JPH05298922A - Dielectric ceramic for microwave - Google Patents

Dielectric ceramic for microwave

Info

Publication number
JPH05298922A
JPH05298922A JP4102808A JP10280892A JPH05298922A JP H05298922 A JPH05298922 A JP H05298922A JP 4102808 A JP4102808 A JP 4102808A JP 10280892 A JP10280892 A JP 10280892A JP H05298922 A JPH05298922 A JP H05298922A
Authority
JP
Japan
Prior art keywords
ceramic
oxide
resonance frequency
composition
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4102808A
Other languages
Japanese (ja)
Inventor
一年 ▲鮎▼沢
Kazutoshi Ayusawa
Hiroyo Katou
博代 加藤
Toru Arai
徹 荒井
Toyosaku Sato
豊作 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP4102808A priority Critical patent/JPH05298922A/en
Publication of JPH05298922A publication Critical patent/JPH05298922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an extremely high no load Q value to a dielectric ceramic even if the ceramic has a composition with which the specific dielectric constant is high and the temperature coefficient of resonance frequency becomes near 0ppm/ deg.C by limiting the mole ratio X of a specified composition in a range; 0.3<=X<=0.8. CONSTITUTION:A ceramic is composed of barium oxide (BaO), cobalt oxide (CoO), strontium oxide (SrO), zinc oxide (ZnO), and niobium oxide (Nb2O5). The composition is defined as (1-X)Ba(Co1/3Nb2/3)O3+XSr(Zn1/3Nb2/3)O3 and the mole ratio X is limited in a range; 0.3<=X<=0.8. The ceramic has extremely high no load Q value even if the ceramic has the composition with which the specific dielectric constant becomes high and the temperature coefficient of resonance frequency becomes near 0ppm/ deg.C by compounding Ba(Co1/3Nb2/3)O3 and Sr(Zn1/3Nb2/3)O3. Consequently, on the conditions of high specific dielectric constant and no load Q value, the temperature coefficient of resonance frequency can be changed. As a result, a dielectric resonator for microwaves can be made compact and the dielectric loss is lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波用誘電体セ
ラミックスに関し、特に、大きな比誘電率(εr )を持
ち、無負荷Q(Qu )が非常に大きく、かつ、組成を変
化させることにより共振周波数の温度係数(τf )を0
ppm/℃を中心にして、その付近の正又は負の任意の
値に変化させることができるマイクロ波用誘電体セラミ
ックスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic for microwaves, and in particular, it has a large relative permittivity (ε r ) and a very large unloaded Q (Q u ) and changes its composition. Therefore, the temperature coefficient (τ f ) of the resonance frequency is 0
The present invention relates to a dielectric ceramic for microwaves, which can be changed to an arbitrary positive or negative value around ppm / ° C.

【0002】[0002]

【従来の技術】近年、マイクロ波用誘電体共振器や誘電
体フィルタが、自動車電話、衛星放送の受信機に数多く
用いられている。このような用途に用いられる誘電体材
料は、比誘電率(εr )及び無負荷Q(Qu )が大き
く、かつ、組成を変えることにより共振周波数の温度係
数(τf )が0ppm/℃を中心にして、その付近の正
または負の任意の値に設定できるものが望まれている。
従来このような誘電体セラミックスとしては、BaO−
TiO2 系、ZrO2 −SnO−TiO2 系等があっ
た。
2. Description of the Related Art In recent years, a large number of microwave dielectric resonators and dielectric filters have been used in automobile telephones and satellite broadcast receivers. Dielectric materials used for such applications have large relative permittivity (ε r ) and no-load Q (Q u ), and the temperature coefficient (τ f ) of resonance frequency is 0 ppm / ° C by changing the composition. There is a demand for a device that can be set to an arbitrary positive or negative value around the center of.
Conventionally, as such a dielectric ceramic, BaO-
There were TiO 2 series, ZrO 2 —SnO—TiO 2 series, and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の誘電体セラミックスでは、共振周波数の温度係
数(τf )が0ppm/℃付近の値を示すものでは、比
誘電率(εr )に関しては値が大きく満足できるが、無
負荷Q(Qu )は十分大きいとはいえない。そのため
に、これらの材料を使用したデバイスを組み込んだ装置
は、送受信においてロスが大きくなる等の不都合を有
し、十分満足できる特性を有しているとはいえなかっ
た。
However, in the above-mentioned conventional dielectric ceramics, when the temperature coefficient (τ f ) of the resonance frequency shows a value near 0 ppm / ° C., the relative dielectric constant (ε r ) is Although the value is large and satisfactory, the unloaded Q (Q u ) cannot be said to be sufficiently large. Therefore, an apparatus incorporating a device using these materials has disadvantages such as a large loss in transmission and reception, and cannot be said to have sufficiently satisfactory characteristics.

