JPH0112809B2 - - Google Patents

Info

Publication number
JPH0112809B2
JPH0112809B2 JP60249668A JP24966885A JPH0112809B2 JP H0112809 B2 JPH0112809 B2 JP H0112809B2 JP 60249668 A JP60249668 A JP 60249668A JP 24966885 A JP24966885 A JP 24966885A JP H0112809 B2 JPH0112809 B2 JP H0112809B2
Authority
JP
Japan
Prior art keywords
desiliconization
flux
hot metal
dephosphorization
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60249668A
Other languages
Japanese (ja)
Other versions
JPS62109912A (en
Inventor
Matsuhide Aoki
Kiminori Hajika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60249668A priority Critical patent/JPS62109912A/en
Publication of JPS62109912A publication Critical patent/JPS62109912A/en
Publication of JPH0112809B2 publication Critical patent/JPH0112809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、実質的に予備処理の施されておらな
い溶銑(未脱珪溶銑及び軽脱珪溶銑を含む:以下
同じ)を対象として利用される脱珪・脱燐処理法
に関し、殊に脱珪・脱燐反応を短時間内に効率良
く遂行することのできる方法に関するものであ
る。 [従来の技術] 溶銑の予備処理は脱珪・脱燐・脱硫を主目的と
して行なわれるものであり、この様な予備処理の
実施によつて転炉装入前にSi,P,Sの主要不純
物を除去し、転炉では専ら脱炭とそれに伴う溶鋼
温度の上昇を行なわせるシステムが完成されつつ
ある。 ところで近年では高炉鋳床脱珪法に関する改良
研究が進み、出銑樋からの出銑過程で脱珪を行な
つた後予備処理炉で脱燐、脱硫を行なう方法が汎
用されているが、この様な高炉鋳床樋脱珪を実施
すると鋳床樋の損耗がかなり著しくなり、その保
全、管理に相当の手数と費用を要する他、有価元
素(FeやMn)のロスや溶銑温度の低下も無視で
きない量になる。 本発明はこうした状況のもとで、実質的に予備
処理の行なわれておらない溶銑(軽度に脱珪した
場合を含む、以下同じ)を対象とし、高炉鋳床樋
脱珪を行なうことなく予備処理炉で脱珪・脱燐を
行なう方法において、予備処理炉における処理効
率を高めることのできる方法を提供しようとする
ものである。 予備処理炉で脱珪・脱燐を行なう方法として
は、例えば特開昭58−16006号に開示されている
如く、CaO、酸化鉄、媒溶剤(必要により反応促
進剤)からなるフラツクス粉末をキヤリヤガスに
よつて溶銑深部へ吹込み(以下単にインジエクシ
ヨンと呼ぶ)、酸素上吹きを併用して脱珪・脱燐
を促進させる方法があり、更に引続いて脱硫処理
を行なうこともできる。 [発明が解決しようとする問題点] ところが上記方法で用いられるフラツクスは全
て粉状のものであり、且つこれを全てインジエク
シヨン法によつて供給している為、フラツクスの
製造コスト自体が高くつくばかりか、特に予備脱
珪処理の行なわれていない高珪素量の溶銑に適用
するときはスラグ塩基度を調整することの必要か
らかなり大量のフラツクスを投入しなければなら
ず、益々コスト高を招くという問題が内包されて
いる。又大量のフラツクスをインジエクシヨンし
ようとすれば全処理時間の長大化は理論的にも避
け難いところであり、またそれに伴つて溶銑中の
脱炭が予定以上に進行し、転炉操業における昇熱
効果が減少し、転炉での熱補償に苦慮しなければ
ならないという新たな問題が派生してくる。 他方溶銑中の脱珪反応と脱燐反応には反応機構
のうえでかなりの相違があり、特に脱珪反応はそ
の初期段階で酸素供給律速で急速に進行すること
が確認されており、また脱燐反応については溶銑
中のSi量があるレベルまで(約0.10%)減少した
後、溶銑中の燐が溶銑表面の脱燐フラツクスまた
は湯中を浮上しつつある脱燐フラツクスに反応捕
捉され反応速度が上昇することも確認されてい
る。ところが前述の方法を含めて予備処理炉を用
いる従来の脱珪、脱燐法では、上記の様な脱珪・
脱燐機構の違いを十分に考慮した処理法が採用さ
れているとは言えず、その為脱珪・脱燐に長時間
を要したり(ひいては溶銑温度の低下或はCや
Mn等の減少を招く)、多量のフラツクスを消費
するといつた問題を生じている。本発明はこうし
た事情に着目してなされたものであつて、実質的
に脱珪処理の行なわれていない高Si量の溶銑に適
用した場合でも上述の如き不都合が生じず、フラ
ツクス総使用量を減少して低コスト化に寄与し、
また脱珪・脱燐に要する全処理時間の短縮や脱炭
の抑制等を達成することのできる新規な脱珪、脱
燐法の確立を目的とするものである。 [問題点を解決する為の手段] 上記の目的を達成し得た本発明とは、次の様な
要旨を有するものである。即ち実質的に脱珪処理
の施されていない溶銑(0.2%≦Si濃度≦0.5%)
を予備処理炉へ装入し、該予備処理炉内の溶銑表
面を脱燐フラツクスで覆うと共に、酸素の上吹き
と脱珪用酸素源を含む脱珪フラツクスのインジエ
クシヨンを付加することにより溶銑の脱珪・脱燐
を行なうに当たり、前記脱珪反応促進期において
は、脱珪酸素供給速度[V0(単位:Kg/溶銑1ト
ン・分)]が下記[]式の関係を満たす様に上
吹き酸素の吹付け条件及び/又は脱珪フラツクス
のインジエクシヨン条件を調整することにより脱
珪・脱燐を遂行する。 [V0]=ηs・Os+ηg・Og≧ 2[Si]0−0.2 …[] 但し[Si]0:処理前溶銑中の珪素濃度(重量
%) ηg:上吹き酸素の脱珪酸素効率(10-2%) 0.2≦ηg≦0.7 ηs:脱珪フラツクスの脱珪酸素効率(10-2
%) 0.4≦ηs≦1.0 Og:上吹き酸素供給速度(Kg/t・分) Os:脱珪フラツクスのインジエクシヨン
速度(酸素分換算値:Kg/t・分) [作用] 上記技術的手段によつて明らかにされる通り、
本発明ではフラツクスインジエクシヨンを単独に
実施するのではなく脱燐フラツクスの上部添加
(脱燐フラツクスを溶銑表面に被覆載置する技術
を言う、以下同じ)を併用した点に第1の特徴が
存在し、且つ処理開始初期の脱珪反応促進期に前
記[]式の関係を満たす様に脱珪酸素供給速度
をコントロールすることにより脱珪反応を急速に
進行せしめ、その後は酸素供給速度を低めに抑え
つつ脱燐反応を効率良く進めるところに第2の特
徴を有するものであり、こうした構成を採用する
ことによつて上述の課題を一挙に解消し得ること
になつた。 本発明で用いる上部添加用フラツクスとして最
も好ましいのはCaOを主成分とするものであり、
該CaOとしては高純度のもの(塊状石灰の如く98
%程度のもの等)や低純度のもの(転炉滓の如く
50%前後のもの等)を使用できる。後者の転炉滓
は1/3〜1/4のSiO2を含んでいるので使用量が若
干多めになるという欠点はあるが、低コスト化の
他、スラグT・Feの上昇による脱燐効率の改善
等という点では有利である。主成分として選択さ
れたCaOは脱燐材として有用な成分であり、本発
明は上部添加フラツクスによる脱燐作用の強化を
狙つている。尚CaOによる脱珪効果も平行的に発
揮されるので、本発明による溶銑予備処理効果は
脱燐のみならず脱珪においても顕著な効果を奏す
る。 しかるにCaOは高融点であり滓化性に欠けると
いう欠点があるので、スラグ滓化性改善材として
Mn鉱石や弗化カルシウム等の低融点成分が併用
される。即ち本発明で使用される上部添加フラツ
クス(脱燐フラツクス)は、CaO及びスラグ滓化
性改善材を主成分とするもので、これらの協同作
用によつて流動性の良いスラグが形成され、上吹
き酸素による酸素ポテンシヤル上昇効果とも相ま
つてスラグーメタル界面における脱燐等の各種反
応が促進される。尚脱燐反応の促進という観点か
ら判断すると、上記界面温度が低いものほど良い
結果が得られるのでミルスケールや鉄鉱石を冷却
材として上記フラツクス中に配合することも有効
であり、スラグの融点降下によるスラグーメタル
間反応の促進やスラグ中の酸素ポテンシヤル向上
等による脱燐への寄与も期待することができる。
またCaOは脱燐反応のみならず脱珪反応も促進さ
せる働きを有しているので、以下に示す脱珪フラ
ツクスのインジエクシヨンとも相まつて溶銑の脱
珪・脱燐を効果的に進めることができる。 次に脱珪フラツクスであるが、前述の如く脱珪
反応は酸素供給律速で急速に進行するところか
ら、酸素供給能の高い酸化鉄(ミルスケールや鉄
鉱石を含む、以下同じ)を主成分とするものが最
適である。脱珪フラツクスを酸化鉄のみで配合す
る場合は、CaF2の様な滓化性改善材を配合する
必要はないが、該インジエクシヨン用フラツクス
にも脱燐作用を期待する場合は該フラツクス中に
CaOを配合することもでき、この様な場合は若干
の滓化促進材を配合することが推奨される。 そころで溶銑の脱珪・脱燐時におけるSi及びP
の減少経緯を詳細に検討してみると、例えば第1
図に示す如くまず脱珪反応が急速に進みSiの殆ん
どが除去された後で脱燐反応が進んでいくという
経過を辿つており、脱燐を短時間で完了させる為
にはその前提として脱珪反応をすみやかに進めな
ければならない。 その為には、脱珪反応が当初酸素供給律速で進
