JPS63107072A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS63107072A
JPS63107072A JP25300686A JP25300686A JPS63107072A JP S63107072 A JPS63107072 A JP S63107072A JP 25300686 A JP25300686 A JP 25300686A JP 25300686 A JP25300686 A JP 25300686A JP S63107072 A JPS63107072 A JP S63107072A
Authority
JP
Japan
Prior art keywords
gate
layer
metal
ion
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25300686A
Other languages
Japanese (ja)
Inventor
Seiji Ichikawa
市川 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25300686A priority Critical patent/JPS63107072A/en
Publication of JPS63107072A publication Critical patent/JPS63107072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To shorten a process applying a sidewall-assisted self-alignment method, and reduce gate resistance for effective gate length, by forming a gate metal of metal silicide with a multi-layer structure, and making up the gate in the form of a T or an inverse wedge. CONSTITUTION:On a semi-insulative semiconductor substrate 1, gate metals 3 and 4 with a multi-layer structure composed of meal and metal silicide are arranged, and in the gate forming process, the gate metals 3 and 4 are made up in the form of a T or an inverse wedge. An impurity layer 5 of high concentration is formed by a self-alignment method applying ion implantation. For example, after an N-layer 2 is formed by implanting Si ion into the semi- insulative GaAs substrate 1, gate metals of two layers of WSi 3 and W 4 are formed by sputtering, etc., and a gate is formed by dry etching of the two layers. Further, WSi 3 is subjected to a following etching to form a T-type gate. Then, after an n<+> layer 5 is formed by using ion implantation equipment of wafer scan system in order that implantation angle of ion is kept constant, an ohmic metal 6 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor device.

〔従来の技術〕[Conventional technology]

従来の高速GaAsFETにおいては、ゲート・ソース
間の寄生抵抗を小さくするためにゲート近傍に高濃度キ
ャリア層(以下n+層と略称する)を形成している。こ
のn+層層形成上して、ゲートをマスクにしてn+層を
自己整合的に形成する方法(以下セルファライン方式と
略称する)があるが、イオン注入によってn+層がゲー
ト直下に侵入することによりゲート容量が増加する。
In a conventional high-speed GaAsFET, a high concentration carrier layer (hereinafter abbreviated as n+ layer) is formed near the gate in order to reduce the parasitic resistance between the gate and the source. After forming this n+ layer, there is a method of forming an n+ layer in a self-aligned manner using the gate as a mask (hereinafter referred to as the self-alignment method). Gate capacitance increases.

この欠点を防ぐためにゲートの両側に酸化シリコンの側
壁を形成して、それをマスクにしてn+1をセルファラ
イン方式で形成する方法(以下、側壁アシストセルファ
ライン方式と略称する)が行なわれている。第3図は、
側壁アシストセルファライン方式による製造方法を示す
工程図である。
In order to prevent this drawback, a method is used in which silicon oxide sidewalls are formed on both sides of the gate, and using these as a mask, n+1 is formed by a self-line method (hereinafter abbreviated as sidewall-assisted self-line method). Figure 3 shows
FIG. 3 is a process diagram showing a manufacturing method using a sidewall assisted self-line method.

半絶縁性G a A s基板1に選択的にSiをイオン
注入して0層2を形成する(図(a))、次にタングス
テンシリサイド3を設けた(図(b))後、フォトレジ
スト工程(PR工程)を行ないエツチングによりゲート
を形成する(図(C))。その後回(d)のように酸化
シリコン(Si02)膜1oを全面に成長させ、ドライ
エツチングによって図(e)のように側壁10を形成す
る0次いで、n+層5をイオン注入によって形成した(
図(「))後、側壁10を除去し、オーミックメタル6
を形成している(図(g))。
A semi-insulating GaAs substrate 1 is selectively ion-implanted with Si to form an 0 layer 2 (Figure (a)), then a tungsten silicide 3 is provided (Figure (b)), and then a photoresist layer is formed. A process (PR process) is performed to form a gate by etching (Figure (C)). Thereafter, as shown in step (d), a silicon oxide (Si02) film 1o was grown over the entire surface, and side walls 10 were formed by dry etching as shown in figure (e).Then, an n+ layer 5 was formed by ion implantation (
After the figure ('')), the side wall 10 is removed and the ohmic metal 6
(Figure (g)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の側壁アシストセルファライン方式による
n1層イオン注入法では、ゲート形成からn+層イオン
注入までにS i O19を設ける工程およびそれをエ
ツチングする工程が必要となるという欠点がある。
The above-described conventional sidewall assisted self-line type n1 layer ion implantation method has the disadvantage that a step of providing SiO19 and a step of etching it are required from gate formation to n+ layer ion implantation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ゲートメタルを多層構造からなるメタル、メ
タルシリサイドで形成することと、各層のエツチング速
度のちがい及びエツチングの選択性を利用してゲート形
状をT型及び逆くさび型にし、それをマスクにしてn′
″層をイオン注入することを特徴とする。また、n層層
をイオン注入する際、従来のビーム走査方式からウェハ
ー走査方式を用いることによりn層層を容易かつ精度よ
く実現し得る特徴を有している。
In the present invention, the gate metal is formed of metal and metal silicide having a multilayer structure, and the gate shape is made into a T-shape and an inverted wedge shape by utilizing the difference in etching speed of each layer and the etching selectivity, and the gate shape is formed into a T-shape and an inverted wedge shape. and n'
It is characterized by ion-implanting the n-layer. Also, when ion-implanting the n-layer, it is possible to easily and accurately realize the n-layer by using a wafer scanning method instead of the conventional beam scanning method. are doing.

