JPS63102163A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS63102163A
JPS63102163A JP61246144A JP24614486A JPS63102163A JP S63102163 A JPS63102163 A JP S63102163A JP 61246144 A JP61246144 A JP 61246144A JP 24614486 A JP24614486 A JP 24614486A JP S63102163 A JPS63102163 A JP S63102163A
Authority
JP
Japan
Prior art keywords
battery
organic electrolyte
iron disulfide
ratio
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61246144A
Other languages
Japanese (ja)
Inventor
Shigeru Oishi
大石 繁
Masayuki Nagamine
政幸 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61246144A priority Critical patent/JPS63102163A/en
Publication of JPS63102163A publication Critical patent/JPS63102163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To retard the total height variation of a battery attendant on discharge reaction and to obtain the maximum capacity of the battery by specifying the ratio of iron disulfide filling weight to the effective volume inside the battery. CONSTITUTION:In an organic electrolyte battery, the ratio of iron disulfide filling weight to the effective volume inside the battery is specified to 0.70-1.23 mg/mul. Thereby, an iron disulfide-lithium organic electrolyte battery in which the total height variation attendant on discharge is retarded and the capacity is maximized can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種電子機器の電源として使用される有機電
解質電池に関するもので、特に正極活物質に二硫化鉄を
用い負極活物質に金属リチウムを用いた有機電解質電池
に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an organic electrolyte battery used as a power source for various electronic devices. The present invention relates to an organic electrolyte battery using an organic electrolyte.

〔発明の概要〕[Summary of the invention]

本発明は、正極活物質として二硫化鉄を用い、負極活物
質として金属リチウムを用いた有機電解質電池において
、 二硫化鉄の充填重量と電池内有効容積の比を0゜70−
1.23mg/μlの範囲内とすることにより、 放電反応に伴う電池の総高度化盪を抑制し、最大限の電
池容量を得ようとするものである。
The present invention provides an organic electrolyte battery using iron disulfide as a positive electrode active material and metallic lithium as a negative electrode active material, with a ratio of the filling weight of iron disulfide to the effective volume inside the battery of 0°70-
By setting the concentration within the range of 1.23 mg/μl, the total sophistication of the battery due to the discharge reaction is suppressed and the maximum battery capacity is obtained.

(従来の技術〕 正極活物質として二硫化鉄を用い、負極活物質として金
属リチウムを用いた有機電解′n電池は、二酸化マンガ
ンやフン化炭素を正極活物質として用いた有機電解質電
池に比較して単位体積当たりの電気容量が大きいこと、
また酸化銀電池やアルカリマンガン電池と放1at圧が
等しく互換性があること、等の優れた特性を有している
(Prior art) Organic electrolyte batteries that use iron disulfide as a positive electrode active material and metallic lithium as a negative electrode active material have a higher performance compared to organic electrolyte batteries that use manganese dioxide or carbon fluoride as positive electrode active materials. The electric capacity per unit volume is large,
In addition, it has excellent characteristics such as being compatible with silver oxide batteries and alkaline manganese batteries with equal discharge 1at pressure.

上記有機電解tm池は、電卓1時計、補聴器。The above organic electrolytic TM batteries are used in calculators, watches, and hearing aids.

メモリーバンクアンプ用等の多くの電子機器の電源とし
て使用されている。これらの電子機器は、その電子機器
全体をできるだけコンパクトにするため電池の寸法や電
池収納ケースを可能な限り小さり、薄く設計するのが通
常である。
It is used as a power source for many electronic devices such as memory bank amplifiers. In order to make the entire electronic device as compact as possible, these electronic devices are usually designed to have the battery size and battery storage case as small and thin as possible.