【0004】そこで本発明は、これらを改善するために
成されたものであり比誘電率(εr)が大きく、共振周
波数の温度係数(τf )が0ppm/℃付近となるよう
にした組成比率でも、無負荷Q(Qu )が非常に大きい
値を有するマイクロ波用誘電体セラミックスを提供する
ことを目的とする。
Therefore, the present invention has been made in order to improve these, and has a composition having a large relative permittivity (ε r ) and a temperature coefficient (τ f ) of the resonance frequency of around 0 ppm / ° C. It is an object of the present invention to provide a dielectric ceramic for microwaves which has a very large value of unloaded Q (Q u ) even in the ratio.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、酸化バリウム(BaO)、酸化コバルト
(CoO)、酸化ストロンチウム(SrO)、酸化亜鉛
(ZnO)、酸化ニオブ(Nb2 5 )よりなるセラミ
ックスであり、その組成式が、 (1−X)Ba(Co1/3 Nb2/3 )O3 +XSr(Zn1/3 Nb2/3 )O3 式(1) で表され、Xの値は、0.3≦X≦0.8の範囲である
ことを特徴とするマイクロ波用誘電体セラミックスとす
るものである。
In order to achieve the above object, the present invention provides barium oxide (BaO), cobalt oxide (CoO), strontium oxide (SrO), zinc oxide (ZnO), niobium oxide (Nb 2 O). 5 ) ceramics whose composition formula is (1-X) Ba (Co 1/3 Nb 2/3 ) O 3 + XSr (Zn 1/3 Nb 2/3 ) O 3 formula (1) The value of X is in the range of 0.3 ≦ X ≦ 0.8, which is a dielectric ceramic for microwaves.

【0006】ここで、全組成に対するSr(Zn1/3
2/3 )O3 のモル比Xを0.3≦X≦0.8と限定し
た理由は、X<0.3の場合は、共振周波数の温度係数
(τ f )が正に大きくなり過ぎ、X>0.8の場合は、
共振周波数の温度係数(τf)が負に大きくなり過ぎる
と共に、無負荷Q(Qu )が小さくなり要求に合わなく
なるためである。
Here, Sr (Zn for all compositions1/3N
b2/3) O3Limiting the molar ratio X of 0.3 ≦ X ≦ 0.8
The reason is that when X <0.3, the temperature coefficient of the resonance frequency is
f) Becomes too large and X> 0.8,
Resonance frequency temperature coefficient (τf) Becomes too negative
Together with no load Q (Qu) Becomes smaller and does not meet the demand
This is because

【0007】[0007]

【作用】本発明は以上のように、その組成式を前記式
(1)で示される誘電体セラミックスとすることによっ
て、比誘電率(εr )が大きく、共振周波数の温度係数
(τf )が0ppm/℃付近となるようにした組成比率
でも無負荷Q(Qu )が非常に大きい値を有するマイク
ロ波用誘電体セラミックスとすることができる。
As described above, according to the present invention, by using the composition of the dielectric ceramics represented by the above formula (1), the relative dielectric constant (ε r ) is large and the temperature coefficient (τ f ) of the resonance frequency is large. Can be a dielectric ceramic for microwaves having a very large value of unloaded Q (Q u ) even with a composition ratio of about 0 ppm / ° C.

【0008】[0008]

【実施例1】本発明の実施例について以下詳細に説明す
る。出発原料には化学的に高純度の炭酸バリウム(Ba
CO3 )、酸化コバルト(CoO)、酸化ニオブ(Nb
2 5 )、炭酸ストロンチウム(SrCO3 )、酸化亜
鉛(ZnO)を配合比を変化させて、次の表1に示す9
種類の配合比のものを使用した。
Embodiment 1 An embodiment of the present invention will be described in detail below.
It The starting material is chemically pure barium carbonate (Ba).
CO3), Cobalt oxide (CoO), niobium oxide (Nb)
2O Five), Strontium carbonate (SrCO3), Suboxide
By changing the compounding ratio of lead (ZnO), 9 shown in Table 1 below.
The thing of the compounding ratio of the kind was used.