行する点を考慮して、予備処理の初期段階から脱
珪フラツクスを大量にインジエクシヨンすると共
に、上吹き酸素の供給速度も高めればよいと考え
られ、事実こうした処理により脱珪はすみやかに
進行する。ところがこうした処理条件をそのまま
継続すると、脱炭、脱Mn反応が著しくなるとい
う問題が生じてくる。 そこで本発明者等はこうした問題を解消し、脱
珪を可及的短い時間で完了し得るばかりでなくそ
の後の脱燐反応も迅速に進め、且つ脱炭、脱Mn
反応等を最少限に抑制する為には、上記予備処理
を脱珪反応促進期と脱燐反応期に分けて適正な撹
拌条件を定める必要があるのではないかと考え、
前記[]式に示す脱珪酸素供給速度の概念を導
入して更に研究を進めた。その結果、処理開始初
期の脱珪反応促進期における脱珪酸素供給速度が
前記[]式の関係を満たす様に上吹き酸素の吹
付け条件及び/又は脱珪フラツクスのインジエク
シヨン条件を調整してやれば、上記の問題が見事
に解消されることをつきとめた。 即ち初期脱珪反応が酸素供給律速で進行するこ
とは先に述べた通りであるが、該促進期における
酸素消費量[O2]は下記[]によつて表わす
ことができる。 [O2]={([Si]0−[Si]1)×1000 ×(1/100)}×(M02/Msi) ={([Si]0−[Si]1)×10} ×(32/28.1) =11.4([Si]0−[Si]1) [Kg/溶銑1トン:以下同じ]…[] 但し[Si]0:溶銑中の初期Si量(重量%) [Si]1:脱珪反応促進期末期における溶銑
中のSi量(重量%) M02:O2の分子量 Msi:Siの分子量 脱珪反応促進期から脱燐反応期に移行するとき
における溶銑中のSi量を0.10重量%とすると(こ
の程度のSi量まで脱珪が進んだ時点から脱燐反応
が急速に進行しはじめる)、上記[]式より下
記[]式が導かれる。 [O2]=11.4([Si]0−0.10) =11.4[Si]0−1.14 …[] 脱珪反応促進期における脱珪速度は略一定であ
るから、該脱珪反応促進期を5分以内で完結させ
る為の脱珪酸素供給速度[V0]を上記[]式
を基にして求めると、下記[]式が成立する。 [V0]>1/5(11.4[Si]0−1.14) >(2・[Si]0−0.2) …[] 上記脱珪酸素供給速度[V0]とは、上吹き酸
素及び脱珪フラツクス中の酸素源から供給される
酸素のうち脱珪反応のみに消費される酸素供給速
度(溶銑中のC,P,Fe,Mn等の酸化反応に消
費される酸素を除いた値)を意味しており、脱珪
反応に有効に消費される酸素の比率は、上吹酸素
及びインジエクシヨンされる脱珪フラツクスの場
合で相当異なる。しかも上記比率は上吹酸素の上
吹き条件、脱珪フラツクスの種類やインジエクシ
ヨン条件等によつても違つてくる。そこで本発明
ではこの様な変動要因を加味して、上吹き酸素か
らの脱珪酸素供給速度Ogと脱珪フラツクスから
の脱珪酸素供給速度(酸素換算値)Osに夫々係
数ηg,ηsを乗じ、それらの総和が上記[]式の
関係を満たす様に前記[]式の要件を設定して
いる。 尚上記係数ηgは上吹き酸素の脱珪酸素効率
(10-2%)を表わし、通常の脱珪・脱燐処理条件
のもとでは0.1≦ηg≦0.5の範囲に収まることを確
認しており、また係数ηsはインジエクシヨンされ
る脱珪フラツクスから供給される酸素源の脱珪酸
素効率(10-2%)を表わし、通常の脱珪・脱燐処
理条件のもとでは0.2≦ηs≦0.9の範囲に収まるこ
とを確認している。 この様に本発明では、脱珪反応促進期における
脱珪酸素供給速度[V0]を適正に設定すること
によつて、脱珪反応を迅速に進めることができ、
脱燐反応期への移行時期を早めることができる。
尚本発明でいう脱珪反応促進期とは、上記説明か
らも明らかな様に処理開始初期においてSi量が急
激に減少する時期を言うが、一応の目安としては
Si濃度が0.10%以下にまで低減するまでの期間
(処理時間にすると最初の3〜5分間)と考えれ
ばよい。 次に脱燐反応期については、滓化した上部フラ
ツクスと溶銑の界面における脱燐反応が主体とな
り、該界面反応を阻害しない限度で溶銑下層部の
P成分を如何にうまく湯面まで移動させるかとい
うことが脱燐反応を進めるうえで最も重要なポイ
ントとなる。換言すると該脱燐反応期において
は、溶銑に適度の撹拌力を作用させておきさえす
れば、脱燐フラツクスの上部から少量の上吹き酸
素を供給するだけで脱燐反応は十分に進行するの
で、この時期の酸素供給速度は通常レベルに低減
せしめ、脱炭、脱Mn等の反応を抑えるべきであ
る。尚該脱燐に要する時間は、溶銑処理量や予備
処理炉の形状、インジエクシヨンランスのノズル
構造、上部脱燐フラツクスの成分組成や装入量、
目標P濃度等によつても若干違つてくるが、一般
的な条件の下では脱珪反応促進期の経過後7〜10
分程度を一応の目安と考えればよい。尚溶銑中の
Si量は前記脱珪反応促進期の末期にほぼ目標レベ
ルまで低減しており、脱燐反応期を通じて進行す
ることが期待される脱珪量は極く僅かであるか
ら、脱燐反応期移行は、上部フラツクスに向けて
通常レベルの上吹き酸素を吹付けるだけでも最終
脱珪・脱燐の目的を果たすことができる。但し必
要であればキヤリヤガスによつて少量の脱珪剤を
インジエクシヨンすることもできる。 [実施例] 以下に示す上部フラツクス条件を設定し、脱珪
反応促進期と脱燐反応期に分けて脱珪酸素供給速
度(脱珪フラツクス組成又は上吹き酸素条件によ
り調整)を第1表に示す如く種々変化させて未脱
珪溶銑の脱珪、脱燐処理を行ない、夫々の経時的
な成分変化を調べた。 〈上部脱燐フラツクス(全例共同一)〉 塊状生石灰:6.9Kg/t (溶銑1トン:以下同じ) Mn鉱石 :6.7Kg/t スケール :8.9Kg/t 尚上記処理時における溶銑の撹拌は、下記式に
より算出される撹拌動力値(ε〓)が、脱珪反応促
進期及び脱燐反応期を通して約550[ワツト/溶銑
1トン]となる様にキヤリヤガスの吹込み条件を
調節した。 ε〓=0.0062・Q・Tl/Ml× {ln(1+0.000968ρl・Z) +(1−T0/Tl)} 但しQ:キヤリヤガス流量(l/分) Tl:溶銑温度(〓) Ml:溶銑重量(トン) ρl:溶銑密度(gr/cm3) Z:インジエクシヨンランス浸漬深さ
(cm) T0:キヤリヤガス温度(〓)
[Industrial Field of Application] The present invention is a method for desiliconization and dephosphorization that is applied to hot metal that has not been substantially pretreated (including undesilicated hot metal and lightly desiliconized hot metal; the same applies hereinafter). The present invention relates to a treatment method, and particularly to a method that can efficiently carry out desiliconization and dephosphorization reactions within a short period of time. [Prior art] Pre-treatment of hot metal is carried out with the main purposes of desiliconization, dephosphorization, and desulfurization. A system is being perfected that removes impurities and allows the converter to exclusively decarburize and raise the temperature of the molten steel. By the way, in recent years, research has progressed to improve the desiliconization method in blast furnace casthouses, and a method in which desiliconization is performed during the tapping process from the tap runner and then dephosphorization and desulfurization in the pretreatment furnace has become widely used. When carrying out desiliconization of the blast furnace cast bed gutter, the wear and tear of the cast bed gutter becomes significant, requiring considerable effort and expense to maintain and manage it, as well as loss of valuable elements (Fe and Mn) and a drop in hot metal temperature. It becomes an amount that cannot be ignored. Under these circumstances, the present invention targets hot metal that has not been substantially subjected to pretreatment (including cases where it has been lightly