ところが上記有機電解質電池は、放電反応に伴い負極の
リチウムイオンが正極に移動し正極が膨張し電池の総高
が高くなってしまうという欠点がある。このように有a
電解′!を電池の総高が高くなると電子機器に損傷を与
えたり、電池の接触不良を招く等の問題が起きる。その
ため、電子機器に使用する有機電解質電池は、放電反応
に伴う電池の膨張をできるだけ小さく制御することが望
ましい。
However, the organic electrolyte battery described above has a drawback in that lithium ions in the negative electrode move to the positive electrode during the discharge reaction, causing the positive electrode to expand and increasing the total height of the battery. In this way there is a
electrolytic'! As the total height of the battery increases, problems such as damage to electronic equipment and poor battery contact occur. Therefore, in organic electrolyte batteries used in electronic devices, it is desirable to control the expansion of the battery due to the discharge reaction to be as small as possible.

そこで、有機を解質電池の膨張を制?11する方法の一
つとして正極の膨張量を収納するスペースを電池内に設
けることが考えられるが、これでは電気容量を減少させ
てしまい好ましくない。
So, is it possible to control the expansion of organic electrolyte batteries? One possible method for this is to provide a space within the battery to accommodate the amount of expansion of the positive electrode, but this is not preferable because it reduces the electrical capacity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように正極活物質として二硫化状を用い、負極活
物質として金属リチウムを用いた有機電解質電池は、放
電反応に伴い正極が膨張し総高が変化し、電子機器に損
傷を与える等の問題がある。
As mentioned above, in organic electrolyte batteries that use disulfide as the positive electrode active material and metallic lithium as the negative electrode active material, the positive electrode expands during the discharge reaction and the total height changes, causing damage to electronic equipment. There's a problem.

また、膨張を収納するスペースを電池内に設けた場合に
は電池容量を減少させることになり好ましくない。
Furthermore, if a space is provided within the battery to accommodate the expansion, the battery capacity will be reduced, which is not preferable.

そこで本発明は、放電反応に伴う電池の総高変化量を抑
制し、最大限の電池容量を得ようとすることを目的とす
るものである。
Therefore, an object of the present invention is to suppress the amount of change in the total height of the battery due to the discharge reaction and to obtain the maximum battery capacity.

C問題点を解決するための手段〕 各種の電子装置に使用される電池は、その装π内の限定
された空間の中に収納させなければならないため、電池
として放電に伴う電池総高増加ができるだけ少ないこと
が要求される。
Measures to Solve Problem C] Batteries used in various electronic devices must be stored in a limited space inside the device, so the overall height of the battery increases as the battery discharges. as few as possible is required.

正極活物質として二硫化状を用い、負極活物質として金
属リチウムを用いた有機電解質電池において、放電反応
に伴う電池総高増加をコントロールすることは、最も重
要な課題の一つである。
In organic electrolyte batteries that use disulfide as the positive electrode active material and metallic lithium as the negative electrode active material, one of the most important issues is to control the increase in the total height of the battery due to the discharge reaction.

そこで、正極活物質として二硫化状を用いた有機電解質
電池の放電に伴う電池の総高増加をコントロールするこ
とを鋭意研究した結果、該有機電解質電池の放電に伴う
電池の総高変化が二硫化状。
Therefore, as a result of intensive research into controlling the increase in total height of an organic electrolyte battery that occurs due to discharging of an organic electrolyte battery that uses disulfide as the positive electrode active material, we found that the change in total height of the battery that occurs due to discharge of an organic electrolyte battery that uses disulfide as the positive electrode active material condition.

の充填重量と電池有効内容積の比に対して直線的に依存
することを見出し、この発明をするに至ったものであっ
て、二硫化状の充填重量と電池的有効容積の比を0.7
0〜1.23mg/μlの範囲内とすることを特徴とす
るものである 〔作用〕 有機電解質電池において、二硫化状の充填重量と電池的
有効容積の比を0.70〜1.23■/μlの範囲内と
することによって、適切な電池総高変化量で、かつ最大
限の電気容量を有する二硫化鉄/リチウム有機電解賞電
池が得られる。
They found that it depends linearly on the ratio between the filling weight of disulfide and the effective internal volume of the battery, and this led to the invention. 7
[Function] In an organic electrolyte battery, the ratio of the disulfide filling weight to the effective battery volume is 0.70 to 1.23. By setting the amount within the range of /μl, an iron disulfide/lithium organic electrolytic battery having an appropriate amount of change in total battery height and maximum electric capacity can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照しながら説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