【0009】[0009]

【表1】 [Table 1]

【0010】表1に示すNo.1〜No.9の配合物を
用いて、全て以下の製造方法の通りにそれぞれ誘電体セ
ラミックスを製造した。表1の組成になるように正確に
秤量、調合した配合物をプラスチック製のポットミル中
に入れ、ジルコニアボールを用い純水と共に20時間混
合した。この混合物を脱水し、乾燥した後、マグネシア
容器を用いて空気中で1200℃の温度で3時間仮焼し
た。この仮焼物を上記混合工程と同様な方法にて湿式粉
砕し、その後、脱水し、乾燥して微粒子の粉体を得た。
この粉体にバインダーを添加して十分に粉体と混合して
造粒粉とした。
No. 1 shown in Table 1 1-No. Dielectric ceramics were each manufactured by the following manufacturing method using the compound of 9. Accurately weighed and adjusted to the composition shown in Table 1, the compounded mixture was put in a plastic pot mill, and mixed with pure water using zirconia balls for 20 hours. The mixture was dehydrated, dried, and then calcined in a magnesia container in air at a temperature of 1200 ° C. for 3 hours. This calcined product was wet pulverized in the same manner as in the above mixing step, then dehydrated and dried to obtain fine particle powder.
A binder was added to this powder and mixed sufficiently with the powder to obtain a granulated powder.

【0011】この造粒粉を金型と油圧プレスを用いて成
形圧力1〜2t/cm2 で、直径20mm、厚さ12m
mの円板状の成形体を作成した。このようにして得られ
た成形体をマグネシア製のさやに入れて、1350〜1
500℃の温度で24時間空気中で焼成して、誘電体セ
ラミックスを得た。以上の方法は、炭酸バリウム(Ba
CO3 )、酸化コバルト(CoO)、酸化ニオブ(Nb
2 5 )、炭酸ストロンチウム(SrCO3 )、酸化亜
鉛(ZnO)からなる材料を始めから全て同時に混合し
て誘電体セラミックスを製造する方法についての説明で
ある。
This granulated powder is molded with a mold and a hydraulic press at a molding pressure of 1 to 2 t / cm 2 , a diameter of 20 mm and a thickness of 12 m.
A disk-shaped molded body of m was prepared. The molded body thus obtained is put into a magnesia pod, and 1350 to 1
The dielectric ceramics were obtained by firing in air at a temperature of 500 ° C. for 24 hours. The above method is carried out using barium carbonate (Ba
CO 3 ), cobalt oxide (CoO), niobium oxide (Nb)
2 O 5 ), strontium carbonate (SrCO 3 ) and zinc oxide (ZnO) are all mixed at the same time from the beginning to explain a method for producing a dielectric ceramic.

【0012】上記方法に対して、炭酸バリウム(BaC
3 )、酸化コバルト(CoO)、酸化ニオブ(Nb2
5 )を用いて仮焼まで行った仮焼物〔Ba(Co1/3
Nb 2/3 )O3 〕と、炭酸ストロンチウム(SrC
3 )、酸化亜鉛(ZnO)、酸化ニオブ(Nb
2 5 )を用いて仮焼まで行った仮焼物〔Sr(Zn
1/3 Nb2/ 3 )O3 〕とを下記に示す表2の比率で混合
粉砕し、以後、前記方法で造粒、成形、焼成して誘電体
セラミックスを得ても前記方法と同様な結果が得られ
る。
In contrast to the above method, barium carbonate (BaC
O3), Cobalt oxide (CoO), niobium oxide (Nb)2
OFive) Is used to calcinate [Ba (Co1/3
Nb 2/3) O3], And strontium carbonate (SrC
O3), Zinc oxide (ZnO), niobium oxide (Nb)
2OFive) Calcined product [Sr (Zn
1/3Nb2 / 3) O3] And are mixed in the ratio shown in Table 2 below.
Pulverize, then granulate, mold and fire by the above method to obtain a dielectric
Even if ceramics are obtained, the same result as the above method can be obtained.
It