desiliconized; the same applies hereinafter), and the present invention aims to provide hot metal that has not been subjected to any preliminary treatment (including cases where it has been lightly desiliconized; the same shall apply hereinafter). The present invention aims to provide a method that can improve the processing efficiency in a pretreatment furnace in a method for desiliconization and dephosphorization in a treatment furnace. As a method for desiliconization and dephosphorization in a pretreatment furnace, for example, as disclosed in JP-A-58-16006, a flux powder consisting of CaO, iron oxide, and a solvent (reaction accelerator if necessary) is heated in a carrier gas. There is a method of promoting desiliconization and dephosphorization using a combination of blowing into the deep part of hot metal (hereinafter simply referred to as injection) and top blowing with oxygen, and it is also possible to perform desulfurization treatment subsequently. [Problems to be Solved by the Invention] However, the flux used in the above method is all in powder form, and all of this is supplied by the injection method, so the manufacturing cost of the flux itself is high. In addition, especially when applied to hot metal with a high silicon content that has not been subjected to preliminary desiliconization treatment, a considerably large amount of flux must be input due to the need to adjust the slag basicity, which further increases costs. There is a problem involved. In addition, if a large amount of flux is to be injected, it is theoretically unavoidable that the total treatment time will increase, and as a result, decarburization in the hot metal will proceed faster than planned, and the heat-raising effect during converter operation will increase. This creates a new problem of having to struggle with heat compensation in the converter. On the other hand, there is a considerable difference in the reaction mechanism between the desiliconization reaction and the dephosphorization reaction in hot metal, and it has been confirmed that the desiliconization reaction in particular progresses rapidly at the initial stage, determined by the rate of oxygen supply. Regarding the phosphorus reaction, after the amount of Si in the hot metal decreases to a certain level (approximately 0.10%), the phosphorus in the hot metal is captured by the dephosphorization flux on the surface of the hot metal or by the dephosphorization flux floating in the hot metal, and the reaction rate increases. It has also been confirmed that there is an increase in However, in conventional desiliconization and dephosphorization methods that use a pretreatment furnace, including the above-mentioned method, the desiliconization and dephosphorization methods described above
It cannot be said that treatment methods are adopted that fully take into account the differences in the dephosphorization mechanism, and as a result, it takes a long time to desiliconize and dephosphorize (as a result, the hot metal temperature decreases or C and
(resulting in a decrease in Mn, etc.) and consuming a large amount of flux. The present invention has been made with attention to these circumstances, and even when applied to hot metal with a high Si content that has not been substantially subjected to desiliconization treatment, the above-mentioned disadvantages do not occur, and the total amount of flux used can be reduced. This reduces costs and contributes to lower costs.
It also aims to establish a new desiliconization and dephosphorization method that can shorten the total processing time required for desiliconization and dephosphorization and suppress decarburization. [Means for Solving the Problems] The present invention that achieves the above object has the following gist. In other words, hot metal that has not been substantially subjected to desiliconization treatment (0.2%≦Si concentration≦0.5%)