本発明を通用した有機電解質電池は、例えば第1図に示
すように、正極活物質を加圧成形した正極ペレット(1
)を充填した正極罐(2)に有機電解液を含有するセパ
レータ(5)を介して負極活物質である金属リチウム(
3)を充填した負極罐(4)を重ね合わせ、開口部をガ
スゲット(6)を介して密封して構成されるボタン型電
池である0本実施例においては、上記構成の有機電解質
電池は直径6゜81馬、総高2.1婁−とじた。
For example, as shown in FIG. 1, an organic electrolyte battery that can be used in the present invention is a positive electrode pellet (1
Metallic lithium (
In this example, the organic electrolyte battery with the above structure is a button-type battery constructed by stacking negative electrode cans (4) filled with 3) and sealing the opening through a gas get (6). It has a diameter of 6.81 m and a total height of 2.1 m.

上記有機g&解1に電池の正掻ベレ7)(1)は、二硫
化鉄88重量部、導電剤としてグラファイトを9重量部
、結着剤としてポリテトラフルオロエチレンを3重量部
の組成にて混合した後、加圧成形したものである。また
、正極ペレット(1)を充填する正極罐(2)はニッケ
ルメッキを施したステンレス鋼からなっている。
The above organic g&solution 1 has a composition of 88 parts by weight of iron disulfide, 9 parts by weight of graphite as a conductive agent, and 3 parts by weight of polytetrafluoroethylene as a binder. After mixing, it was press-molded. Further, a positive electrode can (2) filled with positive electrode pellets (1) is made of nickel-plated stainless steel.

一方、金属リチウム(3)は、負半I罐(4)に圧着さ
れており、また上記負極罐(4)は上記正極罐(2)と
同様にニッケルメッキを施したステンレス謂からなって
いる。
On the other hand, the metal lithium (3) is crimped to the negative half I can (4), and the negative electrode can (4) is made of nickel-plated stainless steel like the positive electrode can (2). .

上記セパレータ(5)は、ポリプロピレンからなってお
り、ガスケット(6)もポリプロピレンからなっている
。上記セパレータ(5)に含有させる有機電解液はプロ
ピレンカーボネイトと132−ジメトキシエタンとを体
積比1:lの割合で混合した溶媒に過塩素酸リチウムを
1モル/1溶解させたものを用いている。
The separator (5) is made of polypropylene, and the gasket (6) is also made of polypropylene. The organic electrolyte to be contained in the separator (5) is a mixture of propylene carbonate and 132-dimethoxyethane at a volume ratio of 1:1 in which lithium perchlorate is dissolved at 1 mole/l in a solvent. .

この電池の有効内容積は正掻罐(2)と負極側(4)と
を嵌合して得られる内容積からガスケット(6)および
セパレータ(5)の体積を引くことによって得られ、2
8.8μ!である。
The effective internal volume of this battery is obtained by subtracting the volumes of the gasket (6) and separator (5) from the internal volume obtained by fitting the positive can (2) and the negative electrode side (4).
8.8μ! It is.

このようにして得られた二硫化鉄の充填重量と電池有効
内容積の比をパラメータとして電池の総高変化量と電気
容量との関係を引き出し、適当な二硫化鉄の充填重量と
電池の有効内容積の比をt!+るためのサンプル電池を
作成した。サンプル電池は、第1表に示す王権ベレット
、金属リチウムを使用し組み立てた後、を池18高が一
定となるように加工したものである。
Using the ratio of the iron disulfide filling weight obtained in this way and the battery's effective internal volume as a parameter, the relationship between the total height change of the battery and the electrical capacity is derived, and the appropriate iron disulfide filling weight and battery's effective internal volume are determined. The ratio of internal volumes is t! I created a sample battery for the test. The sample batteries were assembled using the royal pellets shown in Table 1 and metallic lithium, and then processed so that the height of the battery 18 was constant.

第1表 上記のサンプル電池A〜サンプル電池Gを20℃で、負
部抵抗47にΩで放電した時の放電容量と放電に伴う電
池総高変化量を第2表に示す。
Table 1 Table 2 shows the discharge capacity and the amount of change in total battery height due to discharge when the above sample batteries A to G were discharged at 20 DEG C. and into the negative resistor 47 at Ω.

