JPS6310899B2 - - Google Patents

Info

Publication number
JPS6310899B2
JPS6310899B2 JP57052088A JP5208882A JPS6310899B2 JP S6310899 B2 JPS6310899 B2 JP S6310899B2 JP 57052088 A JP57052088 A JP 57052088A JP 5208882 A JP5208882 A JP 5208882A JP S6310899 B2 JPS6310899 B2 JP S6310899B2
Authority
JP
Japan
Prior art keywords
film
groove
substrate
sio
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57052088A
Other languages
Japanese (ja)
Other versions
JPS58168261A (en
Inventor
Hiroshi Goto
Chuichi Takada
Ryoji Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5208882A priority Critical patent/JPS58168261A/en
Publication of JPS58168261A publication Critical patent/JPS58168261A/en
Publication of JPS6310899B2 publication Critical patent/JPS6310899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体装置、特にバイポーラ大規模集
積回路等に関し、素子分離領域形成のための溝等
の反応性スパツタエツチングによつて形成された
エツチング面の整形に関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to semiconductor devices, particularly bipolar large-scale integrated circuits, etc., in which grooves and the like for forming element isolation regions are formed by reactive sputter etching. Concerning the shaping of etched surfaces.

(b) 技術の背景 情報処理装置のコストパフオーマンスの一層の
向上はこれに使用される半導体装置にかかつてい
ると目され、論理素子の高速化、低消費電力化、
記憶素子の大量化が強力に推進されている。
(b) Technical Background It is believed that further improvements in the cost performance of information processing devices will depend on the semiconductor devices used in these devices.
There is a strong push toward increasing the number of memory elements.

バイポーラ大規模集積回路(以下LSIという)
についても、集積規模、回路速度及び消費電力等
について急速な向上が重ねられているが、これは
プロセス技術と回路技術の総合的進歩によつて達
成されたものである。
Bipolar large-scale integrated circuit (hereinafter referred to as LSI)
Also, rapid improvements have been made in terms of integration scale, circuit speed, power consumption, etc., and this has been achieved through comprehensive advances in process technology and circuit technology.

バイポーラ集積回路における素子分離技術の
LSIに到る進歩は、そのプロセス技術の進歩の中
で大きい比重を占めており、集積度の向上と特性
改善の両面に寄与している。
Element isolation technology in bipolar integrated circuits
Advances in LSI technology have played a large part in the progress in process technology, contributing to both increased integration and improved characteristics.

(c) 従来技術と問題点 素子分離技術として集積回路の誕生のとき以来
用いられた接合分離方式では逆バイアスされた
pn接合には大きな寄生容量が発生するのに対し、
酸化膜障壁で必要な分離を施すことによつて寄生
容量を大幅に軽減し、かつ素子分離領域を大幅に
減少するアイソプレーナ(Isoplanar)法等が提
供され、更に第1図に断面図を示すIOP
(Isolation with Oxide and Polysilicon)もし
くはVIP(V―groove Isolation
Polycrystalbackfill)と呼ばれる素子分離法が一
既にバイポーラメモリLSIに実用化されている。
(c) Conventional technology and problems In the junction isolation method that has been used since the birth of integrated circuits as an element isolation technology, reverse biased
While a large parasitic capacitance occurs in the p-n junction,
Isoplanar methods have been proposed that significantly reduce parasitic capacitance and device isolation regions by providing the necessary isolation with an oxide film barrier, and a cross-sectional view is shown in Figure 1. IOP
(Isolation with Oxide and Polysilicon) or VIP (V-groove Isolation)
An element isolation method called polycrystal backfill has already been put into practical use in bipolar memory LSIs.

第1図において、1はp-―Si基板であつて、表
面の面指数は(100)である。2はn+―埋込層、
3はp+―チヤネルカツト層、4はn-―エピタキ
シヤル成長層、5はSiO2膜を示す。素子分類領
域A及びコレクタ分離領域Bは、水酸化カリウム
(KOH)溶液による異方性エツチングにより形成
されたV溝にSiO2膜6を形成し、多結晶Si7を
充填してその表面にSiO2膜8を形成することに
よつて形成される。
In FIG. 1, 1 is a p - -Si substrate, and the surface index of the surface is (100). 2 is n + -buried layer,
3 is a p + -channel cut layer, 4 is an n - epitaxial growth layer, and 5 is a SiO 2 film. For the element classification region A and the collector isolation region B, a SiO 2 film 6 is formed in a V-groove formed by anisotropic etching using a potassium hydroxide (KOH) solution, and polycrystalline Si 7 is filled in the SiO 2 film 6 on the surface. It is formed by forming the film 8.

