JPS63105921A - Manufacture of thick high tension steel of more than 90kgf/mm2 class having superior toughness at low temperature - Google Patents

Manufacture of thick high tension steel of more than 90kgf/mm2 class having superior toughness at low temperature

Info

Publication number
JPS63105921A
JPS63105921A JP24988086A JP24988086A JPS63105921A JP S63105921 A JPS63105921 A JP S63105921A JP 24988086 A JP24988086 A JP 24988086A JP 24988086 A JP24988086 A JP 24988086A JP S63105921 A JPS63105921 A JP S63105921A
Authority
JP
Japan
Prior art keywords
temperature
less
rolling
toughness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24988086A
Other languages
Japanese (ja)
Inventor
Yoshihiro Okamura
岡村 義弘
Seinosuke Yano
矢野 清之助
Akinori Toyofuku
豊福 昭典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24988086A priority Critical patent/JPS63105921A/en
Publication of JPS63105921A publication Critical patent/JPS63105921A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the titled high tension steel having high strength at any position in the thickness direction, superior toughness at low temp. and performance to stop the progress of brittle fracture by hot rolling and heat treating a steel slab contg. restricted components under specified conditions. CONSTITUTION:A steel slab consisting of, by weight, 0.07-0.15% C, <=0.5% Si, 0.5-2.0% Mn, 3.0-5.0% Ni, 0.1-1.0% Cr, 0.1-1.0% Mo, 0.01-0.15% V, 0.03-0.10% sol.Al, 0.0005-0.0020% B, <=0.0060% N and the balance Fe with inevitable impurities is heated to 900-1,100 deg.C and hot rolled at 800-900 deg.C finish rolling starting temp. and >=40% total draft. The rolled product is hardened by water cooling from the Ar3 point or above. The product is provided with austenite grain size No.>=7.5 and a martensite structure in the lower part of the surface layer in the thickness direction and a mixed structure consisting of martensite and lower bainite in the central part in the thickness direction. The rolled product is then tempered by heating to the Ac1 point or below to manufacture the titled high tension steel.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は板厚1001以上で低温靭性に優れ、さらに脆
性破壊伝播停止性能を有した引張強さ90Kff/Mj
以上級高張力鋼の製造法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a plate with a thickness of 1001 or more, excellent low-temperature toughness, and a tensile strength of 90 Kff/Mj with brittle fracture propagation stopping performance.
The present invention relates to a method for manufacturing the above-mentioned high-strength steel.

(従来の技術) 近年、エネルギー需要は益々増加傾向を示している。そ
の安定供給確保のため海底資源開発は深海化、寒冷地へ
と関心が集まり、この海底開発につながる海洋構造物の
建造、例えば石油掘削用リグ材は大型化、庫内化してい
る。そのため、これらに使用される材料は、構造上高強
度で、かつ低温靭性の優れた鋼の開発が望まれている。
(Prior Art) In recent years, energy demand has been showing an increasing trend. In order to ensure a stable supply of these resources, interest in developing seabed resources is turning to deeper waters and colder regions, and the construction of offshore structures that lead to this seabed development, such as the construction of rig materials for oil drilling, are becoming larger and indoors. Therefore, it is desired to develop a material for use in these materials that has high structural strength and excellent low-temperature toughness.

このようなより安全で借頼性の高い材料の要求に応える
ため、種々の厚肉高張力鋼の開発および品質改善が行な
われてきている。従来から、高強度材においては再加熱
焼入れ焼戻し法が主流となっているが、特に厚肉材に対
して、板厚中心部まできちんと焼きを入れ良好な強度、
靭性を得ることは国難であった。
In order to meet the demand for safer and more reliable materials, various thick-walled high-strength steels have been developed and their quality improved. Traditionally, reheating, quenching, and tempering have been the mainstream method for high-strength materials, but especially for thick-walled materials, it is necessary to properly quench the center of the plate to achieve good strength and strength.
Obtaining toughness was a national challenge.

従って、今日迄、少ない合金元素で、かつ焼き入れ性を
向上させるためには、Bによる焼入れ性向上効果を活用
した方法が多く適用されている。
Therefore, to date, in order to improve hardenability with a small amount of alloying elements, many methods have been applied that utilize the hardenability improving effect of B.

例えば、特公昭60−20461号公報のように、厚肉
材の板厚中心部迄Bの焼入れ性を高めるため、5otA
L−全B量線図を作製し、有効B範囲を制限し、かつ溶
接性の点から炭素当量(Ceq )及び溶接割れ感受性
指数(Pcm )を制限した引張強さ70〜80〜f/
−級の厚肉高張力鋼の製造法がある。
For example, as in Japanese Patent Publication No. 60-20461, 5otA
A tensile strength of 70 to 80 f/ was created by creating an L-total B content diagram, limiting the effective B range, and limiting the carbon equivalent (Ceq) and weld cracking susceptibility index (Pcm) from the viewpoint of weldability.
There is a method for manufacturing − grade thick-walled high-strength steel.

又、特開昭59−170221号公報のように、強度、
靭性、焼戻し軟化抵抗性に効果ある元素を鋼に添加し、
熱間圧延後焼入れ焼戻し処理する引張強さ95に9f/
−級の極厚95に9f/−縁高張力鋼の製造法がある。
Also, as in JP-A-59-170221, strength,
Adding elements to steel that are effective for toughness and resistance to temper softening,
Tensile strength 95 to 9f/ after hot rolling and quenching and tempering
There is a manufacturing method for 9f/- edge high tensile strength steel of - grade 95 to 95mm.

これらはいずれも再加熱焼入焼戻し型での高張力鋼の製
造法に関するもので、Bの焼入性向上効果を活用し、板
厚中心部の焼入性を改善している。
All of these relate to a method for manufacturing high-strength steel using a reheating, quenching and tempering mold, and utilize the hardenability improving effect of B to improve the hardenability at the center of the plate thickness.