【0013】すなわち、以上の2つの製造方法により焼
成された焼成体は、いずれの場合でも複合ペロブスカイ
ト構造であるBa(Co1/3 Nb2/3 )O3 とSr(Z
1/ 3 Nb2/3 )O3 の結晶が複合されたものである。
この焼成された誘電体セラミックスの両面及び、直径を
共振周波数が約5GHzとなるように外形を研磨した
後、誘電特性を下記の方法で測定した。誘電体セラミッ
クスの比誘電率(εr )及び無負荷Q(Qu )は、ハッ
キ・コールマン法により測定した。また共振周波数の温
度係数(τf )は、20℃における共振周波数f(2
0)を基準として、−40℃と+80℃の温度における
それぞれの共振周波数f(−40)、f(80)と温度
差ΔT〔ここでは、ΔT=(+80℃)−(−40℃)
=120℃〕とから下記の式(2)に従い求めた。
That is, the fired body fired by the above two manufacturing methods has Ba (Co 1/3 Nb 2/3 ) O 3 and Sr (Z) which are composite perovskite structures in any case.
crystals n 1/3 Nb 2/3) O 3 is one that is complex.
After polishing both surfaces of the fired dielectric ceramics and the outer diameter so that the resonance frequency was about 5 GHz, the dielectric characteristics were measured by the following method. The relative permittivity (ε r ) and unloaded Q (Q u ) of the dielectric ceramics were measured by the Hacky-Coleman method. The temperature coefficient (τ f ) of the resonance frequency is the resonance frequency f (2
0) as a reference, the resonance frequencies f (-40) and f (80) at temperatures of -40 ° C and + 80 ° C and the temperature difference ΔT [here, ΔT = (+ 80 ° C)-(-40 ° C)
= 120 ° C.] was calculated according to the following equation (2).

【0014】 τf ={f(80)−f(−40)}/{f(20)×120} 式(2) 上記表1に示すNo.1〜No.9の配合物から製造さ
れた誘電体セラミックスの誘電特性の測定結果を次の表
2に示す。
Τ f = {f (80) −f (−40)} / {f (20) × 120} Formula (2) No. shown in Table 1 above. 1-No. Table 2 below shows the measurement results of the dielectric properties of the dielectric ceramics manufactured from the compound of No. 9.

【0015】[0015]

【表2】 [Table 2]

【0016】なお、ここで※印を付けた試料No.1と
No.9は、本発明の範囲外の比較例であり、それ以外
の試料No.2〜No.8が本発明の範囲に入る実施例
である。表2に示す結果によれば、Sr(Zn1/3 Nb
2/3 )O3 のモル比が0.3から0.8の範囲内にある
ときに、比誘電率(εr )及び無負荷Q(Qu )が大き
く、共振周波数の温度係数(τf )が0ppm/℃を中
心として、その付近の正又は負の大きすぎない値を示す
ことがわかる。
The sample numbers marked with * are shown here. 1 and No. No. 9 is a comparative example outside the scope of the present invention, and other sample Nos. 2 to No. 8 is an embodiment within the scope of the present invention. According to the results shown in Table 2, Sr (Zn 1/3 Nb
2/3 ) When the molar ratio of O 3 is in the range of 0.3 to 0.8, the relative permittivity (ε r ) and the unloaded Q (Q u ) are large, and the temperature coefficient (τ) of the resonance frequency is It can be seen that f ) shows a positive or negative value not too large around 0 ppm / ° C.

【0017】[0017]

【発明の効果】以上詳細に説明したように、本発明によ
るマイクロ波用誘電体セラミックスは、Ba(Co1/3
Nb2/3 )O3 とSr(Zn1/3 Nb2/3 )O3 との複
合化により、比誘電率(εr )が大きく、共振周波数の
温度係数(τf )が0ppm/℃付近となるようにした
組成比率でも無負荷Q(Qu )が非常に大きい値を有す
る。そのために、比誘電率(εr )及び無負荷Q
(Qu )が大きい条件で、共振周波数の温度係数
(τf )を変化させることができるので、マイクロ波用
誘電体共振器等の小型化、低損失化が達成できる。
As described in detail above, the dielectric ceramics for microwaves according to the present invention is Ba (Co 1/3).
By combining Nb 2/3 ) O 3 and Sr (Zn 1/3 Nb 2/3 ) O 3 , the relative dielectric constant (ε r ) is large and the temperature coefficient (τ f ) of the resonance frequency is 0 ppm / ° C. The unloaded Q (Q u ) has a very large value even at a composition ratio that is set to be near. Therefore, the relative permittivity (ε r ) and unloaded Q
Since the temperature coefficient (τ f ) of the resonance frequency can be changed under the condition that (Q u ) is large, miniaturization of the microwave dielectric resonator and the like and reduction of loss can be achieved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 豊作 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hosaku Sato 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化バリウム(BaO)、酸化コバルト
(CoO)、酸化ストロンチウム(SrO)、酸化亜鉛
(ZnO)、酸化ニオブ(Nb2 5 )よりなるセラミ
ックスであり、その組成式が、 (1−X)Ba(Co1/3 Nb2/3 )O3 +XSr(Zn1/3 Nb2/3 )O3 で表され、Xの値は、0.3≦X≦0.8の範囲である
ことを特徴とするマイクロ波用誘電体セラミックス。
1. A ceramic comprising barium oxide (BaO), cobalt oxide (CoO), strontium oxide (SrO), zinc oxide (ZnO), and niobium oxide (Nb 2 O 5 ), the composition formula of which is (1) -X) Ba (Co 1/3 Nb 2/3 ) O 3 + XSr (Zn 1/3 Nb 2/3 ) O 3 and the value of X is 0.3 ≦ X ≦ 0.8. A dielectric ceramic for microwaves, which is characterized in that
JP4102808A 1992-04-22 1992-04-22 Dielectric ceramic for microwave Pending JPH05298922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4102808A JPH05298922A (en) 1992-04-22 1992-04-22 Dielectric ceramic for microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4102808A JPH05298922A (en) 1992-04-22 1992-04-22 Dielectric ceramic for microwave