しかしながらこのV溝IOP法による素子分離に
おいては、素子分離領域Bの幅がエピタキシヤル
成長層4の厚さなどの深さ方向の条件によつて制
限されるために、LSIの集積度向上に限界があ
る。
However, in device isolation using this V-groove IOP method, the width of the device isolation region B is limited by conditions in the depth direction such as the thickness of the epitaxial growth layer 4, which limits the improvement of LSI integration. There is.

この問題を解決するために、前記V溝IOP法を
拡張し、素子分離溝をSiの反応性スパツタエツチ
ングによつて字状に形成する方法が最近提供さ
れている。既に知られているこのU溝を形成する
反応性スパツタエツチング法は四塩化炭素
(CCl4)もしくはCCl4に例えば20〔%〕程度の酸
化(O2)を添加した混合気体をエツチヤントす
るものである。
In order to solve this problem, a method has recently been proposed in which the V-groove IOP method is expanded and device isolation trenches are formed in a letter-like shape by reactive sputter etching of Si. The already known reactive sputter etching method for forming U-grooves uses carbon tetrachloride (CCl 4 ) or a mixed gas in which about 20% oxidation (O 2 ) is added to CCl 4 as an etchant. It is.

しかしながら、CCl4もしくはO2を添加した
CCl4をエツチヤントとする反応性スパツタエツ
チング法は下記の問題点を伴つている。すなわ
ち、第2図の断面図に示す如く、p-―Si基板11
にn+―埋込層12、n-―エピタキシヤル成長層
13、SiO2膜14及びSi3N4膜15を設けて溝
を前記エツチング法によつて形成するならば不純
物濃度の高い埋込層12においてサイドエツチン
グを生じ、溝の形状は図示の如くアンダーカツト
されてその後の製造工程の障害となり、LSIの特
性、信頼性を低下させる。
However, addition of CCl 4 or O 2
The reactive sputter etching method using CCl 4 as an etchant has the following problems. That is, as shown in the cross-sectional view of FIG. 2, the p - -Si substrate 11
If the n + -buried layer 12, the n - -epitaxial growth layer 13, the SiO 2 film 14, and the Si 3 N 4 film 15 are provided in the trench and the groove is formed by the etching method, the buried layer with a high impurity concentration is formed. Side etching occurs in the layer 12, and the shape of the groove is undercut as shown in the figure, which becomes an obstacle in the subsequent manufacturing process and deteriorates the characteristics and reliability of the LSI.

本発明者は前記のCCl4もしくはO2を添加した
CCl4をエツチヤントとする反応性スパツタエツ
チング法における問題点を解決するために、
CCl4と三塩化硼素(BCl3)との混合気体を用い
る反応性スパツタエツチング法を提案した。以下
その提案の概要を実施例によつて説明する。
The inventor added the above CCl 4 or O 2
In order to solve the problems in the reactive sputter etching method using CCl 4 as an etchant,
A reactive sputter etching method using a gas mixture of CCl 4 and boron trichloride (BCl 3 ) was proposed. The outline of the proposal will be explained below using examples.

第3図はその実施例の断面図である。図におい
て、21はp-―Si基板、22はn+―埋込層、2
3はn-―エピタキシヤル成長層、24はSiO2
である。窒化シリコン(Si3N4)膜及び燐硅酸ガ
ラス(以下PSGという)膜(いずれも図に示さ
れていない)をSiO2膜24上に設け、PSG膜を
マスクとし、CCl4とBCl3との混合気体をエツチ
ヤントとする反応性スパツタエツチンゲによつ
て、n+―埋込層22を貫通する深さにu字形の
溝を形成し、このu溝の面にSiO2膜25、u溝
の下部にチヤネルカツトとするp+領域26を設
け、しかる後にu溝内に多結晶―Si27を充填
し、多結晶Si27の表面にSiO2膜28を形成す
るものである。
FIG. 3 is a sectional view of this embodiment. In the figure, 21 is a p - -Si substrate, 22 is an n + -buried layer, and 2 is
3 is an n - -epitaxial growth layer, and 24 is a SiO 2 film. A silicon nitride (Si 3 N 4 ) film and a phosphosilicate glass (PSG) film (both not shown in the figure) are provided on the SiO 2 film 24, and using the PSG film as a mask, CCl 4 and BCl 3 A U-shaped groove is formed at a depth penetrating the n + -buried layer 22 by reactive sputter etching using a gas mixture with the etchant, and a SiO 2 film 25, A p + region 26 serving as a channel cut is provided at the bottom of the u-groove, and then polycrystalline Si 27 is filled in the u-groove, and an SiO 2 film 28 is formed on the surface of the polycrystalline Si 27.