(発明が解決しようとする問題点) しかしながら、使用環境は前述したごと(、深海化、寒
冷地化という苛酷な使用条件下における安全性の確保か
ら、これら構造物は、変形もしくは破壊してはならず、
特に母材に対しては、低温において脆性破壊伝播停止性
能に対する要求も考慮せねばならない。
(Problem to be solved by the invention) However, in order to ensure safety under harsh usage conditions such as the use environment described above (deep sea and cold regions), these structures must not be deformed or destroyed. Not,
Particularly for the base material, requirements for stopping brittle fracture propagation at low temperatures must also be taken into account.

前述の製造法により得られた鋼については、このような
考慮が十分なされておらず、特性値も低い。従って、厚
肉材の場合、再加熱焼入焼戻し法は、使用上十分に安全
であるとは云えない。
Regarding the steel obtained by the above-mentioned manufacturing method, such considerations are not sufficiently taken into consideration, and the characteristic values are also low. Therefore, in the case of thick-walled materials, the reheating, quenching and tempering method cannot be said to be sufficiently safe for use.

(問題点を解決するための手段) 本発明者らは厚肉材に対し、板厚方向全位置に高強度で
均一な低温靭性及び脆性破壊伝播停止性能を有する高張
力鋼の開発を目的に、板厚表層下部はオーステナイト粒
度7.5番以上でかつマルテンサイト組織で、板厚中心
部がマルテンサイトと下部ベイナイトとの混合組織とす
ることにより、板厚方向全位置において高強度でかつ高
靭性が得られ、又、そのような焼入組織を得るには、適
正Ni量と加工熱処理を組合わせることにより、目的の
鋼が製造できることを知見した。
(Means for Solving the Problems) The present inventors aimed to develop high-strength steel for thick-walled materials that has high strength, uniform low-temperature toughness, and brittle fracture propagation stopping performance at all positions in the thickness direction. The lower part of the surface layer of the plate has an austenite grain size of 7.5 or more and has a martensite structure, and the center part of the plate has a mixed structure of martensite and lower bainite, resulting in high strength and high strength at all positions in the thickness direction. It has been found that in order to obtain toughness and to obtain such a quenched structure, the desired steel can be manufactured by combining an appropriate amount of Ni and processing heat treatment.

本発明はこのような知見に基いて構成したもので、その
要旨は、C:0.07〜0.15%、Si : 0.5
係以下、Mn : 0.5〜2.0%、Ni : 3.
0〜5.0%、Cr : 0.1〜1.0%、Mo :
 0.1〜1.0%、V:0.01〜0.15%、so
lAl: 0.03〜0.10%、B:O,0O05〜
0.0020%、N:0.0015〜0.0060%を
含有し、残部がFeおよび不可避的不純物からなる鋼片
、あるいは更にCu : 0.05〜1.0%、Nb 
: 0.005〜0.050%、Ti : 0.005
〜0.020%1およびCa:0.0050%以下の1
種又は2種以上を含有する鋼片を900〜1100℃に
加熱し、熱間圧延において仕上かみ込み温度800〜9
00℃で、仕上り板厚に対し40%以上の累積圧下率で
圧延し、この圧延完了後Ars点以上の温度から水冷す
る焼入処理を行ない、板厚表層下部はオーステナイト粒
度7.5番以上でかつマルテンサイト組織で、板厚中心
部はマルテンサイトと下部ベイナイトの混合組織とし、
続いてAcI点以下の温度に加熱する焼戻し処理を行う
ことを特徴とする低温靭性に優れた厚肉90hf/−以
上縁高張力鋼の製造法である。
The present invention was constructed based on such knowledge, and the gist thereof is: C: 0.07 to 0.15%, Si: 0.5
Below, Mn: 0.5-2.0%, Ni: 3.
0-5.0%, Cr: 0.1-1.0%, Mo:
0.1-1.0%, V: 0.01-0.15%, so
lAl: 0.03-0.10%, B: O, 0O05-
A steel piece containing 0.0020%, N: 0.0015-0.0060%, with the balance consisting of Fe and inevitable impurities, or further Cu: 0.05-1.0%, Nb
: 0.005-0.050%, Ti: 0.005
~0.020% 1 and Ca: 0.0050% or less 1
A steel billet containing the seed or two or more types is heated to 900 to 1100°C, and then hot rolled to a finish biting temperature of 800 to 9.
The plate is rolled at 00°C with a cumulative reduction rate of 40% or more of the finished plate thickness, and after the completion of rolling, a quenching treatment is performed by water cooling from a temperature above the Ars point, and the lower part of the plate thickness surface has an austenite grain size of No. 7.5 or more. The center of the plate thickness is a mixed structure of martensite and lower bainite.
This is a method for producing a thick edge high tensile strength steel of 90 hf/- or more and excellent low temperature toughness, which is characterized by subsequently performing a tempering treatment by heating to a temperature below the AcI point.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

まず、本発明を上記のような鋼成分に限定した理由を述
べる。
First, the reason why the present invention is limited to the above-mentioned steel components will be described.

C:Cは焼入性を向上させ強度を容易に上昇させるのに
有効な元素である。しかし、0.07%未満では強度的
に不十分であり、0.15%を超えると低温靭性及び溶
接性が劣化する。従って、C含有量の範囲を0.07〜
0.15%とする。
C: C is an effective element for improving hardenability and easily increasing strength. However, if it is less than 0.07%, the strength is insufficient, and if it exceeds 0.15%, low temperature toughness and weldability deteriorate. Therefore, the C content range is from 0.07 to
It shall be 0.15%.

Si : Siは強度向上に有効であるが、0.5%を
超えると焼戻し脆性が大きくなり、低温靭性が劣化する
。従って、ある程度の強度を確保し、又、切欠靭性を劣
化しないために上限を0.5%とする。
Si: Si is effective in improving strength, but if it exceeds 0.5%, tempering brittleness increases and low-temperature toughness deteriorates. Therefore, the upper limit is set at 0.5% in order to ensure a certain degree of strength and not to deteriorate the notch toughness.