Publications (1)

Publication Number Publication Date
JPH05298922A true JPH05298922A (en) 1993-11-12

Family

ID=14337355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4102808A Pending JPH05298922A (en) 1992-04-22 1992-04-22 Dielectric ceramic for microwave

Country Status (1)

Country Link
JP (1) JPH05298922A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646680B1 (en) * 2004-06-04 2006-11-23 익스팬테크주식회사 Dielectric ceramic composition
CN110183228A (en) * 2019-06-06 2019-08-30 桂林理工大学 A kind of positive and negative adjustable two-phase composite microwave medium ceramic material of temperature coefficient of resonance frequency and preparation method thereof
CN113620706A (en) * 2021-08-13 2021-11-09 东莞市翔通光电技术有限公司 Microwave dielectric ceramic preparation method and microwave dielectric ceramic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228310A (en) * 1983-06-10 1984-12-21 富士電気化学株式会社 Microwave dielectric porcelain composition
JPH01105404A (en) * 1987-10-17 1989-04-21 Nikko Kk Dielectric material
JPH03263707A (en) * 1990-03-13 1991-11-25 Tdk Corp Dielectric porcelain composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228310A (en) * 1983-06-10 1984-12-21 富士電気化学株式会社 Microwave dielectric porcelain composition
JPH01105404A (en) * 1987-10-17 1989-04-21 Nikko Kk Dielectric material
JPH03263707A (en) * 1990-03-13 1991-11-25 Tdk Corp Dielectric porcelain composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646680B1 (en) * 2004-06-04 2006-11-23 익스팬테크주식회사 Dielectric ceramic composition
CN110183228A (en) * 2019-06-06 2019-08-30 桂林理工大学 A kind of positive and negative adjustable two-phase composite microwave medium ceramic material of temperature coefficient of resonance frequency and preparation method thereof
CN113620706A (en) * 2021-08-13 2021-11-09 东莞市翔通光电技术有限公司 Microwave dielectric ceramic preparation method and microwave dielectric ceramic

Similar Documents

Publication Publication Date Title
JPH0568802B2 (en)
US5561090A (en) Dielectric ceramic composition for high frequencies and method for preparation of the same
JP2974829B2 (en) Microwave dielectric porcelain composition
JPH05298922A (en) Dielectric ceramic for microwave
JP2501649B2 (en) Microwave dielectric ceramics
JPH06338221A (en) Dielectric ceramic composition for high frequency
JPH054941B2 (en)
JP3006188B2 (en) High frequency dielectric ceramic composition
JP2514354B2 (en) Dielectric ceramic composition and method for producing the same
JPH0742165B2 (en) Microwave dielectric ceramics
JPH0571538B2 (en)
JP3359427B2 (en) High frequency dielectric ceramic composition
JP3330024B2 (en) High frequency dielectric ceramic composition
JP3318396B2 (en) High frequency dielectric ceramic composition
JPH0280366A (en) Dielectric porcelain composition
JPH0580764B2 (en)
JP3329980B2 (en) High frequency dielectric ceramic composition and method for producing the same
JPH0334164B2 (en)
JPH04300243A (en) Dielectric ceramic composition
JPH04265269A (en) Dielectric ceramic for microwave
JPH0334163B2 (en)
JPH08259325A (en) Dielectric ceramic for microwave
JPH0765627A (en) Dielectric ceramic for microwave
JPH06215624A (en) High-frequency dielectric porcelain composition
JPH08106814A (en) Dielectric ceramics for microwave

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980519