The hot metal is charged into a pretreatment furnace, and the surface of the hot metal in the pretreatment furnace is covered with dephosphorization flux, and the hot metal is dephosphorized by adding oxygen top-blowing and injection of desiliconization flux containing an oxygen source for desiliconization. In carrying out desiliconization/dephosphorization, during the desiliconization reaction promotion period, top blowing is performed so that the desiliconization oxygen supply rate [V 0 (unit: Kg/1 ton/min of hot metal)] satisfies the following equation [ ]. Desiliconization and dephosphorization are carried out by adjusting the oxygen blowing conditions and/or the injection conditions of the desiliconizing flux. [V 0 ] = η s・O s + η g・O g ≧ 2 [Si] 0 −0.2 … [] However, [Si] 0 : Silicon concentration in hot metal before treatment (wt%) η g : Top-blown oxygen Desiliconizing oxygen efficiency (10 -2 %) 0.2≦η g ≦0.7 η s : Desiliconizing oxygen efficiency of desiliconizing flux (10 -2
%) 0.4≦η s ≦1.0 O g : Top-blown oxygen supply rate (Kg/t・min) O s : Injection rate of desiliconization flux (oxygen content equivalent value: Kg/t・min) [Effect] The above technical As revealed by the means,
The first feature of the present invention is that the flux injection is not carried out alone, but is combined with the top addition of dephosphorizing flux (a technique of coating and placing dephosphorizing flux on the surface of hot metal; the same applies hereinafter). exists, and the desiliconization reaction is made to proceed rapidly by controlling the desiliconization oxygen supply rate so as to satisfy the relationship of the above formula [] during the desiliconization reaction acceleration period at the beginning of the process, and thereafter the oxygen supply rate is The second feature is that the dephosphorization reaction can be carried out efficiently while being suppressed to a low level, and by adopting such a configuration, the above-mentioned problems can be solved at once. The most preferable flux for top addition used in the present invention is one whose main component is CaO,
The CaO is of high purity (like lump lime 98
%) and low-purity products (such as converter slag).
(approximately 50%, etc.) can be used. The latter converter slag contains 1/3 to 1/4 SiO 2 , so it has the disadvantage that the amount used is slightly higher, but in addition to lower cost, it improves dephosphorization efficiency due to the increase in slag T and Fe. This is advantageous in terms of improving the CaO selected as the main component is a useful component as a dephosphorizing agent, and the present invention aims at strengthening the dephosphorizing effect by adding flux at the top. Incidentally, since the desiliconization effect by CaO is also exhibited in parallel, the hot metal pretreatment effect according to the present invention has a remarkable effect not only in dephosphorization but also in desiliconization. However, CaO has the disadvantage of having a high melting point and lack of slag forming property, so it is not used as a material for improving slag forming property.
Low melting point components such as Mn ore and calcium fluoride are used together. That is, the flux added to the top (dephosphorization flux) used in the present invention is mainly composed of CaO and a slag slag improving material, and the cooperative action of these forms a highly fluid slag, Coupled with the effect of increasing oxygen potential due to blown oxygen, various reactions such as dephosphorization at the slag-metal interface are promoted. Judging from the viewpoint of promoting the dephosphorization reaction, the lower the interfacial temperature mentioned above, the better the results, so it is also effective to mix mill scale or iron ore into the above flux as a coolant, which lowers the melting point of the slag. It can also be expected to contribute to dephosphorization by promoting the reaction between slag metals and improving the oxygen potential in the slag.
Moreover, since CaO has the function of promoting not only the dephosphorization reaction but also the desiliconization reaction, it can effectively proceed with the desiliconization and dephosphorization of hot metal in conjunction with the injection of desiliconization flux described below. Next is the desiliconization flux.As mentioned above, the desiliconization reaction progresses rapidly depending on the rate of oxygen supply, so the main component is iron oxide (including mill scale and iron ore, the same applies hereinafter), which has a high oxygen supply ability. The one that does is the best. When the desiliconization flux is formulated with only iron oxide, it is not necessary to incorporate a slag-improving agent such as CaF2 , but if the flux for injecting is expected to have a dephosphorizing effect, it may be necessary to add it to the flux.