Mn : hlnは焼入性を向上させ、強度、靭性確保
に有効であるが、0.5%未満では強度および靭性が低
下し、又、2.0%を超えると切欠靭性及び溶液性な劣
化させる。従って、胤の含有量を0.5〜2.0%とす
る。
Mn: Hln improves hardenability and is effective in ensuring strength and toughness, but if it is less than 0.5%, strength and toughness decrease, and if it exceeds 2.0%, notch toughness and solution properties deteriorate. let Therefore, the content of seeds is set to 0.5 to 2.0%.

Ni:Niは強度と靭性な向上させるのに最も有効な元
素である。特に本発明においては、焼入処理によって板
厚中心部がマルテンサイトと下部ベイナイトの混合組織
が安定して得られるために最低3.0%必要である。
Ni: Ni is the most effective element for improving strength and toughness. In particular, in the present invention, a minimum content of 3.0% is required in order to stably obtain a mixed structure of martensite and lower bainite at the center of the plate thickness through the quenching process.

一方、5.0%を超えると、強度の割には靭性向上の効
果が小さく、経済性で不利となる。従ってNiの含有量
を3.0〜5.0%とする。
On the other hand, if it exceeds 5.0%, the effect of improving toughness will be small compared to the strength, and it will be economically disadvantageous. Therefore, the Ni content is set to 3.0 to 5.0%.

Cr : Crは焼入性を向上させ強度確保に有効であ
り、0.1%未満ではその効果がな(、又、1.0%を
超えると切欠靭性及び溶接性が劣化する。従って、Cr
の含有量を0.1〜1,0%とする。
Cr: Cr is effective in improving hardenability and ensuring strength, and if it is less than 0.1%, it has no effect (and if it exceeds 1.0%, notch toughness and weldability deteriorate. Therefore, Cr
The content of is set to 0.1 to 1.0%.

Mo : MoもCrと同様に焼入性を増加させ、強度
確保に有効な元素である。しかし、0.1%未満では目
標とする強度が得られず、又、1.0%を超えると切欠
靭性及び溶接性が劣化する。従って、MOの含有量を0
.1〜1.0%とする。
Mo: Like Cr, Mo is also an element that increases hardenability and is effective in ensuring strength. However, if it is less than 0.1%, the target strength cannot be obtained, and if it exceeds 1.0%, notch toughness and weldability deteriorate. Therefore, the content of MO is 0.
.. 1 to 1.0%.

v:vは焼戻し処理において炭窒化物を形成し、析出強
化により強度確保に有効である。特に、本発明の加工熱
処理法は、焼入処理前に炭窒化物の十分な固溶化により
、効果的な析出強化をはかることができる。
v: v forms carbonitrides during tempering treatment and is effective in securing strength through precipitation strengthening. In particular, the processing heat treatment method of the present invention can achieve effective precipitation strengthening by sufficiently converting carbonitrides into a solid solution before the quenching treatment.

しかし、0.01%未満では目標とする強度が得られず
、又0.15%を超えると切欠靭性が劣化する。
However, if it is less than 0.01%, the target strength cannot be obtained, and if it exceeds 0.15%, notch toughness deteriorates.

従って、■の含有量を0.01〜0.15%とする。Therefore, the content of ■ is set to 0.01 to 0.15%.

5oLkL : Atは鋼片加熱時、鋼中のNと結びつ
いて、その後の焼入処理において、焼入性に有効なりを
確保するため0.03%以上の添加が必要である。
5oLkL: At is combined with N in the steel during heating of the steel billet, and must be added in an amount of 0.03% or more to ensure that it is effective for hardenability in the subsequent hardening treatment.

又、AtNの微細析出物によりオーステナイト粒の細粒
化にも有効である。しかし、0.10%を超えるとAl
1 Os等の介在物が増大し、靭性な阻害する。
Furthermore, the fine precipitates of AtN are effective in refining austenite grains. However, if it exceeds 0.10%, Al
Inclusions such as 1 Os increase and impede toughness.

従ってs o tAtの含有量を0.03〜0.10%
とする。
Therefore, the content of so tAt should be 0.03 to 0.10%.
shall be.

B:Bは焼入性を向上させる有効な元素であり、上述し
たC、 Mn、 Ni 、Or、 Moの焼入性元素と
の兼ね合いにおいて、これら元素をより少量な添加量で
焼入性が発揮できる。
B: B is an effective element for improving hardenability, and in consideration of the above-mentioned hardenability elements of C, Mn, Ni, Or, and Mo, it is possible to improve hardenability by adding these elements in smaller amounts. I can demonstrate it.

そのため、本発明における板厚中心部での焼入組織が安
定して得られる。o、ooos%未満ではその効果がな
く、又0.0020%を超えるとその効果が飽和して、
かえって靭性な低下させる。従って、Bの含有量を0.
0005〜0.00020%とする。
Therefore, the quenched structure at the center of the plate thickness in the present invention can be stably obtained. If it is less than o,oos%, there is no effect, and if it exceeds 0.0020%, the effect is saturated,
On the contrary, it reduces the toughness. Therefore, the content of B is 0.
0005 to 0.00020%.

N:NはBによる焼入性向上効果を確保するため、でき
るだけ低下した方が好ましい。しかし、0.0015%
未満の場合、厚肉材の表層下部のオーステナイト粒は粗
粒化し、低温靭性が劣化する。
N: In order to ensure the effect of improving hardenability due to B, it is preferable to reduce N as much as possible. However, 0.0015%
If it is less than 1, the austenite grains in the lower surface layer of the thick-walled material become coarse and the low-temperature toughness deteriorates.

又、0.0060%を超えると溶接熱影響部、特に粗粒
域部においては、高温状態で固溶Nが増加し、溶接部靭
性を劣化させる。従って、Nの含有量を0.0015〜
0.0060%とする。
Moreover, if it exceeds 0.0060%, solid solution N increases in the weld heat affected zone, particularly in the coarse grain region, at high temperatures, deteriorating the weld toughness. Therefore, the N content should be 0.0015~
It shall be 0.0060%.

以上は本発明における鋼の基本成分であるが、さらに本
発明は強度および靭性な一層改善するために、以下の成
分を選択添加する。
The above are the basic components of the steel in the present invention, but in the present invention, the following components are selectively added in order to further improve the strength and toughness.