(以下余白) 第2表 上記第1表及び第2表の結果をもとに二硫化鉄の充填重
量と電池有効内容積の比と放電容量及び電池総高変化量
の関係を第2図に示した。なお、図中各サンプルに対応
する点を0印でプロットした曲線が二硫化鉄の充填重量
と電池有効内容積の比と放電容量の関係を示すもので、
また各サンプルの対応する点を5印でプロットした曲線
が二硫化鉄の充填重量と電池有効内容積の比と電池総高
変化量との関係を示すものである。
(Leaving space below) Table 2 Based on the results in Tables 1 and 2 above, Figure 2 shows the relationship between the filling weight of iron disulfide, the ratio of the battery's effective internal volume, the discharge capacity, and the amount of change in the total battery height. Indicated. In addition, the curve in which the points corresponding to each sample are plotted with zero marks in the figure shows the relationship between the filling weight of iron disulfide, the ratio of the battery's effective internal volume, and the discharge capacity.
Further, a curve plotting the corresponding points of each sample with 5 marks shows the relationship between the ratio of the filling weight of iron disulfide to the effective internal volume of the battery and the amount of change in the total height of the battery.

有機電解TM電池に要求される電池容量の許容値13m
At1及び電池総高変化量の許容(I 0.25 am
を勘案すると、第2図から明らかなように、適切な二硫
化鉄の充填重量と電池内容積の比は0.70〜1.23
mg/μlの範囲内に限定される。
Tolerable battery capacity required for organic electrolytic TM batteries: 13m
Tolerance of change in At1 and total battery height (I 0.25 am
Taking this into consideration, as is clear from Figure 2, the appropriate ratio of the filling weight of iron disulfide to the battery internal volume is 0.70 to 1.23.
Limited within the range of mg/μl.

二硫化鉄の充填重量と電池有効内容積の比が0゜70m
g/μ2以下の範囲では電気容量の減少が著しく、また
1、23mg/μi以上の範囲では電池総高変化量が大
きくなることがわかる。
The ratio of the filling weight of iron disulfide to the effective internal volume of the battery is 0°70m
It can be seen that in the range of g/μ2 or less, the capacitance decreases significantly, and in the range of 1.23 mg/μi or more, the amount of change in the total battery height becomes large.

なお、電池のサイズを変えて同様な測定をした場合にお
いても上述の結果と同様な結果が得られた。
Note that even when similar measurements were made with different battery sizes, results similar to those described above were obtained.

〔発明の効果〕〔Effect of the invention〕

上述の説明より明らかなように、正捲活物質として二硫
化鉄を用い、負極活物質として金属リチウムを用いた有
機電解質電池において、二硫化鉄の充填重量と電池有効
内積の比を0.70〜1.23mg/μ2の範囲内とす
ることによって、適切な電池総高変化量で、かつ最大限
の電気容量を有する有機電解質電池が得られる。
As is clear from the above explanation, in an organic electrolyte battery using iron disulfide as the positive active material and metallic lithium as the negative electrode active material, the ratio of the filling weight of iron disulfide to the effective inner volume of the battery is 0.70. By setting it within the range of ~1.23 mg/μ2, an organic electrolyte battery having an appropriate amount of change in total battery height and maximum electric capacity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は有機電解質電池の構成例を示す概略断面図であ
る。 第2図は二硫化鉄と電池有効内容積の比に対する電池総
高変化量及び放電容量の関係を示す特性図である。 1・・・正掻ペレット 2・・・王権罐 3・・・金属リチウム 4・・・負極罐 5・・・セパレータ 6・・・ガスケット 特許出願人   ソニー株式会社 代理人  弁理士  電池  晃 同   円相 榮− 第1図
FIG. 1 is a schematic cross-sectional view showing an example of the structure of an organic electrolyte battery. FIG. 2 is a characteristic diagram showing the relationship between the battery total height change and discharge capacity with respect to the ratio of iron disulfide to battery effective internal volume. 1... Positively scraped pellets 2... Wangan can 3... Metal lithium 4... Negative electrode can 5... Separator 6... Gasket Patent applicant Sony Corporation representative Patent attorney Battery Kodo Enso Sakae - Figure 1

