JPS63103017A - Refining method by blowing in converter - Google Patents

Refining method by blowing in converter

Info

Publication number
JPS63103017A
JPS63103017A JP24901286A JP24901286A JPS63103017A JP S63103017 A JPS63103017 A JP S63103017A JP 24901286 A JP24901286 A JP 24901286A JP 24901286 A JP24901286 A JP 24901286A JP S63103017 A JPS63103017 A JP S63103017A
Authority
JP
Japan
Prior art keywords
decarburization
carbon
amount
oxygen
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24901286A
Other languages
Japanese (ja)
Inventor
Haruyoshi Tanabe
治良 田辺
Junichi Fukumi
純一 福味
Masahiro Kawakami
川上 正弘
Yasunori Muraki
村木 靖徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24901286A priority Critical patent/JPS63103017A/en
Publication of JPS63103017A publication Critical patent/JPS63103017A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of decarburization in a low carbon region and to enhance the yield of iron by increasing the amount of oxygen blown at a prescribed concn. of carbon and reducing the amount of oxygen blown to below the amount in the early stage of decarburization before a decarburization reaction attains to a rate determining the feed of carbon. CONSTITUTION:In the early stage of refining in which the concn. of carbon in molten steel is high and all of oxygen fed is consumed for decarburization, a prescribed amount of oxygen is blown to refine the molten steel. At the time when the concn. of carbon is reduced to 0.5-0.6% by the progress of decarburizaton, the amount of oxygen blown is increased to violently agitate the molten steel. The amount of oxygen blown is then reduced to below the amount in the early stage of decarburization before the concn. of carbon is reduced to <=0.2% at which the decarburizaton reaction attains to a rate determining the feed of carbon.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、脱炭末期の低炭素域において脱炭効率を向
上させた転炉吹錬方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a converter blowing method that improves decarburization efficiency in a low carbon region at the final stage of decarburization.

[従来の技術] 純酸素上吹転炉法においては、酸素ジェットと溶鋼との
衝突面(以下ファイアポイントという)においてM索が
溶鋼中に吸収され、溶鋼中の炭素がこの酸素と反応して
一酸化炭素分圧が生成することによって溶鋼が脱炭され
る。このとき、脱炭反応の進行に伴い脱炭速度が上昇す
る。そして、脱炭中期には溶鋼中の炭素がファイアポイ
ントに到達する速度が十分に大きく、脱炭反応が酸素供
給律速となるので、脱炭効率が100%に近付く。
[Prior art] In the pure oxygen top-blown converter method, M cables are absorbed into the molten steel at the collision surface between the oxygen jet and the molten steel (hereinafter referred to as the fire point), and the carbon in the molten steel reacts with this oxygen. The molten steel is decarburized by the generation of carbon monoxide partial pressure. At this time, the decarburization rate increases as the decarburization reaction progresses. In the middle stage of decarburization, the speed at which carbon in the molten steel reaches the fire point is sufficiently high, and the decarburization reaction becomes rate-limiting in oxygen supply, so the decarburization efficiency approaches 100%.

しかし、更に脱炭が進み、溶鋼中の炭素濃度が低くなる
とファイアポイントに到達する炭素量が減少し、脱炭反
応が炭素供給律速となる。脱炭反応が酸素供給律速から
炭素供給律速になる境界の炭素濃度(以下、遷移炭素m
度という)よりも炭素濃度が低下すると、脱炭速度が低
下し、脱炭効率が減少して脱炭に寄与しない酸素が増加
してしまう。従って、溶鋼中で酸素と鉄とが反応して生
成する酸化鉄が増加し、鉄歩留が低下してしまう。
However, as decarburization progresses further and the carbon concentration in the molten steel decreases, the amount of carbon that reaches the fire point decreases, and the decarburization reaction becomes rate-limiting for carbon supply. The carbon concentration at the boundary where the decarburization reaction becomes rate-limiting from oxygen supply to carbon supply (hereinafter referred to as transition carbon m
When the carbon concentration is lower than the carbon concentration (referred to as carbon concentration), the decarburization rate decreases, the decarburization efficiency decreases, and the amount of oxygen that does not contribute to decarburization increases. Therefore, iron oxide generated by the reaction between oxygen and iron in molten steel increases, resulting in a decrease in iron yield.