Cu : Cuは靭性な劣化させず、強度を上昇させる
と共に、耐蝕性の向上にも有効である。0.05%未満
ではその効果がなく、又1.0%を超えると、かえって
熱間加工性や靭性な劣化させる。従ってCuの含有量を
0.05〜1.0%とする。
Cu: Cu does not deteriorate toughness, increases strength, and is also effective in improving corrosion resistance. If it is less than 0.05%, it has no effect, and if it exceeds 1.0%, it actually deteriorates hot workability and toughness. Therefore, the Cu content is set to 0.05 to 1.0%.

Nb : Nbは焼戻し処理において炭窒化物を形成し
、析出強化により強度確保に有効であると共に、本発明
の加熱・圧延時において未再結晶温度域を拡大するため
、表層下部のオーステナイト粒を微細化し靭性が向上す
る。
Nb: Nb forms carbonitrides during tempering treatment, and is effective in securing strength through precipitation strengthening. In addition, in order to expand the non-recrystallization temperature range during heating and rolling in the present invention, it makes the austenite grains in the lower surface layer finer. hardness and improves toughness.

そのため、o、oos%以上で有効であるが、o、os
Therefore, it is effective at o, oos% or more, but o, os
.

係を超えると靭性及び溶接部靭性が劣化する。従って、
隅の含有量をo、oos〜o、oso%とする。
If the temperature exceeds this threshold, the toughness and weld toughness will deteriorate. Therefore,
Let the content in the corner be o, oos to o, oso%.

Ti : Tiは浴接熱影響部の粗粒化を防止するため
、その部分の靭性向上に効果がある。そのため、0.0
05%以上添加するが、0.020%を超えると、かえ
って母材の靭性迄が劣化する。従ってTiの含有量を0
.005〜0.020%とする。
Ti: Ti prevents coarsening of the heat-affected zone of the bath, and is therefore effective in improving the toughness of that area. Therefore, 0.0
0.05% or more, but if it exceeds 0.020%, even the toughness of the base material will deteriorate. Therefore, the Ti content is reduced to 0.
.. 005 to 0.020%.

上記の成分は、本発明において強度、靭性及び溶接性を
改善するために添加する元素であり、更に異方性及び耐
ラメラティア性を改善するため、Caを選択添加する。
The above components are elements added to improve strength, toughness, and weldability in the present invention, and Ca is selectively added to improve anisotropy and lamellar tear resistance.

Ca:Caは非金属介在物の球状化に極めて有効であり
、靭性の向上や靭性の異方性を小さくする効果がある。
Ca: Ca is extremely effective in spheroidizing nonmetallic inclusions, and has the effect of improving toughness and reducing anisotropy of toughness.

しかし、0.0050%を超えると介在物が増加し、靭
性な低下させる。従ってその含有量を010050%以
下とする。
However, when it exceeds 0.0050%, inclusions increase and the toughness deteriorates. Therefore, its content is set to 010050% or less.

上記の成分の他に不可避的不純物としてP、 S等は本
発明の特性である靭性を劣化させる有害な元素であるか
ら、その量は少ない方がよい。好ま。
In addition to the above-mentioned components, unavoidable impurities such as P and S are harmful elements that deteriorate the toughness, which is a characteristic of the present invention, so the smaller the amount, the better. I like it.

しくはPは0.015%以下、Sは0.005%、以下
に調整する。
Alternatively, P is adjusted to 0.015% or less, and S is adjusted to 0.005% or less.

さらに本発明において、焼入処理後、板厚表層下部はオ
ーステナイト粒度7.5番以上でかつマルテンサイト組
織で板厚中心部はマルテンサイトと下部ベイナイトの混
合組織を発明の重要な結晶組織としている理由について
述べる。
Furthermore, in the present invention, after quenching, the lower part of the surface layer of the plate has an austenite grain size of 7.5 or more and martensite structure, and the center of the plate thickness has a mixed structure of martensite and lower bainite, which is an important crystal structure of the invention. I will explain the reason.

一般的に焼入組織は冷却速度が速い順にマルテンサイト
→下部ベイナイト→上部ベイナイト組織となり、厚肉材
においても、同様に板厚表層部から板厚中心部にかけて
冷却速度が遅くなり、これらの組織が順次生成する。こ
こで、上部ベイナイト組織は焼入不足によって得られる
組織で強度および靭性が低下する。
In general, the quenched structure is martensite → lower bainite → upper bainite in order of cooling rate. Even in thick-walled materials, the cooling rate decreases from the surface layer to the center of the thickness, and these structures change. are generated sequentially. Here, the upper bainite structure is a structure obtained by insufficient quenching, and the strength and toughness are reduced.

一方、マルテンサイト組織は高強度化には最も有効な組
織であるが、靭性はオーステナイト粒度依存性が大きく
、粗粒の場合、著しく低靭性をもたらす。
On the other hand, the martensitic structure is the most effective structure for increasing strength, but the toughness is highly dependent on the austenite grain size, and coarse grains result in significantly low toughness.

又、厚肉材において板厚中心部迄マルテンサイト組織に
することは、合金元素の増加による溶接性の劣化と経済
性から好ましくない。
In addition, it is not preferable to form a martensitic structure up to the center of the plate thickness in a thick-walled material because of the deterioration of weldability due to an increase in alloying elements and economic efficiency.

マルテンサイト組織の次に高強度が得られる下部ベイナ
イト組織が最も粒度依存性が小さく、高靭性が得られる
組織であり、一般的に厚肉高強度材の板厚中心部を、こ
のような下部ベイナイト組織とすることが広く利用され
ている。
The lower bainite structure, which provides the highest strength next to the martensitic structure, has the least grain size dependence and is the structure that provides the highest toughness. A bainite structure is widely used.

しかし、板厚中心部が下部ベイナイト組織とした場合で
も、板厚表層下部は必然的にマルテンサイト組織となり
、粗粒の場合、靭性劣化を招くことになる。
However, even if the central part of the plate thickness has a lower bainitic structure, the lower part of the surface layer of the plate inevitably has a martensitic structure, and if it is coarse grained, this will lead to deterioration of toughness.