〔実施例〕〔Example〕

以下、図面により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の第1の実施例を示す工程図である。FIG. 1 is a process diagram showing a first embodiment of the present invention.

半絶縁性GaAs基板1にSiイオンを注入して0層2
を形成(図(a) ) I、た後、図(b)のようにタ
ングステンシリサイド3およびタングステン4の2層の
ゲートメタルをスパッタ等により形成し、PR工程を行
い2層のドライエツチングによって、図(C)のように
ゲートを形成する。
A layer 2 is formed by implanting Si ions into a semi-insulating GaAs substrate 1.
(Figure (a)) After that, two layers of gate metal, tungsten silicide 3 and tungsten 4, are formed by sputtering or the like as shown in Figure (b), a PR process is performed, and the two layers are dry etched. A gate is formed as shown in Figure (C).

さらにタングステンシリサイド3をフッ酸等により追加
エツチングすることにより、図(d)のようにT型ゲー
トが形成される。ウェハーに対するイオンの注入角度を
一定にするためにウェハー走査方式のイオン注入装置で
注入しn+層5を形成した後、オーミックメタル6を形
成する。
Furthermore, by additionally etching the tungsten silicide 3 using hydrofluoric acid or the like, a T-shaped gate is formed as shown in FIG. 3(d). In order to make the ion implantation angle with respect to the wafer constant, a wafer scanning type ion implanter is used to implant the n+ layer 5, and then the ohmic metal 6 is formed.

このように本実施例では側壁を設ける工程がないので製
造工程が短縮され容易になる。
As described above, in this embodiment, since there is no step of providing side walls, the manufacturing process is shortened and simplified.

第2図は、本発明の第2の実施例を示す工程図である。FIG. 2 is a process diagram showing a second embodiment of the present invention.

n層を注入した基板(図(a))に、図(b)に示すよ
うにタングステンシリサイドの組成を段階的にかえて多
層タングステンシリサイド7゛を形成することにより多
層構造をもったゲートメタルを得る。PR工程を行い、
ドライエツチングを行うことにより組成のちがいによる
エツチングレートの差により図(c)のように逆くさび
型のゲートが形成される。これをマスクにしてn+層5
をウェハー走査方式のイオン注入装置で注入し、オーミ
ックメタル6を形成する。
A gate metal with a multilayer structure is formed by changing the composition of the tungsten silicide in steps to form a multilayer tungsten silicide 7 on the substrate implanted with the n-layer (Figure (a)), as shown in Figure (b). obtain. Perform the PR process,
When dry etching is performed, an inverted wedge-shaped gate is formed as shown in Figure (c) due to the difference in etching rate due to the difference in composition. Using this as a mask, the n+ layer 5
is implanted using a wafer scanning type ion implantation device to form the ohmic metal 6.

この実施例の場合は一回のエツチングによりゲートが形
成されるので、第1の実施例より、さらに工程が短縮さ
れる。
In this embodiment, the gate is formed by one etching process, so the process is further shortened than in the first embodiment.