特に、脱燐溶銑を吹錬する場合には、脱燐剤が少量でよ
く溶鋼中のスラグ量が少ないので、マンガン鉱石又はク
ロム鉱石等の転炉内還元が可能になるが、低炭素域にお
いては鉄歩留だけでなく、マンガン歩留又はクロム歩留
も低下してしまう。
In particular, when blowing dephosphorized hot metal, a small amount of dephosphorizing agent is required and the amount of slag in the molten steel is small, making it possible to reduce manganese ore or chromium ore in the converter. In this case, not only the iron yield but also the manganese yield or chromium yield decreases.

このような欠点を解決すべく、従来、アルゴンガスの酸
素ガスに対する比を1乃至2にした混合ガ誠にて吹錬し
、転炉内の一酸化炭素分圧を低下させ、炭素濃度が0.
05%に減少するまでの間に溶鋼を優先的に脱炭する技
術、及び、真空ポンプ等で転炉内の圧力を約100トル
まで減少させて一酸化炭素分圧を低下させ、溶鋼を優先
的に脱炭する技術が採用されている。
In order to solve these drawbacks, conventionally, a mixed gas with a ratio of argon gas to oxygen gas of 1 to 2 is blown in a mixed gas furnace to reduce the partial pressure of carbon monoxide in the converter and reduce the carbon concentration to 0.
Technology to preferentially decarburize molten steel until the carbon monoxide decreases to 0.5%, and reduce the pressure inside the converter to approximately 100 torr using a vacuum pump, etc. to lower the partial pressure of carbon monoxide, giving priority to molten steel. A technology that decarbonizes fuel is adopted.

[発明が解決しようとする問題点] しかしながら、アルゴンと酸素との混合ガスで吹錬する
場合には、アルゴンガスのコストが高く、また、送酸速
度が少なくなるため吹錬時間が10乃至50%延長して
しまうという問題点がある。
[Problems to be Solved by the Invention] However, when blowing is performed using a mixed gas of argon and oxygen, the cost of argon gas is high and the oxygen supply rate is low, so the blowing time is 10 to 50 minutes. % extension.

また、転炉内を真空ポンプ等で減圧する場合には、設備
費が高く、また、減圧することにより放熱が激しくなる
等の問題点がある。
Further, when the inside of the converter is depressurized using a vacuum pump or the like, there are problems such as high equipment costs and increased heat dissipation due to the depressurization.

この発明は斯かる事情に鑑みてなされたものであって、
低酸素域において高効率で脱炭して鉄歩留の低下を防止
するに際し、吹錬時間の延長並びに吹錬及び設備コスト
の増大を招来することなく熱効率が高い転炉吹錬方法を
提供することを目的とする。
This invention was made in view of such circumstances, and
To provide a converter blowing method with high thermal efficiency without prolonging blowing time or increasing blowing and equipment costs when decarburizing with high efficiency in a low oxygen region and preventing a decrease in iron yield. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る転炉吹錬方法は、所定の送1fiにて酸
素吹錬し、脱炭が進み所定の炭素濃度まで減少した時点
で送酸量を上昇させ、次いで、脱炭反応が炭素供給律速
になる前に吹錬初期の送F1m以下に減少させることを
特徴とする。
The converter blowing method according to the present invention performs oxygen blowing at a predetermined feed rate of 1fi, increases the amount of oxygen feed when decarburization progresses and decreases to a predetermined carbon concentration, and then the decarburization reaction supplies carbon. It is characterized by reducing the feed rate to below 1 m at the initial stage of blowing before it becomes rate-limiting.

し作用] この発明においては、所定の送酸量にて酸素吹錬すると
、脱炭が進み脱炭速度が増加する。そして、所定の炭素
1Ir51に達した時点で送Mmを増加させて攪拌力を
強める。その後、脱炭反応が炭素供給律速になる前に送
重量を脱炭初期よりも減少させる。このように、脱炭速
度に応じて送酸1をWA節することにより、吹錬時間が
延長せず、安い設備費で、エネルギ効率良く、低炭素域
における高効率脱炭をすることができる。
Effect] In the present invention, when oxygen blowing is carried out at a predetermined amount of oxygen supply, decarburization progresses and the decarburization rate increases. Then, when a predetermined carbon content of 1Ir51 is reached, the feed Mm is increased to strengthen the stirring force. Thereafter, before the decarburization reaction becomes rate-determining for carbon supply, the feed weight is reduced from the initial stage of decarburization. In this way, by adjusting the WA section of the oxygen feed 1 according to the decarburization speed, the blowing time is not extended, the equipment cost is low, energy efficiency is high, and highly efficient decarburization in the low carbon range can be achieved. .