又、下部ベイナイト組織では、80KIIf/−扱高張
力鋼においては強度、靭性に効果があるが、本発明のご
と(、引張強さ90Ktf/−級以上の高張力鋼では、
高強度高靭性化に対し、十分な焼入組織とは云えない。
In addition, the lower bainite structure is effective in improving the strength and toughness of high tensile strength steels with a tensile strength of 90Ktf/- or higher, as in the present invention.
It cannot be said that the quenched structure is sufficient for achieving high strength and high toughness.

すなわち、マルテンサイトと下部ベイナイトの混合組織
とすることが、最も本発明の目的とする強度と靭性が同
時に得られる組織であり、かつ、本発明の製造方法によ
り、表層下部のオーステナイト粒度な7゜5誉以上に細
粒化することで、板厚方向全位置の靭性が高靭性化する
In other words, a mixed structure of martensite and lower bainite is the structure in which the strength and toughness that are the objectives of the present invention can be obtained most simultaneously. By making the grains finer than 5 Homare, the toughness at all positions in the plate thickness direction becomes high.

第1図は、@Dの3.5%Ni系の板厚130瓢材につ
いて、再刀口熱焼入焼戻し処理材及び加熱・圧延条件を
変化させた直接焼入焼戻し材について、表層下部及び板
厚中心部のオーステナイト粒度と靭性の関係を示したも
のである。
Figure 1 shows the lower surface layer and plate of @D's 3.5% Ni-based 130-gourd material, the re-cut heat quenched and tempered material, and the direct quenched and tempered material with different heating and rolling conditions. This figure shows the relationship between the austenite grain size in the thick center and toughness.

板厚中心部はマルテンサイトと下部ベイナイトの混曾組
祇で粒度依存性が小さく、高靭性を示し、又表層下部は
マルテンサイト組織で粒度依存性が顕著であり、オース
テナイト粒度が7.5誉以上で高い低温靭性が得られ、
板厚方向全位置が均一高靭性化する。
The central part of the plate thickness is a mixture of martensite and lower bainite, showing low grain size dependence and high toughness, and the lower surface layer has a martensite structure with remarkable grain size dependence, with an austenite grain size of 7.5 mm. With the above, high low temperature toughness can be obtained,
Uniformly high toughness is achieved at all locations in the plate thickness direction.

さらに、このような焼入組織とオーステナイト粒度を得
るための製造条件の限定理由について示す0 まず、上記のような成分組成に溶製化したNi含有低合
金鋼の溶鋼を連続鋳造法もしくは造塊分塊法によって鋼
片としたのち、直接あるいは必要によって偏析成分の拡
散を目的として、加熱と冷却を繰返す前処理を施した後
、温度900〜1100℃に加熱し、熱間圧延を行なう
Furthermore, the reason for limiting the manufacturing conditions to obtain such a quenched structure and austenite grain size will be explained below. First, molten Ni-containing low-alloy steel that has been melted into the above-mentioned composition is processed by continuous casting or ingot making. After forming a steel billet by the blooming method, it is subjected to a pretreatment of repeating heating and cooling, either directly or if necessary, for the purpose of diffusing the segregated components, and then heated to a temperature of 900 to 1100° C. and hot rolled.

この加熱はNをAAで固定し、AtNの微細析出をはか
り、焼入れ処理前の固溶Bを増加し、焼入性を高める処
理であり、又、加熱オーステナイト粒の細粒化と、更に
焼戻し処理時にMo、V等の微細炭窒化物の析出による
強化を利用するために、鋼片に存在するMo、V等の炭
窒化物を十分に固溶化させる処理でもある。
This heating fixes N with AA, aims at fine precipitation of AtN, increases solid solution B before quenching treatment, and improves hardenability. It also refines the heated austenite grains and further tempers them. In order to utilize the strengthening caused by the precipitation of fine carbonitrides such as Mo and V during the treatment, it is also a process in which the carbonitrides such as Mo and V present in the steel slab are sufficiently converted into a solid solution.

従って900℃未満の低い温度では、この同溶化作用が
不十分となる。一方、1100℃を超える温度では、M
o、V等の炭窒化物は十分固溶するものの、AtHの微
細析出物も再分解し、この固溶Nは圧延時Bと結びつき
、BNとして再析出するため焼入時の固溶Bが減少し焼
入れ性が低下する。
Therefore, at a low temperature below 900°C, this isosolubilization effect becomes insufficient. On the other hand, at temperatures exceeding 1100°C, M
Although carbonitrides such as O and V are sufficiently dissolved in solid solution, the fine precipitates of AtH are also re-decomposed, and this solid solution N is combined with B during rolling and reprecipitated as BN, so the solid solution B during quenching is hardenability decreases.

又、加熱オーステナイト粒が粗大化し、その後の圧延に
おいて、特に表層下部のオーステナイト粒が細粒化しに
(く、表層下部の靭性低下の原因となる。従って、これ
らの問題を考慮して、鋼片の加熱温度を900〜110
0℃とした。
In addition, the heated austenite grains become coarser, and during subsequent rolling, the austenite grains in the lower part of the surface layer are difficult to become finer (especially in the lower part of the surface layer), which causes a decrease in the toughness of the lower part of the surface layer. heating temperature of 900-110
The temperature was 0°C.

このような高温度に加熱された鋼片を、熱間圧延におい
て仕上かみ込み温度800〜900℃で、仕上り板厚に
対し40%以上の累積圧下率で圧延し、この圧延完了後
Ar3点以上の温度から水冷処理を行なう。
The steel billet heated to such a high temperature is hot-rolled at a finish bite temperature of 800 to 900°C and a cumulative reduction rate of 40% or more relative to the finished plate thickness, and after the completion of this rolling, Ar 3 or more points are applied. Water cooling treatment is performed from a temperature of .