CaO can also be blended, and in such cases, it is recommended to blend some slag accelerator. Si and P during desiliconization and dephosphorization of hot metal
If we examine the details of the decline in
As shown in the figure, the desiliconization reaction first progresses rapidly and most of the Si is removed, and then the dephosphorization reaction progresses. Therefore, the desiliconization reaction must proceed promptly. To achieve this, considering that the desiliconization reaction initially progresses at a rate limited by oxygen supply, we believe that it would be best to inject a large amount of desiliconization flux from the initial stage of the pretreatment and to increase the top-blown oxygen supply rate. In fact, desiliconization progresses rapidly through such treatment. However, if these treatment conditions are continued as they are, a problem arises in that the decarburization and deMn reactions become significant. Therefore, the inventors of the present invention solved these problems, and not only completed desiliconization in the shortest possible time, but also rapidly proceeded with the subsequent dephosphorization reaction, and also achieved decarburization and deMn removal.
In order to suppress reactions to the minimum, we thought that it would be necessary to separate the above pretreatment into a desiliconization reaction promotion period and a dephosphorization reaction period and determine appropriate stirring conditions.
Further research was carried out by introducing the concept of desiliconization oxygen supply rate shown in the above formula [ ]. As a result, if the blowing conditions of top-blown oxygen and/or the injection conditions of the desiliconizing flux are adjusted so that the desiliconizing oxygen supply rate during the desiliconizing reaction promotion period at the beginning of the process satisfies the relationship of the above formula [], It was found that the above problem was successfully solved. That is, as mentioned above, the initial desiliconization reaction proceeds with the rate of oxygen supply, and the oxygen consumption [O 2 ] in the promotion period can be expressed by the following [ ]. [O 2 ] = {([Si] 0 − [Si] 1 ) × 1000 × (1/100)} × (M 02 /M si ) = {([Si] 0 − [Si] 1 ) × 10} × (32/28.1) = 11.4 ([Si] 0 - [Si] 1 ) [Kg/1 ton of hot metal: same below]... [] However, [Si] 0 : Initial amount of Si in hot metal (wt%) [Si ] 1 : Amount of Si in the hot metal (wt%) at the end of the desiliconization reaction acceleration stage M 02 : Molecular weight of O 2 M si : Molecular weight of Si If the amount of Si is 0.10% by weight (the dephosphorization reaction starts to progress rapidly when desiliconization reaches this amount of Si), the following equation [ ] is derived from the above equation [ ]. [O 2 ] = 11.4 ([Si] 0 −0.10) = 11.4 [Si] 0 −1.14 …[] Since the desiliconization rate during the desiliconization reaction promotion period is approximately constant, the desiliconization reaction promotion period was set to 5 minutes. When the desiliconization oxygen supply rate [V 0 ] to be completed within the above equation is determined based on the above equation, the following equation is established. [V 0 ] > 1/5 (11.4 [Si] 0 −1.14) > (2・[Si] 0 −0.2) …[] The above desiliconization oxygen supply rate [V 0 ] refers to the top-blown oxygen and desiliconization Of the oxygen supplied from the oxygen source in the flux, it is the oxygen supply rate that is consumed only for the desiliconization reaction (a value excluding the oxygen consumed for the oxidation reaction of C, P, Fe, Mn, etc. in the hot metal). The proportion of oxygen effectively consumed in the desiliconization reaction differs considerably between top-blown oxygen and injected desiliconization flux. Moreover, the above ratio also varies depending on the top-blowing conditions of top-blowing oxygen, the type of desiliconizing flux, injection conditions, etc. Therefore , in the present invention, in consideration of such fluctuation factors, coefficients η g , The requirements of the above formula [] are set so that the sum of the values multiplied by η s satisfies the relationship of the above formula []. The above coefficient η g represents the desiliconization