[実施例] 以下、この発明の実施例について具体的に説明する。[Example] Examples of the present invention will be specifically described below.

転炉吹錬において、溶鋼の炭素濃度が高い場合には脱炭
反応が酸素供給律速となり、供給した酸素は略々100
%脱炭に消費される。しかし、脱炭が進み溶鋼の炭素濃
度が低下した場合に、脱炭反応を効率良く進行させるた
めには溶鋼の攪拌力を増加させる必要がある。このため
、例えば炭素濃度が0.5乃至0.6%になった時点で
送M量を脱炭初期の送酸量よりも50乃至100%上昇
させて吹錬圧力を増加させ溶鋼の攪拌力を増加させる。
In converter blowing, when the carbon concentration of molten steel is high, the decarburization reaction becomes the rate-limiting oxygen supply, and the supplied oxygen is approximately 100%
% consumed in decarburization. However, when decarburization progresses and the carbon concentration of the molten steel decreases, it is necessary to increase the stirring power of the molten steel in order to efficiently advance the decarburization reaction. For this reason, for example, when the carbon concentration reaches 0.5 to 0.6%, the amount of M fed is increased by 50 to 100% compared to the amount of oxygen fed at the initial stage of decarburization, thereby increasing the blowing pressure and stirring force of the molten steel. increase.

その後、更に脱炭が進み炭素濃度が減少して脱炭反応が
炭素供給律速になると、供給される酸素のうち脱炭に寄
与しないものが増加し、溶鋼中の有効成分を酸化させて
しまう。このため、脱炭反応が炭素供給律速になる炭素
濃度、例えば0.2%に達する前に脱炭初期の送酸量以
下に減少させる。このように送酸量を操作することによ
り低炭素域における脱炭効率が上昇する。
After that, as decarburization further progresses and the carbon concentration decreases, and the decarburization reaction becomes rate-limiting in carbon supply, the amount of oxygen that does not contribute to decarburization increases, oxidizing the effective components in the molten steel. For this reason, before the decarburization reaction reaches the carbon concentration that determines the rate of carbon supply, for example 0.2%, the amount of oxygen supplied is reduced to below the initial stage of decarburization. By controlling the amount of oxygen fed in this way, the decarburization efficiency in the low carbon region increases.

次に、この実施例の動作について説明する。先ず、溶鋼
を所定の送酸量にて転炉内で酸素吹錬する。そして、溶
鋼の炭素濃度が0.5乃至0.6%になった時点で送酸
量を50乃至100%増加させる。そうすると溶鋼の攪
拌力が増加し!152炭反応が効率良く進む。その後、
更に脱炭が進んで炭素濃度が減少するが、炭素濃度が0
.2%になる少し手前で、脱炭初期の送酸量以下にする
。そうすると、溶鋼中の過剰酸素の増加量が少ない。こ
のように送酸量を調整するだけで低炭素域での脱炭効率
が上昇し、溶鋼中の鉄等の歩留が向上する。
Next, the operation of this embodiment will be explained. First, molten steel is oxygen blown in a converter at a predetermined amount of oxygen. Then, when the carbon concentration of the molten steel reaches 0.5 to 0.6%, the amount of oxygen supplied is increased by 50 to 100%. This will increase the stirring power of the molten steel! 152 carbon reaction proceeds efficiently. after that,
Further decarburization progresses and the carbon concentration decreases, but when the carbon concentration is 0
.. Just before it reaches 2%, reduce the oxygen supply amount to less than the initial amount of decarburization. In this case, the amount of increase in excess oxygen in the molten steel is small. By simply adjusting the amount of oxygen fed in this way, the decarburization efficiency in the low carbon range increases and the yield of iron, etc. in molten steel improves.