ここで、熱間圧延において仕上かみ込み温度800〜9
00℃に限定した理由は、板厚方向全位置におけるオー
ステナイト粒の微細化と、板厚中心部の焼入れ性の確保
のためであり、900℃以上を超えると特に表層下部に
おいては、再結晶温度域となるため、オーステナイト粒
の細粒化が不十分となる。
Here, the finishing biting temperature in hot rolling is 800 to 9
The reason for limiting the temperature to 00℃ is to refine the austenite grains at all positions in the sheet thickness direction and to ensure hardenability in the center of the sheet thickness. As a result, the austenite grains become insufficiently refined.

又、800℃未満の低い温度では、板厚中心部迄、尤−
ステナイト粒内に変形帯の形成が増大し、かえって固溶
Bはこれらに固着し、オーステナイト粒界へのBの偏析
量が減少し、焼入性が低下し、従って上部ベイナイト組
織が生成しやすくなるからである。
In addition, at low temperatures below 800℃, the
The formation of deformation bands within the stenite grains increases, and the solid solution B instead sticks to these, reducing the amount of B segregated to the austenite grain boundaries, reducing hardenability, and thus making it easier to form an upper bainite structure. Because it will be.

次に仕上り厚に対し40%以上の累積圧下率で圧延する
理由は、表層下部のオーステナイト粒度を8番以上に細
粒化させるためである。又、この圧延完了後Ars点以
上の温度から水冷する焼入処理を行なう理由は、板厚方
向全位置において、完全なオーステナイト域の温度から
焼入れし、表層下部はマルテンサイト組織、板厚中心部
はマルテンサイトと下部ベイナイトの混合組織を得るた
めのものであり、焼入温度がArs点以下の場合、上部
ベイナイト組織が著しく生成し、強度、靭性が劣化する
Next, the reason for rolling at a cumulative reduction rate of 40% or more with respect to the finished thickness is to refine the austenite grain size in the lower surface layer to No. 8 or more. In addition, the reason why water cooling is performed from a temperature above the Ars point after the rolling is completed is that quenching is performed from a temperature in the complete austenite region at all positions in the thickness direction, and the lower part of the surface layer has a martensitic structure, and the center of the thickness has a martensitic structure. is intended to obtain a mixed structure of martensite and lower bainite, and if the quenching temperature is below the Ars point, an upper bainite structure will be formed significantly and the strength and toughness will deteriorate.

このよ5な熱間圧延後、水冷された鋼は、板厚表層下部
はオーステナイト粒度7.5番以上で、かつマルテンサ
イト組織で板厚中心部はマルテンサイトと下部ベイナイ
トの混合組織となる。
After such hot rolling, the water-cooled steel has an austenite grain size of 7.5 or more and a martensite structure in the lower part of the surface layer of the plate, and a mixed structure of martensite and lower bainite in the center of the plate thickness.

しかしこのままでは、降伏強度および靭性が不十分であ
り、Ac1点以下の温度で焼戻し処理を行ない、 V、
 Mo等の炭窒化物を十分に析出強化させ、強度および
靭性な得る必要がある。
However, as it is, the yield strength and toughness are insufficient, so tempering treatment is performed at a temperature below Ac1 point, V.
It is necessary to sufficiently precipitation strengthen carbonitrides such as Mo to obtain strength and toughness.

このような製造工程で得られた鋼は、板厚方向全位置に
おいて、高強度および高靭性が得られ、さらに脆性破壊
伝播停止性能が著しく改善される。
The steel obtained through such a manufacturing process has high strength and high toughness at all positions in the plate thickness direction, and also has significantly improved brittle fracture propagation stopping performance.

(実施例) 第1表に示す組成を有する鋼を溶製して得た鋼片を、第
2表に示す本発明法と比較法の各々の製造条件に基いて
、板厚100〜200Iの鋼板に製造した。
(Example) A steel slab obtained by melting steel having the composition shown in Table 1 was melted to a plate thickness of 100 to 200I based on the manufacturing conditions of the present invention method and the comparative method shown in Table 2. Manufactured from steel plate.

これらについて母材の機械的性質及び温度勾配WESS
O試験による脆性破壊伝播停止性能のKca試験結果を
第3表に示す。
Regarding these, the mechanical properties of the base material and the temperature gradient WESS
Table 3 shows the Kca test results for brittle fracture propagation arresting performance by the O test.

なお、第1表の化学成分mI、Jは4本1発明に規定す
る化学成分範囲を逸脱した成分例である。
In addition, the chemical components mI and J in Table 1 are examples of components that deviate from the chemical component range specified in the four inventions.

上記の第3表の結果から明らかなように、本発明に従っ
て得られた鋼板の機械的性質は、比較法で得られた鋼板
に比べ、いずれも強度及び靭性が高く、特に板厚表層下
部の靭性が著しく向上し、オーステナイト粒度も比較法
による鋼板に比べ。
As is clear from the results in Table 3 above, the mechanical properties of the steel plates obtained according to the present invention are higher in strength and toughness than those obtained by the comparative method, especially in the lower part of the surface layer of the plate. The toughness is significantly improved and the austenite grain size is also significantly improved compared to the steel plate made by the comparative method.

細粒化している。又、温度勾配型ESSO試験による脆
性破壊伝播停止性能 Kca値も比較法による鋼板に比
べ優れている。
It is fine grained. Furthermore, the brittle fracture propagation arresting performance Kca value obtained by the temperature gradient type ESSO test is also superior to that of the steel plate obtained by the comparative method.