先に述べた如く反応性スパツタエツチング法に
おいて、CCl4にBCl3を添加してスパツタ性を強
化したエツチヤントを用いることによつて、不純
物濃度の高い埋込層におけるアンダーカツトを除
去することができる。しかしながら、この様なス
パツタ性の強いエツチング法をシリコン基板に実
施する場合には、下記の問題点が付随する。
As mentioned earlier, in the reactive sputter etching method, it is possible to remove undercuts in buried layers with high impurity concentrations by using an etchant in which BCl 3 is added to CCl 4 to enhance sputtering properties. can. However, when such an etching method with strong sputtering property is applied to a silicon substrate, the following problems occur.

すなわち、第4図aに断面図を示す如く、例え
ばp-―Si基板31にn+―埋込層32、n-―エピ
タキシヤル成長層33を形成し、SiO2膜34、
Si3N4膜35及びPSG膜36に予めパターンを形
成し、PSG膜36をマスクとして、前述のCCl4
とBCl3との混合気体の如くスパツタ性の強いエ
ツチヤントを用いる反応性スパツタエツチングに
よつてU溝37を形成する場合に、U溝の底部は
滑らかな形状となり難く、図に示す如くU溝底の
端部に切込み38が発生する。
That is, as shown in the cross-sectional view in FIG. 4a, for example, an n + -buried layer 32 and an n - epitaxial growth layer 33 are formed on a p - -Si substrate 31, and an SiO 2 film 34,
A pattern is formed in advance on the Si 3 N 4 film 35 and the PSG film 36, and using the PSG film 36 as a mask, the above-mentioned CCl 4
When forming the U-groove 37 by reactive sputter etching using an etchant with strong sputtering properties, such as a mixed gas of A notch 38 occurs at the bottom edge.

この様な形状のu溝内壁に第4図bの断面図に
示す如くSiO2膜39を形成するならば、切込み
38の部分にその際に生ずる体積増加等によつて
強いストレスを生じ、Si基板31に結晶欠陥を誘
起して、LSI等の半導体装置の特性、信頼性を損
う結果となる。
If the SiO 2 film 39 is formed on the inner wall of the U-groove with such a shape, as shown in the cross-sectional view of FIG. This results in crystal defects being induced in the substrate 31, which impairs the characteristics and reliability of semiconductor devices such as LSIs.

(d) 発明の目的 本発明はバイポーラLSI等の素子分離その他の
目的のために、シリコン基板にスパツタ性の強い
反応性スパツタエツチングによつてシリコン基体
に溝状等の選択的エツチングを行ない、しかる後
に該エツチング面に酸化膜を形成する際に、シリ
コン基体特に基板に前記障害を発生させない半導
体装置の製造方法を提供することを目的とする。
(d) Purpose of the Invention The present invention involves selectively etching grooves or the like on a silicon substrate by reactive sputter etching with a strong sputtering property for device isolation of bipolar LSIs and other purposes. It is an object of the present invention to provide a method for manufacturing a semiconductor device that does not cause the above-mentioned damage to the silicon substrate, particularly the substrate, when an oxide film is subsequently formed on the etched surface.

(e) 発明の構成 本発明の前記目的は、半導体基体を反応性スパ
ツタエツチングによつて選択エツチングし、前記
半導体基体に溝を形成する工程と、前記溝内の半
導体露出面をウエツトエツチングする工程と前記
溝内に絶縁膜を形成する工程とを含む製造方法に
より達成される。
(e) Structure of the Invention The above objects of the present invention include a step of selectively etching a semiconductor substrate by reactive sputter etching to form a groove in the semiconductor substrate, and wet etching the exposed surface of the semiconductor in the groove. This is achieved by a manufacturing method including a step of forming an insulating film in the groove.

(f) 発明の実施例 以下本発明を実施例により図面を参照して具体
的に説明する。
(f) Embodiments of the Invention The present invention will be specifically described below using embodiments with reference to the drawings.

第5図a及びbは本発明の第一の実施例を示す
断面図であるが、製造工程の最初に遡つて概要を
説明する。
FIGS. 5a and 5b are sectional views showing the first embodiment of the present invention, and the outline will be explained going back to the beginning of the manufacturing process.