従って、吹錬時間の延長並びに吹錬及び設備コストの増
大を招来することなく高熱効率で、低炭素域においても
高効率で脱炭をすることができる。
Therefore, decarburization can be performed with high thermal efficiency and with high efficiency even in a low carbon range without prolonging the blowing time or increasing blowing and equipment costs.

次に、この実施例によって転炉吹錬した場合の具体例に
ついて説明する。予備処理して燐含有量を約0.01%
まで減少させた溶銑゛を転炉内に装入し、その中に合金
成分として所定量の酸化マンガン及び酸化クロムを投入
して酸素吹錬を開始した。このときの送111ffiは
35x103 Nm3/時とした。次に、吹錬が進み炭
素濃度が0.5%になった時点で送酸量を具体例1では
45X103Nm3/時に増加させ、具体例2では55
×10103N/時に増加させた。その後炭素濃度が0
.2%まで低下する少し手前でいずれの具体例について
も酸素供給量を25x103Nm’ /時に減少させた
。また、炭素濃度が0.2%の少し手前になるまで送酸
量を35X10”Nm3のまま一定にし、その後25X
1 O3Nm3にした場合を比較例とした。なお、第1
図に夫々の吹錬パターンについて示す。次に、このよう
な条件で吹錬した結果について示す。第2図は横軸に炭
素濃度をとり縦軸に脱炭効率く供給された酸素の単位重
量当りの脱炭量)をとって炭素濃度と脱炭効率との関係
を示すグラフ図である。これによれば、どの炭素濃度に
おいても具体例が比較例よりも脱炭効率が良いことがわ
かる。また、送1!IIの増加率が高い具体例2が具体
例1よりも脱炭効率が良い。第3図は横軸に吹錬終点の
炭素S度をとり縦軸にスラグ中のFed、Fe2O3等
の全鉄分濃度(トータルFe濃度)をとって、吹錬終点
の炭素濃度とトータルFeとの関係を示すグラフ図であ
る。これによれば、炭素濃度を0.05%程度まで低下
させることにより、比較例においてはトータルFe11
度が20%を超えるのに対し、具体例においてはトータ
ルFe濃度が20%以下になり、特に、具体例2におい
てはトータルFe濃度が約10%となる。このように、
この具体例においては低炭素域での脱炭効率が向上し、
鉄歩留が上昇する。
Next, a specific example of converter blowing according to this embodiment will be described. Pre-treatment to reduce phosphorus content to approximately 0.01%
The molten pig iron was charged into a converter, and predetermined amounts of manganese oxide and chromium oxide were added as alloying components therein, and oxygen blowing was started. The feed rate 111ffi at this time was 35x103 Nm3/hour. Next, when the blowing progresses and the carbon concentration reaches 0.5%, the oxygen supply amount is increased by 45×103 Nm3/hour in specific example 1, and 55×103 Nm3/hour in specific example 2.
×10103N/hour. After that, the carbon concentration is 0
.. Shortly before the drop to 2%, the oxygen supply rate was reduced to 25 x 103 Nm'/h in both embodiments. In addition, the oxygen supply amount was kept constant at 35X10"Nm3 until the carbon concentration reached just below 0.2%, and then 25X
1 O3Nm3 was used as a comparative example. In addition, the first
The figure shows each blowing pattern. Next, the results of blowing under these conditions will be shown. FIG. 2 is a graph showing the relationship between carbon concentration and decarburization efficiency, with the horizontal axis representing the carbon concentration and the vertical axis representing the amount of decarburization per unit weight of oxygen efficiently supplied. According to this, it can be seen that the specific example has better decarburization efficiency than the comparative example at any carbon concentration. Also, send 1! Specific example 2, which has a high increase rate of II, has better decarburization efficiency than specific example 1. In Figure 3, the horizontal axis shows the carbon S degree at the end point of blowing, and the vertical axis shows the total iron concentration (total Fe concentration) such as Fed, Fe2O3, etc. in the slag, and the carbon concentration at the end point of blowing and the total Fe are plotted. It is a graph diagram showing a relationship. According to this, by lowering the carbon concentration to about 0.05%, the total Fe11
In contrast, in specific examples, the total Fe concentration is 20% or less, and in particular, in specific example 2, the total Fe concentration is about 10%. in this way,
In this specific example, the decarburization efficiency in the low carbon range is improved,
Iron yield increases.