(発明の効果) 以上の実施例から明らかなように、本発明によれば厚肉
高強度材において、板厚方向全位置において低温靭性に
優れ、かつ脆、性破壊伝播停止性能を有した90に9f
/−以上級高張力鋼を製造することが可能となり、産業
上の効果は極めて顕著なものである。
(Effects of the Invention) As is clear from the above examples, according to the present invention, a thick-walled high-strength material has excellent low-temperature toughness at all positions in the plate thickness direction, and has the ability to stop brittle and structural fracture propagation. 9f
It has become possible to produce high tensile strength steel of /- or higher grade, and the industrial effect is extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の成分組成を有する鋼を本発明法及び
比較法で製造した鋼板の板厚方向全位置におけるオース
テナイト粒度と靭性の関係を示した図表である。 第1図
FIG. 1 is a chart showing the relationship between austenite grain size and toughness at all positions in the thickness direction of steel plates manufactured by the method of the present invention and the comparative method using steel having the composition of the present invention. Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で C:0.07〜0.15%、 Si:0.5%以下、 Mn:0.5〜2.0%、 Ni:3.0〜5.0%、 Cr:0.1〜1.0%、 Mo:0.1〜1.0%、 V:0.01〜0.15%、 solAl:0.03〜0.10%、 B:0.0005〜0.0020%、 N:0.0060%以下 を含有して残部がFeおよび不可避的不純 物からなる一片を900〜1100℃に加熱し、熱間圧
延において、仕上かみ込み温度800〜900℃で、仕
上り板厚に対し40%以上の累積圧下率で圧延し、この
圧延完了後Ar_3点以上の温度から水冷する焼入処理
を行ない、板厚表層下部はオーステナイト粒度7.5番
以上でかつマルテンサイト組織で、板厚中心部はマルテ
ンサイトと下部ベイナイトの混合組織とし、続いてAc
_1点以下の温度に加熱する焼戻し処理を行うことを特
徴とする低温靭性に優れた厚肉90Kgf/mm^2以
上級高張力鋼の製造法。
(1) C: 0.07 to 0.15% by weight, Si: 0.5% or less, Mn: 0.5 to 2.0%, Ni: 3.0 to 5.0%, Cr: 0 .1-1.0%, Mo: 0.1-1.0%, V: 0.01-0.15%, solAl: 0.03-0.10%, B: 0.0005-0.0020 %, N: 0.0060% or less, with the remainder consisting of Fe and unavoidable impurities, is heated to 900 to 1100°C, and hot-rolled at a finish biting temperature of 800 to 900°C to reduce the finished plate thickness. The plate is rolled at a cumulative reduction rate of 40% or more, and after the completion of rolling, a quenching treatment is performed by water cooling from a temperature of Ar_3 or higher, and the lower part of the surface layer of the plate has an austenite grain size of No. 7.5 or higher and a martensitic structure, The center of the plate thickness has a mixed structure of martensite and lower bainite, followed by Ac
A method for producing thick-walled 90Kgf/mm^2 or higher grade high-strength steel with excellent low-temperature toughness, characterized by performing a tempering treatment by heating to a temperature of _1 or less.
(2)重量%で C:0.07〜0.15%、 Si:0.5%以下、 Mn:0.5〜2.0%、 Ni:3.0〜5.0%、 Cr:0.1〜1.0%、 Mo:0.1〜1.0%、 V:0.01〜0.15%、 solAl:0.03〜0.10%、 B:0.0005〜0.0020%、 N:0.0060%以下 を含有し、さらに Cu:0.05〜1.0%、Nb:0.005〜0.0
50%、Ti:0.005〜0.0020%の1種又は
2種以上を含有して残部がFeおよび不可避的不純物か
らなる鋼片を900〜1100℃に加熱し、熱間圧延に
おいて仕上かみ込み温度800〜900℃で、仕上り板
厚に対し40%以上の累積圧下率で圧延し、この圧延完
了後Ar_3点以上の温度から水冷する焼入処理を行な
い、板厚表層下部はオーステナイト粒度7.5番以上で
かつマルテンサイト組織で、板厚中心部はマルテンサイ
トと下部ベイナイトの混合組織とし、続いてAc_1点
以下の温度に加熱する焼戻し処理を行うことを特徴とす
る低温靭性に優れた厚肉90Kgf/mm^2以上級高
張力鋼の製造法。
(2) In weight%, C: 0.07-0.15%, Si: 0.5% or less, Mn: 0.5-2.0%, Ni: 3.0-5.0%, Cr: 0 .1-1.0%, Mo: 0.1-1.0%, V: 0.01-0.15%, solAl: 0.03-0.10%, B: 0.0005-0.0020 %, N: 0.0060% or less, Cu: 0.05-1.0%, Nb: 0.005-0.0
A steel slab containing 50% Ti, 0.005% to 0.0020% Ti, and the balance consisting of Fe and unavoidable impurities is heated to 900 to 1100°C, and then finished by hot rolling. Rolling is carried out at a rolling temperature of 800 to 900°C and a cumulative reduction rate of 40% or more relative to the finished plate thickness. After the rolling is completed, a quenching process is performed by water cooling from a temperature of Ar_3 or higher, and the lower part of the surface layer of the plate has an austenite grain size of 7. .5 or higher and has a martensitic structure, the center of the plate thickness has a mixed structure of martensite and lower bainite, and is then tempered by heating to a temperature of Ac_1 point or less. Excellent low-temperature toughness. A method for manufacturing high-strength steel with a thickness of 90Kgf/mm^2 or higher.
(3)重量%で C:0.07〜0.15%、 Si:0.5%以下、 Mn:0.5〜2.0%、 Ni:3.0〜5.0%、 Cr:0.1〜1.0%、 Mo:0.1〜1.0%、 V:0.01〜0.15%、 solAl:0.03〜0.10%、 B:0.0005〜0.0020%、 N:0.0060%以下、 Ca:0.0050%以下 を含有して残部がFeおよび不可避的不純 物からなる一片を900〜1100℃に加熱し、熱間圧
延において、仕上かみ込み温度800〜900℃で、仕
上り板厚に対し40%以上の累積圧下率で圧延し、この
圧延完了後Ar_3点以上の温度から水冷する焼入処理
を行ない、板厚表層下部はオーステナイト粒度7.5番
以上でかつマルテンサイト組織で、板厚中心部はマルテ
ンサイトと下部ベイナイトの混合組織とし、続いてAc
_1点以下の温度に加熱する焼戻し処理を行うことを特
徴とする低温靭性に優れた厚肉90Kgf/mm^2以
上級高張力鋼の製造法。
(3) C: 0.07 to 0.15% by weight, Si: 0.5% or less, Mn: 0.5 to 2.0%, Ni: 3.0 to 5.0%, Cr: 0 .1-1.0%, Mo: 0.1-1.0%, V: 0.01-0.15%, solAl: 0.03-0.10%, B: 0.0005-0.0020 %, N: 0.0060% or less, Ca: 0.0050% or less, with the balance consisting of Fe and unavoidable impurities, is heated to 900 to 1100°C, and hot rolled to a finish biting temperature of 800°C. Rolling is performed at ~900°C with a cumulative reduction rate of 40% or more relative to the finished plate thickness, and after completion of rolling, a quenching process is performed by water cooling from a temperature of Ar_3 or higher, and the lower part of the surface layer of the plate has an austenite grain size of No. 7.5. Above, the martensitic structure is formed, and the central part of the plate thickness is a mixed structure of martensite and lower bainite, followed by Ac
A method for producing thick-walled 90Kgf/mm^2 or higher grade high-strength steel with excellent low-temperature toughness, characterized by performing a tempering treatment by heating to a temperature of _1 or less.
(4)重量%で C:0.07〜0.15%、 Si:0.5%以下、 Mn:0.5〜2.0%、 Ni:3.0〜5.0%、 Cr:0.1〜1.0%、 Mo:0.1〜1.0%、 V:0.01〜0.15%、 solAl:0.03〜0.10%、 B:0.0005〜0.0020%、 N:0.0060%以下 を含有し、さらにCu:0.05〜1.0%、Nb:0
.005〜0.050%、Ti:0.005〜0.02
0%の1種又は2種以上およびCa:0.0050%以
下を含有して、残部がFeおよび不可避的不純物からな
る鋼片を900〜1100℃に加熱し、熱間圧延におい
て仕上かみ込み温度800〜900℃で、仕上り板厚に
対し40%以上の累積圧下率で圧延し、この圧延完了後
Ar_3点以上の温度から水冷する焼入処理を行ない、
板厚表層下部はオーステナイト粒度7.5番以上でかつ
マルテンサイト組織で、板厚中心部はマルテンサイトと
下部ベイナイトの混合組織とし、続いてAc_1点以下
の温度に加熱する焼戻し処理を行うことを特徴とする低
温靭性に優れた厚肉90Kgf/mm^2以上級高張力
綱の製造法。
(4) C: 0.07 to 0.15% by weight, Si: 0.5% or less, Mn: 0.5 to 2.0%, Ni: 3.0 to 5.0%, Cr: 0 .1-1.0%, Mo: 0.1-1.0%, V: 0.01-0.15%, solAl: 0.03-0.10%, B: 0.0005-0.0020 %, N: 0.0060% or less, Cu: 0.05 to 1.0%, Nb: 0
.. 005-0.050%, Ti: 0.005-0.02
A steel piece containing one or more of 0% and 0.0050% or less of Ca, with the balance consisting of Fe and unavoidable impurities is heated to 900 to 1100°C, and the finish biting temperature is reached during hot rolling. Rolling at 800 to 900°C with a cumulative reduction rate of 40% or more relative to the finished plate thickness, and after completing this rolling, perform a quenching treatment by water cooling from a temperature of Ar_3 or higher,
The lower part of the surface layer of the plate has an austenite grain size of 7.5 or more and has a martensite structure, and the center part of the plate has a mixed structure of martensite and lower bainite, and then is tempered by heating to a temperature of Ac_1 point or less. A method for manufacturing thick-walled, 90Kgf/mm^2 or higher grade high-tensile steel steel with excellent low-temperature toughness.
JP24988086A 1986-10-21 1986-10-21 Manufacture of thick high tension steel of more than 90kgf/mm2 class having superior toughness at low temperature Pending JPS63105921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24988086A JPS63105921A (en) 1986-10-21 1986-10-21 Manufacture of thick high tension steel of more than 90kgf/mm2 class having superior toughness at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24988086A JPS63105921A (en) 1986-10-21 1986-10-21 Manufacture of thick high tension steel of more than 90kgf/mm2 class having superior toughness at low temperature