oxygen efficiency (10 -2 %) of top-blown oxygen, and it was confirmed that it falls within the range of 0.1≦η g ≦0.5 under normal desiliconization and dephosphorization processing conditions. The coefficient η s represents the desiliconization oxygen efficiency (10 -2 %) of the oxygen source supplied from the injected desiliconization flux, and under normal desiliconization and dephosphorization treatment conditions, 0.2≦η It has been confirmed that s is within the range of 0.9. As described above, in the present invention, by appropriately setting the desiliconizing oxygen supply rate [V 0 ] during the desiliconizing reaction promotion period, the desiliconizing reaction can be rapidly advanced.
The transition to the dephosphorization reaction period can be accelerated.
The desiliconization reaction acceleration period in the present invention refers to the period when the amount of Si decreases rapidly at the beginning of the process, as is clear from the above explanation, but as a rough guide,
This can be considered as the period until the Si concentration is reduced to 0.10% or less (the first 3 to 5 minutes in terms of processing time). Next, regarding the dephosphorization reaction period, the dephosphorization reaction takes place mainly at the interface between the upper flux that has turned into slag and the hot metal, and the question is how to effectively move the P component in the lower layer of the hot metal to the hot metal surface without inhibiting the interfacial reaction. This is the most important point in proceeding with the dephosphorization reaction. In other words, during the dephosphorization reaction period, as long as an appropriate stirring force is applied to the hot metal, the dephosphorization reaction can proceed sufficiently by supplying a small amount of top-blown oxygen from the top of the dephosphorization flux. During this period, the oxygen supply rate should be reduced to normal levels to suppress reactions such as decarburization and deMn removal. The time required for dephosphorization depends on the amount of hot metal processed, the shape of the pretreatment furnace, the nozzle structure of the injection lance, the composition and charging amount of the upper dephosphorization flux,
Although it differs slightly depending on the target P concentration, etc., under general conditions, 7 to 10 hours after the desiliconization reaction promotion period has elapsed.
You can consider about a minute as a rough guideline. still in hot metal
The amount of Si has decreased to almost the target level at the end of the desiliconization reaction acceleration period, and the amount of desiliconization that is expected to proceed throughout the dephosphorization reaction period is extremely small, so the transition to the dephosphorization reaction period is The purpose of final desiliconization and dephosphorization can be achieved by simply blowing top-blown oxygen at a normal level toward the upper flux. However, if necessary, a small amount of desiliconizing agent can be injected with a carrier gas. [Example] The upper flux conditions shown below were set, and the desiliconization oxygen supply rate (adjusted by the desiliconization flux composition or top-blown oxygen conditions) was divided into the desiliconization reaction acceleration period and the dephosphorization reaction period as shown in Table 1. As shown, undesilicated hot metal was subjected to desiliconization and dephosphorization treatments with various changes, and changes in each component over time were investigated. <Upper dephosphorization flux (all cases jointly)> Massive quicklime: 6.9Kg/t (1 ton of hot metal: same below) Mn ore: 6.7Kg/t Scale: 8.9Kg/t In addition, stirring of hot metal during the above treatment is as follows: The conditions for blowing the carrier gas were adjusted so that the stirring power value (ε〓) calculated by the following formula was approximately 550 [Watt/1 ton of hot metal] throughout the desiliconization reaction acceleration period and the dephosphorization reaction period. ε〓=0.0062・Q・Tl/Ml× {ln(1+0.000968ρl・Z) +(1−T 0 /Tl)} However, Q: Carrier gas flow rate (l/min) Tl: Hot metal temperature (〓) Ml: Hot metal Weight (tons) ρl: Hot metal density (gr/ cm3 ) Z: Injection lance immersion depth (cm) T0 : Carrier gas temperature (〓)

