent material as a capacitor material with high % thickness and Q value.

Claims (1)

【特許請求の範囲】 1、主成分組成が酸化チタンと酸化カルシウムと酸化ネ
オジウムとから成り、その主成分組成をxCaO−yT
iO_2−zNdO_3_/_2、x+y+z=1(但
し、x、y、zはモル比)と表わしたとき、0.025
≦x≦0.30、0.40≦y≦0.70、0.20≦
z≦0.40であることを特徴とするマイクロ波用誘電
体磁器組成物。 2、主成分組成が酸化チタンと酸化カルシウムと酸化ネ
オジウムとから成り、その主成分組成をxCaO−yT
iO_2−zNdO_3_/_2、x+y+z=1(但
し、x、y、zはモル比)と表わしたとき、0.025
≦x≦0.30、0.40≦y≦0.70、0.20≦
z≦0.40であり、酸化鉛が15wt%以下(0を含
まず)の範囲で添加含有されていることを特徴とするマ
イクロ波用誘電体磁器組成物。
[Claims] 1. The main component composition consists of titanium oxide, calcium oxide, and neodymium oxide, and the main component composition is xCaO-yT.
When expressed as iO_2-zNdO_3_/_2, x+y+z=1 (however, x, y, z are molar ratios), 0.025
≦x≦0.30, 0.40≦y≦0.70, 0.20≦
A dielectric ceramic composition for microwave use, characterized in that z≦0.40. 2. The main component composition consists of titanium oxide, calcium oxide, and neodymium oxide, and the main component composition is xCaO-yT.
When expressed as iO_2-zNdO_3_/_2, x+y+z=1 (however, x, y, z are molar ratios), 0.025
≦x≦0.30, 0.40≦y≦0.70, 0.20≦
A dielectric ceramic composition for microwave use, characterized in that z≦0.40 and lead oxide is added in an amount of 15 wt% or less (excluding 0).
JP61259685A 1986-10-30 1986-10-30 Dielectric ceramic composition for microwave Pending JPS63112459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61259685A JPS63112459A (en) 1986-10-30 1986-10-30 Dielectric ceramic composition for microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61259685A JPS63112459A (en) 1986-10-30 1986-10-30 Dielectric ceramic composition for microwave

Publications (1)

Publication Number Publication Date
JPS63112459A true JPS63112459A (en) 1988-05-17

Family

ID=17337491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61259685A Pending JPS63112459A (en) 1986-10-30 1986-10-30 Dielectric ceramic composition for microwave

Country Status (1)

Country Link
JP (1) JPS63112459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824616A (en) * 1995-03-02 1998-10-20 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824616A (en) * 1995-03-02 1998-10-20 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic compositions

Similar Documents

Publication Publication Date Title
JPS61128411A (en) Dielectric ceramic composition
US4717694A (en) Dielectric ceramic composition for high frequencies
JPS63112459A (en) Dielectric ceramic composition for microwave
JPS62283862A (en) Dielectric ceramic composition for microwave
JPS63112458A (en) Dielectric ceramic composition for microwave
JPH033628B2 (en)
JPS63138605A (en) Dielectric ceramic composition for microwave
JPH0231029B2 (en)
JPS5951095B2 (en) dielectric porcelain composition
JP2687287B2 (en) Dielectric ceramic composition for microwave and method for producing the same
JPH01234358A (en) Dielectric ceramic composition
JPS61291453A (en) Dielectric ceramic ceramic composition
JPS61291454A (en) Dielectric ceramic ceramic composition
JPS6172675A (en) Dielectric ceramic composition
JPS61291455A (en) Dielectric ceramic ceramic composition
JPS6379753A (en) Dielectric ceramic composition for high frequency
JPH0644404B2 (en) Dielectric porcelain composition for microwave
JPS618804A (en) High frequency dielectric porcelain composition
JPH0547921B2 (en)
JPS61156603A (en) Dielectric ceramics
JPS63303844A (en) Composition of dielectric porcelain
JPH0236546B2 (en)
JPH0519501B2 (en)
JPH04104403A (en) Dielectric ceramic composition for high frequency wave
JPS61156602A (en) Dielectric ceramics