Publications (1)

Publication Number Publication Date
JPS63105921A true JPS63105921A (en) 1988-05-11

Family

ID=17199573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24988086A Pending JPS63105921A (en) 1986-10-21 1986-10-21 Manufacture of thick high tension steel of more than 90kgf/mm2 class having superior toughness at low temperature

Country Status (1)

Country Link
JP (1) JPS63105921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110616369A (en) * 2019-08-21 2019-12-27 舞阳钢铁有限责任公司 Large-thickness steel plate with yield of 785MPa grade for ocean engineering and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156268B2 (en) * 1981-10-06 1986-12-01 Nippon Kokan Kk

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156268B2 (en) * 1981-10-06 1986-12-01 Nippon Kokan Kk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110616369A (en) * 2019-08-21 2019-12-27 舞阳钢铁有限责任公司 Large-thickness steel plate with yield of 785MPa grade for ocean engineering and production method thereof

Similar Documents

Publication Publication Date Title
CN109161791B (en) 690 MPa-grade ship and ocean engineering steel with excellent low-temperature toughness and manufacturing method thereof
CN1075117C (en) Ultra-high strength secondary hardening steels with excellent toughness and weldability and method thereof
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JPH10265846A (en) Production of thermally refined high tensile strength steel plate by continuous casting excellent in toughness
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPS6410564B2 (en)
JP3499705B2 (en) 950N / mm2 class tempered high-strength steel sheet having excellent homogeneity in thickness direction and low anisotropy of toughness, and method for producing the same
JPS60121228A (en) Manufacture of tempered high tension steel plate
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JPH0413406B2 (en)
JPS6156235A (en) Manufacture of high toughness nontemper steel
JPH06136441A (en) Production of high strength and low yield ratio bar steel for reinforcing bar
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPH0219175B2 (en)
JPH06116639A (en) Production of ultrahigh tensile strength steel having stress corrosion cracking resistance
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JPH02129317A (en) Production of 80kgf/mm2 class high tension steel having excellent weldability
JPS63105921A (en) Manufacture of thick high tension steel of more than 90kgf/mm2 class having superior toughness at low temperature
JPS63190117A (en) Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JPS6117885B2 (en)
JPH0734126A (en) Production of low-alloy seamless steel pipe for finely grained structure