第4図aに示す如く、p-―Si基板31の全表面
に砒素(As)アンチモン(Sb)等のn形不純物
を拡散してn+―埋込層32を設けた後にn-―エ
ピタキシヤル成長層33を形成し、更に化学気相
成長法(以下CVD法という)によつて、厚さ約
100〔nm〕のSiO2膜34、厚さ約200〔nm〕の
Si3N4膜35、厚さ約1.0〔μm〕の燐硅酸ガラス
(以下PSGという)膜36を順次形成し、素子分
離領域とする位置のPSG膜36Si3N4膜35及び
SiO2膜34を選択的に除去する。
As shown in FIG. 4a, n-type impurities such as arsenic (As) and antimony (Sb) are diffused over the entire surface of a p - -Si substrate 31 to form an n + -buried layer 32, and then n - -epitaxy is applied. A layer 33 is formed, and then a layer 33 is deposited to a thickness of approximately
100 [nm] SiO 2 film 34, about 200 [nm] thick
A Si 3 N 4 film 35 and a phosphosilicate glass (hereinafter referred to as PSG) film 36 with a thickness of about 1.0 [μm] are sequentially formed, and the PSG film 36 at a position to be used as an element isolation region, the Si 3 N 4 film 35 and
The SiO 2 film 34 is selectively removed.

次いで前記基体を反応性スパツタエツチング室
内の例えば平行平板電極上に配置し、CCl4100
〔c.c./min〕に対しBCl350乃至100〔c.c./min〕程
度の流量比例えば約70〔c.c./min〕の流量比で圧
力0.1〔Torr〕程度に混合気体を導入し、500〔W〕
乃至1〔KW〕程度、例えば約650〔W〕の高周波
電力を印加することによつてU字形の溝37をエ
ピタキシヤル層33及びn+―埋込層32を貫通
して半導体基板31に到達する深さに形成する。
The substrate is then placed in a reactive sputter etching chamber, for example on parallel plate electrodes, and treated with CCl 4 100
The mixed gas is introduced to a pressure of about 0.1 [Torr] at a flow rate ratio of about 50 to 100 [cc/min] to BCl 3 [cc/min], for example about 70 [cc/min], and the mixture is heated to 500 [W].
By applying high frequency power of about 1 to 1 [KW], for example, about 650 [W], the U-shaped groove 37 penetrates the epitaxial layer 33 and the n + -buried layer 32 and reaches the semiconductor substrate 31. Form to the desired depth.

この際に先に述べたようにu溝37の底部に図
に示す如き切込み38が発生する。
At this time, as described above, a notch 38 as shown in the figure is generated at the bottom of the U-groove 37.

そこで、本発明によれば、第4図aに示す反応
性スパツタエツチング後に、更に硝酸
(HNO3):弗酸(HF)=500:1程度の混合液に
よるウエツトエツチングを例えば6乃至8分間エ
ツチング量として150乃至200〔nm〕行なうことに
よつて、第4図aに示した状態のエツチング面を
滑らかな形状に整形する。かかる状態を第5図a
に示す。
Therefore, according to the present invention, after the reactive sputter etching shown in FIG. The etched surface shown in FIG. 4a is shaped into a smooth shape by etching at a rate of 150 to 200 nm per minute. This state is shown in Figure 5a.
Shown below.

第5図bはこの整形されたエツチング面を酸化
して、SiO2膜39を形成した状態を示す。
FIG. 5b shows a state in which this shaped etched surface is oxidized to form a SiO 2 film 39.

また第6図a及びbは本発明の第二の実施例を
示す断面図である。
Further, FIGS. 6a and 6b are sectional views showing a second embodiment of the present invention.

本実施例においては、p-―Si基板31の表面の
面指数を(100)とし、前記実施例と同様にして
第4図aのu溝37を設けている。しかる後に
KOHによるウエツトエツチングを例えば温度70
〔℃〕、時間数10秒乃至1分間程度行なうことによ
つて、エツチング面を第6図aに示した滑らかな
形状に整形し、しかる後に、第6図bに示す如く
この整形されたエツチング面を酸化してSiO2
39を形成する。
In this embodiment, the surface index of the surface of the p - -Si substrate 31 is set to (100), and the U groove 37 shown in FIG. 4A is provided in the same manner as in the previous embodiment. After that
Wet etching with KOH for example at a temperature of 70
[°C] for about 10 seconds to 1 minute to shape the etched surface into the smooth shape shown in FIG. A SiO 2 film 39 is formed by oxidizing the surface.