【表】【table】

【表】 結果は第2表に示す通りであり、次の様に考察
することができる。 従来法では脱珪反応促進期及び脱燐反応期を
通して上吹き酸素及び脱珪フラツクス双方から
の脱珪酸素供給速度を一定としている為、脱珪
反応促進期における脱珪速度が遅く、その影響
を受けて脱燐反応期の開始が遅延し、脱燐を目
標レベルまで進めるのに長時間を要している。 これに対し実施例1〜5では何れも脱珪反応
促進期における脱珪酸素供給速度[V0]を高
めた例を示している。 即ち実施例1では脱珪反応促進期における上吹
き酸素の供給速度を高めに設定した例、実施例2
では脱珪反応促進期における上吹きランスの高さ
を低くして脱珪酸素供給速度を高めた例、実施例
3,4では脱珪反応促進期にインジエクシヨンさ
れる脱珪フラツクス中のスケール量を増大して脱
珪酸素供給速度を高めた例、実施例5は脱珪反応
促進期における上吹き酸素供給速度を高めると共
に脱珪フラツクス中のスケール量を増大して脱珪
酸素供給速度を高めた例であり、何れの場合も、
3分間の脱珪反応促進期に脱珪反応が効率良く進
行した結果、その後7分間の脱燐反応期間中に燐
含有はほぼ目標レベルまで低下している。殊に脱
珪反応促進期における脱珪酸素供給速度[V0
を、脱珪フラツクス中のスケール量と上吹き酸素
供給速度の両面から高めた実施例5では、脱珪反
応促進期における脱珪速度が非常に早く、最終の
燐濃度も非常に低い値が得られている。 これに対し従来例では、処理時間が実施例と同
じである10分後の燐濃度は0.032%と非常に高く、
処理時間を12分に延長した場合でも燐濃度は実施
例レベルまで低下しておらず、本発明との差異が
明確に表われている。しかも脱燐反応期における
酸素供給速度は低めに抑えているので脱炭反応等
も従来法と同程度に抑えられている。
[Table] The results are shown in Table 2, and can be considered as follows. In the conventional method, the desiliconization oxygen supply rate from both the top-blown oxygen and the desiliconization flux is kept constant throughout the desiliconization reaction promotion period and the desiliconization reaction period, so the desiliconization rate during the desiliconization reaction promotion period is slow, and the effects of this are As a result, the start of the dephosphorization reaction phase is delayed, and it takes a long time to progress the dephosphorization to the target level. On the other hand, Examples 1 to 5 all show examples in which the desiliconization oxygen supply rate [V 0 ] during the desiliconization reaction promotion period is increased. That is, in Example 1, the supply rate of top-blown oxygen during the desiliconization reaction promotion period was set high, and in Example 2,
In this example, the height of the top blowing lance is lowered during the desiliconization reaction promotion period to increase the desiliconization oxygen supply rate, and in Examples 3 and 4, the amount of scale in the desiliconization flux injected during the desiliconization reaction promotion period is Example 5 is an example in which the desiliconizing oxygen supply rate is increased by increasing the desiliconizing oxygen supply rate, in which the top-blown oxygen supply rate during the desiliconizing reaction promotion period is increased and the amount of scale in the desiliconizing flux is increased to increase the desiliconizing oxygen supply rate. For example, in any case,
As a result of the desiliconization reaction proceeding efficiently during the desiliconization reaction acceleration period of 3 minutes, the phosphorus content decreased to almost the target level during the subsequent seven minutes of desiliconization reaction period. In particular, the desiliconizing oxygen supply rate during the desiliconizing reaction promotion period [V 0 ]
In Example 5, in which the amount of scale in the desiliconization flux was increased and the top-blown oxygen supply rate was increased, the desiliconization rate during the desiliconization reaction acceleration period was very high, and the final phosphorus concentration was also very low. It is being On the other hand, in the conventional example, the phosphorus concentration after 10 minutes, which is the same as in the example, was extremely high at 0.032%.
Even when the treatment time was extended to 12 minutes, the phosphorus concentration did not decrease to the level of the example, clearly showing the difference from the present invention. Moreover, since the oxygen supply rate during the dephosphorization reaction period is kept low, decarburization reactions and the like are suppressed to the same level as in conventional methods.

【表】 [発明の効果] 本発明は以上の様に構成されており、特に脱珪
反応促進期における酸素供給速度を高めに設定す
ることによつて、インジエクシヨン用脱珪フラツ
クス、上部脱燐フラツクス及び上吹き酸素による
各脱珪、脱燐効果が最大限有効に発揮され、短時
間で高い脱珪、脱燐効果を得ることができる。ま
た処理時間の短縮に伴つて脱炭、脱Mn反応等が
抑制される他、溶銑温度の降下も最少限に抑える
ことができる等、多くの派生的効果も亨受するこ
とができる。
[Table] [Effects of the Invention] The present invention is constructed as described above, and by setting the oxygen supply rate high especially during the desiliconization reaction promotion period, the desiliconization flux for injecting and the upper dephosphorization flux The desiliconization and dephosphorization effects of top-blown oxygen are maximized, and high desiliconization and dephosphorization effects can be obtained in a short period of time. Furthermore, as the treatment time is shortened, decarburization and deMn reactions are suppressed, and a drop in hot metal temperature can also be suppressed to a minimum, and many other secondary effects can also be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は脱珪・脱燐時におけるSi及びPの減少
経緯を示すグラフである。
FIG. 1 is a graph showing how Si and P decrease during desiliconization and dephosphorization.