Claims (1)

【特許請求の範囲】 正極活物質として二硫化鉄を用い、負極活物質として金
属リチウムを用いた有機電解質電池において、 二硫化鉄の充填重量と電池内有効容積の比が0.70〜
1.23mg/μlの範囲内にあることを特徴とする有
機電解質電池。
[Scope of Claims] An organic electrolyte battery using iron disulfide as a positive electrode active material and metallic lithium as a negative electrode active material, wherein the ratio between the filling weight of iron disulfide and the effective volume inside the battery is 0.70 to
An organic electrolyte battery characterized in that the electrolyte concentration is within the range of 1.23 mg/μl.
JP61246144A 1986-10-16 1986-10-16 Organic electrolyte battery Pending JPS63102163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61246144A JPS63102163A (en) 1986-10-16 1986-10-16 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61246144A JPS63102163A (en) 1986-10-16 1986-10-16 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPS63102163A true JPS63102163A (en) 1988-05-07

Family

ID=17144138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61246144A Pending JPS63102163A (en) 1986-10-16 1986-10-16 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS63102163A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514491A (en) * 1993-12-02 1996-05-07 Eveready Battery Company, Inc. Nonaqueous cell having a lithium iodide-ether electrolyte
US6218054B1 (en) 1991-08-13 2001-04-17 Eveready Battery Company, Inc. Dioxolane and dimethoxyethane electrolyte solvent system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154067A (en) * 1979-05-17 1980-12-01 Hitachi Maxell Ltd Manufacture of non-aqueous electrolyte cell
JPS57189454A (en) * 1981-05-15 1982-11-20 Hitachi Maxell Ltd Manufacture of organic electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154067A (en) * 1979-05-17 1980-12-01 Hitachi Maxell Ltd Manufacture of non-aqueous electrolyte cell
JPS57189454A (en) * 1981-05-15 1982-11-20 Hitachi Maxell Ltd Manufacture of organic electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218054B1 (en) 1991-08-13 2001-04-17 Eveready Battery Company, Inc. Dioxolane and dimethoxyethane electrolyte solvent system
US5514491A (en) * 1993-12-02 1996-05-07 Eveready Battery Company, Inc. Nonaqueous cell having a lithium iodide-ether electrolyte

Similar Documents

Publication Publication Date Title
WO2005053067A3 (en) High discharge capacity lithium battery
EP1296391A4 (en) Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US4302517A (en) Unitary seal and cover support gasket for miniature button cells
CN101405898A (en) Non-aqueous electrolyte secondary batteries
US3484295A (en) Battery having a positive electrode in which the principal active material is isolated from the electrolyte by a secondary active material
JP3396990B2 (en) Organic electrolyte secondary battery
JPS63102163A (en) Organic electrolyte battery
JPH07230825A (en) Nonaqueous electrolyte battery
JPH0631646Y2 (en) Flat type battery
JPS618852A (en) Nonaqueous electrolyte cell
JP2812943B2 (en) Organic electrolyte battery
JP3177258B2 (en) Non-aqueous electrolyte battery
JPH0434859A (en) Organic electrolyte battery
JPS6142868A (en) Nonaqueous electrolyte battery
JP2003100352A (en) Lithium secondary cell and its manufacturing method
JPH08279355A (en) Button type alkaline battery
JPH0254870A (en) Organic electrolyte battery
JPH07220720A (en) Nonaqueous electrolyte secondary battery
JP2009301720A (en) Manganese dry cell
JPH04363862A (en) Lithium secondary battery
JPS6025160A (en) Nonaqueous electrolyte battery
JPH0430153B2 (en)
JPH01264169A (en) Flat type battery
JPH01154464A (en) Flat type organic electrolyte battery
WO2009123673A4 (en) Capacity increasing current collector and fuel gauge for lithium-containing electrochemical cell