前記第一の実施例のHNO3とHFの混合液の如
く等方性エツチヤントを用いる場合には、基板の
面指数は拘束されず、不純物濃度差の影響を無視
できるが、反面溝の側面にもエツチング効果が及
ぶために、目的とする溝幅に対して、反応性スパ
ツタエツチングの際の溝幅は、ウエツトエツチン
グ相当分だけ狭くする必要がある。
When using an isotropic etchant such as the mixed solution of HNO 3 and HF in the first embodiment, the surface index of the substrate is not restricted and the influence of the difference in impurity concentration can be ignored. In order to have an etching effect, the groove width in reactive sputter etching must be narrower than the intended groove width by an amount equivalent to wet etching.

また第二の実施例のKOH溶液の如く、異方性
エツチヤントを用いる場合には、基板の面指数は
(100)に限定され、かつ、エツチング時間を制限
することが必要である。
Furthermore, when using an anisotropic etchant such as the KOH solution in the second embodiment, the plane index of the substrate is limited to (100) and it is necessary to limit the etching time.

(g) 発明の効果 本発明は以上説明した如く、バイポーラLSIの
素子分離等に拡張されたIOP法を適用するため
に、例えばCCl4とBCl3との混合気体をエツチヤ
ントとするなどスパツタ性の強い反応性スパツタ
エツチングによつて、シリコン基体表面に垂直な
側面を有する溝を形成した後に、等方性もしくは
異方性のウエツトエツチングを行つて、該溝底部
に生ずる切込みを除去するなどエツチング面を整
形し、しかる後に該エツチング面に酸化膜を形成
することによつて、基板にストレスを発生するこ
とを防止し、半導体装置の特性、信頼性を向上
し、集積度の向上に寄与するものである。
(g) Effects of the Invention As explained above, the present invention is intended to apply the expanded IOP method to device isolation of bipolar LSIs, etc. by using a mixed gas of CCl 4 and BCl 3 as an etchant. After forming a groove with vertical side surfaces on the silicon substrate surface by highly reactive sputter etching, isotropic or anisotropic wet etching is performed to remove the notch formed at the bottom of the groove. By shaping the etched surface and then forming an oxide film on the etched surface, it prevents stress from occurring on the substrate, improves the characteristics and reliability of semiconductor devices, and contributes to increased integration. It is something to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図、第4図a及びbは従来例を
示す断面図、第5図a,b、第6図a及びbは本
発明の実施例を示す断面図である。 図において、1はSi基板、2は埋込層、3はチ
ヤネルカツト層、4はエピタキシヤル成長層、5
はSiO2膜、6はSiO2膜、7は多結晶Si層8は
SiO2膜、11はSi基板、12は埋込層、13は
エピタキシヤル成長層、21はSi基板、22は埋
込層、23はエピタキシヤル成長層、24は
SiO2膜、25はSiO2膜、26はp+領域、27は
多結晶Si層、28はSiO2膜、31はSi基板、32
は埋込層、33はエピタキシヤル成長層、34は
SiO2膜、35はSi3N4膜、36はPSG膜、37は
溝、38は切込み、39はSiO2膜を示す。
1 to 3 and FIGS. 4a and 4b are cross-sectional views showing a conventional example, and FIGS. 5a and b, and FIGS. 6 a and b are cross-sectional views showing an embodiment of the present invention. In the figure, 1 is a Si substrate, 2 is a buried layer, 3 is a channel cut layer, 4 is an epitaxial growth layer, and 5 is a buried layer.
is SiO 2 film, 6 is SiO 2 film, 7 is polycrystalline Si layer 8 is
SiO 2 film, 11 is a Si substrate, 12 is a buried layer, 13 is an epitaxial growth layer, 21 is a Si substrate, 22 is a buried layer, 23 is an epitaxial growth layer, 24 is a
SiO 2 film, 25 is SiO 2 film, 26 is p + region, 27 is polycrystalline Si layer, 28 is SiO 2 film, 31 is Si substrate, 32
33 is an epitaxial growth layer, 34 is a buried layer, and 34 is an epitaxial growth layer.
35 is a Si 3 N 4 film, 36 is a PSG film, 37 is a groove, 38 is a notch, and 39 is a SiO 2 film.