Claims (1)

【特許請求の範囲】 1 実質的に脱珪処理の施されていない溶銑を予
備処理炉へ装入し、該予備処理炉内の溶銑表面を
脱燐フラツクスで覆うと共に、酸素の上吹きと脱
珪用酸素源を含む脱珪フラツクスのインジエクシ
ヨンを付加することにより溶銑の脱珪・脱燐を行
なうに当たり、前記脱珪反応促進期においては、
脱珪酸素供給速度[V0(単位:Kg/溶銑1トン・
分)]が下記[]式の関係を満たす様に上吹き
酸素の吹付け条件及び/又は脱珪フラツクスのイ
ンジエクシヨン条件を調整することを特徴とする
溶銑の脱珪・脱燐方法。 [V0]=ηs・Os+ηg・Og≧ 2[Si]0−0.2 …[] 但し[Si]0:処理前溶銑中の珪素濃度(重量
%) ηg:上吹き酸素の脱珪酸素効率(10-2%) 0.2≦ηg≦0.7 ηs:脱珪フラツクスの脱珪酸素効率(10-2
%) 0.4≦ηs≦1.0 Og:上吹き酸素供給速度(Kg/t・分) Os:脱珪フラツクスのインジエクシヨン
速度(酸素分換算値:Kg/t・分)
[Scope of Claims] 1. Hot metal that has not been substantially subjected to desiliconization treatment is charged into a pretreatment furnace, and the surface of the hot metal in the pretreatment furnace is covered with dephosphorization flux, and oxygen is top-blown and desiliconized. When desiliconizing and dephosphorizing hot metal by adding an injection of desiliconizing flux containing an oxygen source for silicon, in the desiliconizing reaction acceleration stage,
Desiliconization oxygen supply rate [V 0 (Unit: Kg/1 ton of hot metal
A method for desiliconization and dephosphorization of hot metal, characterized in that the conditions for blowing top-blown oxygen and/or the injection conditions for desiliconization flux are adjusted so that the following equation (min)] satisfies the following equation: [V 0 ] = η s・O s + η g・O g ≧ 2 [Si] 0 −0.2 …[] However, [Si] 0 : Silicon concentration in hot metal before treatment (wt%) η g : Top-blown oxygen Desiliconizing oxygen efficiency (10 -2 %) 0.2≦η g ≦0.7 η s : Desiliconizing oxygen efficiency of desiliconizing flux (10 -2
%) 0.4≦η s ≦1.0 O g : Top-blown oxygen supply rate (Kg/t・min) O s : Injection rate of desiliconization flux (oxygen content equivalent value: Kg/t・min)
JP60249668A 1985-11-06 1985-11-06 Desiliconizing and dephosphorizing method for molten iron Granted JPS62109912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60249668A JPS62109912A (en) 1985-11-06 1985-11-06 Desiliconizing and dephosphorizing method for molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60249668A JPS62109912A (en) 1985-11-06 1985-11-06 Desiliconizing and dephosphorizing method for molten iron

Publications (2)

Publication Number Publication Date
JPS62109912A JPS62109912A (en) 1987-05-21
JPH0112809B2 true JPH0112809B2 (en) 1989-03-02

Family

ID=17196432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60249668A Granted JPS62109912A (en) 1985-11-06 1985-11-06 Desiliconizing and dephosphorizing method for molten iron

Country Status (1)

Country Link
JP (1) JPS62109912A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660339B2 (en) * 1989-01-30 1994-08-10 新日本製鐵株式会社 Method of desiliconizing and dephosphorizing hot metal

Also Published As

Publication number Publication date
JPS62109912A (en) 1987-05-21

Similar Documents

Publication Publication Date Title
JP3239197B2 (en) Converter steelmaking method
JP3332010B2 (en) Manufacturing method of low phosphorus hot metal
JP3345677B2 (en) Hot metal dephosphorization method
JPH0112810B2 (en)
JPS6348921B2 (en)
JPH0112809B2 (en)
JPH11323420A (en) Pretreating method for molten iron
JP2001049320A (en) Production of iron and steel using high phosphorus ore as raw material
JP3505791B2 (en) Dephosphorization and desulfurization of hot metal
JPH07316618A (en) Method for pre-refining smelting reduction molten iron
JPS62170409A (en) Preliminary treatment of molten iron
JP2000212623A (en) Dephosphorization of molten iron low in lime
JP4026447B2 (en) Method for producing low phosphorus hot metal
JP3823623B2 (en) Hot metal refining method
JPS636606B2 (en)
JPS62109914A (en) Pretreatment of molten pig iron
JPH068454B2 (en) Dephosphorization / desulfurization method of molten iron alloy containing chromium
JPH11100608A (en) Method for desiliconizing and desulfurizing molten iron
JPH0512406B2 (en)
JPS62109916A (en) Pretreatment of molten pig iron
JPS59104412A (en) Desiliconization and dephosphorization of molten iron
JP2000290716A (en) Method for refining molten iron
JPS58181815A (en) Preliminary desiliconizing method of molten pig iron in converter
JP2002194414A (en) Method for dephosphorizing molten iron
JPH0453923B2 (en)