[発明の効果] この発明によれば、所定の炭素濃度で送酸量を増加させ
、脱炭反応が炭素供給律速になる前に脱炭初期の炭素層
以下に低下させることにより低炭素域での脱炭効率を向
上させ鉄歩留を上昇させることができる。従って、吹錬
時間の延長並びに吹錬及び設備コストの増大を招来する
ことなく高熱効率で、低炭素域においても高効率で脱炭
することができる。
[Effects of the Invention] According to the present invention, the amount of oxygen supplied is increased at a predetermined carbon concentration, and the amount is lowered to below the carbon layer at the initial stage of decarburization before the decarburization reaction becomes rate-determining the carbon supply. It can improve the decarburization efficiency and increase the iron yield. Therefore, it is possible to decarburize with high thermal efficiency and with high efficiency even in a low carbon range without prolonging the blowing time or increasing the blowing and equipment costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は送酸パターンを示すグラフ図、第2図は炭素濃
度と脱炭効率との関係を示すグラフ図、第3図は吹錬終
点の炭素11度とトータルFeとの関係を示すグラフ図
である。
Figure 1 is a graph showing the oxygen supply pattern, Figure 2 is a graph showing the relationship between carbon concentration and decarburization efficiency, and Figure 3 is a graph showing the relationship between carbon 11 degrees at the end of blowing and total Fe. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 所定の送酸量にて酸素吹錬し、脱炭が進み所定の炭素濃
度まで減少した時点で送酸量を上昇させ、次いで、脱炭
反応が炭素供給律速になる前に吹錬初期の送酸量以下に
減少させることを特徴とする転炉吹錬方法。
Oxygen blowing is carried out at a predetermined amount of oxygen supply, and when decarburization progresses and the carbon concentration decreases to a predetermined level, the amount of oxygen supply is increased. A converter blowing method characterized by reducing the amount of acid to below.
JP24901286A 1986-10-20 1986-10-20 Refining method by blowing in converter Pending JPS63103017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24901286A JPS63103017A (en) 1986-10-20 1986-10-20 Refining method by blowing in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24901286A JPS63103017A (en) 1986-10-20 1986-10-20 Refining method by blowing in converter

Publications (1)

Publication Number Publication Date
JPS63103017A true JPS63103017A (en) 1988-05-07

Family

ID=17186694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24901286A Pending JPS63103017A (en) 1986-10-20 1986-10-20 Refining method by blowing in converter

Country Status (1)

Country Link
JP (1) JPS63103017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786151B1 (en) * 2002-12-19 2007-12-18 가부시키가이샤 제이텍트 Ball bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786151B1 (en) * 2002-12-19 2007-12-18 가부시키가이샤 제이텍트 Ball bearing

Similar Documents

Publication Publication Date Title
US4280838A (en) Production of carbon steel and low-alloy steel with bottom blowing basic oxygen furnace
JPS6150122B2 (en)
JP3345677B2 (en) Hot metal dephosphorization method
JPS63103017A (en) Refining method by blowing in converter
JPH09165615A (en) Denitrifying method for molten metal
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH0355538B2 (en)
JP3577365B2 (en) Hot metal pretreatment method
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JPH02166256A (en) Method for refining medium-or low-carbon ferromanganese
JP4026447B2 (en) Method for producing low phosphorus hot metal
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JP3718263B2 (en) Hot metal pretreatment method
JPS62116752A (en) Manufacture of low-or medium-carbon ferroalloy
JPH0813016A (en) Method for dephosphorizing and desulfurizing molten iron
JPH10102120A (en) Steelmaking method
JPH0215602B2 (en)
JP3067591B2 (en) Hot metal desulfurization method
JPS63206446A (en) Production of middle-and low-carbon ferromanganese
JPH0673426A (en) Method for decarburizing molten chromium-containing iron
JPH03120307A (en) Steelmaking method
JPH03100140A (en) Method for producing medium or low carbon ferro-manganese
JPH0136546B2 (en)
JPH0978119A (en) Method for denitrification of molten metal and flux for denitrification
JPH0112809B2 (en)