以上の実施例では半絶縁性GaAs基板を用いたGaA
sFETについて述べたが、本発明はこれに限らずIn
PFETその他にも適用できる。
In the above embodiment, a GaAs substrate using a semi-insulating GaAs substrate is used.
Although the sFET has been described, the present invention is not limited to this.
It can also be applied to PFET and others.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、ゲート形状を′r型及
び逆くさび型にすることにより側壁アシストセルフライ
ン方法による工程を短縮する効果および実効グー1−長
に対しゲート抵抗を減少させる効果があり、またウェハ
ー走査方式のイオン注入装置を用いることによりイオン
の注入角度を一定にできる効果がある。
As explained above, the present invention has the effect of shortening the process by the sidewall assisted self-line method and the effect of reducing the gate resistance with respect to the effective goose length by making the gate shape 'r-shaped and inverted wedge-shaped. Furthermore, by using a wafer scanning type ion implantation device, the ion implantation angle can be made constant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(「)は、本発明の第1の実施例の製造
工程を示す断面図、第2図(a)〜(e)は、本発明の
第2の実施例の製造工程を示す断面図、第3図(a)〜
(g)は、従来の側壁アシストセルファライン方式での
製造工程を示す断面図である。 1・・・半絶縁性GaAs基板、2・・・n層(イオン
注入層)、3・・・タングステンシリサイド、4・・・
タングステン、5・・・n層層(イオン注入層)、6・
・・オーミックメタル、7・・・多層タングステンシリ
サイド、10・・・側壁用S i 02膜。
FIGS. 1(a) to 1(') are cross-sectional views showing the manufacturing process of the first embodiment of the present invention, and FIGS. 2(a) to (e) are sectional views showing the manufacturing process of the second embodiment of the present invention. Cross-sectional view showing the process, Figure 3(a)~
(g) is a cross-sectional view showing a manufacturing process using the conventional sidewall assisted self-line method. DESCRIPTION OF SYMBOLS 1... Semi-insulating GaAs substrate, 2... N layer (ion implantation layer), 3... Tungsten silicide, 4...
Tungsten, 5...n layer (ion implantation layer), 6...
...Ohmic metal, 7...Multilayer tungsten silicide, 10...S i 02 film for sidewall.

Claims (2)

【特許請求の範囲】[Claims] (1)半絶縁性半導体基板上にメタル、メタルシリサイ
ドからなる多層のゲートメタルを設け、ゲート形成工程
でゲートメタルをT型または逆くさび型のゲートに成形
し、高濃度キャリア層をイオン注入により自己整合的に
形成することを特徴とする半導体素子の製造方法。
(1) A multilayer gate metal made of metal and metal silicide is provided on a semi-insulating semiconductor substrate, the gate metal is formed into a T-shaped or inverted wedge-shaped gate in the gate formation process, and a high concentration carrier layer is formed by ion implantation. A method for manufacturing a semiconductor device, characterized in that it is formed in a self-aligned manner.
(2)前記イオン注入をイオンビームを固定し、基板を
走査する方法により行なう特許請求の範囲第(1)項記
載の半導体素子の製造方法。
(2) The method of manufacturing a semiconductor device according to claim (1), wherein the ion implantation is performed by a method of fixing the ion beam and scanning the substrate.
JP25300686A 1986-10-23 1986-10-23 Manufacture of semiconductor element Pending JPS63107072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25300686A JPS63107072A (en) 1986-10-23 1986-10-23 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25300686A JPS63107072A (en) 1986-10-23 1986-10-23 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPS63107072A true JPS63107072A (en) 1988-05-12

Family

ID=17245177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25300686A Pending JPS63107072A (en) 1986-10-23 1986-10-23 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS63107072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100301969B1 (en) * 1997-12-17 2001-11-22 이계철 Method for forming self-aligned t-type gate transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100301969B1 (en) * 1997-12-17 2001-11-22 이계철 Method for forming self-aligned t-type gate transistor

Similar Documents

Publication Publication Date Title
US5264382A (en) Method of producing semiconductor device using dummy gate structure
JPH0244155B2 (en)
JPS6150394B2 (en)
JPH04346229A (en) Method of separating element of semiconductor device
JPS63257231A (en) Manufacture of semiconductor device
JPS63107072A (en) Manufacture of semiconductor element
JPH0341763A (en) Complementary mos semiconductor device
JPH0268930A (en) Manufacture of semiconductor device
JPH04103127A (en) Method of separating element for semiconductor device
JPS63181378A (en) Manufacture of semiconductor device
US6214674B1 (en) Method of fabricating high voltage device suitable for low voltage device
JPH0212927A (en) Manufacture of mesfet
JPH0461123A (en) Method of semiconductor isolation
JPH03181136A (en) Manufacture of semiconductor device
JPS6169176A (en) Manufacture of semiconductor device
JPH0346371A (en) Manufacture of semiconductor device
JPS63273362A (en) Manufacture of schottky barrier gate field-effect transistor
JPH0475388A (en) Semiconductor device and manufacture thereof
JPH10209450A (en) Narrow isolation oxide process
JPH01161873A (en) Manufacture of semiconductor device
EP0851469A2 (en) Semiconductor device having a tapered implanted region and method of fabrication using spin-on glass
JPH0744183B2 (en) Method for manufacturing semiconductor device
JPH01253968A (en) Manufacture of field effect transistor
JPH04114476A (en) Semiconductor device and manufacture thereof
JPH0330307B2 (en)