Claims (1)

【特許請求の範囲】 1 面指数が(100)である半導体基体を反応性
スパツタエツチングによつて選択エツチングし、
前記半導体基体に溝を形成する工程と、 該基体の(111)面方向に依存し、該(111)面
を表出する異方性エツチング液により、該溝底面
の角部における切込みを緩和し、且つ該底面がV
形に形成されない程度エツチングする工程と、 前記溝内に絶縁膜を形成する工程とを備えてな
ることを特徴とする半導体装置の製造方法。
[Claims] A semiconductor substrate having a plane index of (100) is selectively etched by reactive sputter etching,
A step of forming a groove in the semiconductor substrate, and an anisotropic etching solution that depends on the direction of the (111) plane of the substrate and exposes the (111) plane, relieves the cut at the corner of the groove bottom surface. , and the bottom surface is V
1. A method of manufacturing a semiconductor device, comprising the steps of: etching to such an extent that no shape is formed; and forming an insulating film in the groove.
JP5208882A 1982-03-30 1982-03-30 Manufacture of semiconductor device Granted JPS58168261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5208882A JPS58168261A (en) 1982-03-30 1982-03-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5208882A JPS58168261A (en) 1982-03-30 1982-03-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58168261A JPS58168261A (en) 1983-10-04
JPS6310899B2 true JPS6310899B2 (en) 1988-03-10

Family

ID=12905068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5208882A Granted JPS58168261A (en) 1982-03-30 1982-03-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58168261A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468285A (en) * 1983-12-22 1984-08-28 Advanced Micro Devices, Inc. Plasma etch process for single-crystal silicon with improved selectivity to silicon dioxide
US4456501A (en) * 1983-12-22 1984-06-26 Advanced Micro Devices, Inc. Process for dislocation-free slot isolations in device fabrication
US4534826A (en) * 1983-12-29 1985-08-13 Ibm Corporation Trench etch process for dielectric isolation
JPS6123338A (en) * 1984-07-11 1986-01-31 Sony Corp Manufacture of semiconductor device
JPS62149153A (en) * 1985-09-17 1987-07-03 Fujitsu Ltd Structure of buried type element isolating groove and formation thereof
US4693781A (en) * 1986-06-26 1987-09-15 Motorola, Inc. Trench formation process
JPH0620108B2 (en) * 1987-03-23 1994-03-16 三菱電機株式会社 Method for manufacturing semiconductor device
JPH0222818A (en) * 1988-07-11 1990-01-25 Nec Corp Manufacture of semiconductor device
JP2574672Y2 (en) * 1990-12-14 1998-06-18 スズキ株式会社 Control cable mounting structure
US6902867B2 (en) 2002-10-02 2005-06-07 Lexmark International, Inc. Ink jet printheads and methods therefor
US6984015B2 (en) 2003-08-12 2006-01-10 Lexmark International, Inc. Ink jet printheads and method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103446A (en) * 1980-01-22 1981-08-18 Fujitsu Ltd Semiconductor device
JPS589333A (en) * 1981-07-08 1983-01-19 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103446A (en) * 1980-01-22 1981-08-18 Fujitsu Ltd Semiconductor device
JPS589333A (en) * 1981-07-08 1983-01-19 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS58168261A (en) 1983-10-04

Similar Documents

Publication Publication Date Title
EP0048175B1 (en) Semiconductor device and method of manufacturing the same
US6319333B1 (en) Silicon-on-insulator islands
JPS6220696B2 (en)
US4661832A (en) Total dielectric isolation for integrated circuits
JPS6310899B2 (en)
KR900007149B1 (en) Semiconductor device
EP0140749B1 (en) Method for producing a complementary semiconductor device with a dielectric isolation structure
JP2812013B2 (en) Method for manufacturing semiconductor device
JPH0775244B2 (en) Dielectric isolation substrate and manufacturing method thereof
EP0233248A1 (en) Dielectric isolation structure for integrated circuits
JPH0831927A (en) Manufacture of semiconductor device
JPS58169933A (en) Manufacture of semiconductor device
JPS60140818A (en) Manufacture of semiconductor device
JPH03153031A (en) Manufacture of semiconductor device
JPS60137037A (en) Manufacture of semiconductor device
JPS587839A (en) Manufacture of semiconductor device
JPH0661343A (en) Manufacture of semiconductor device
JPH0420267B2 (en)
JPS595644A (en) Manufacture of semiconductor device
KR100256375B1 (en) Method of forming metal wiring on soi substrate
JPH0516181B2 (en)
JPS6079737A (en) Manufacture of semiconductor device
JPS59149030A (en) Manufacture of semiconductor device
JPS60753A (en) Manufacture of semiconductor device
JPS60226135A (en) Manufacture of semiconductor device