JPH0430153B2 - - Google Patents

Info

Publication number
JPH0430153B2
JPH0430153B2 JP10876983A JP10876983A JPH0430153B2 JP H0430153 B2 JPH0430153 B2 JP H0430153B2 JP 10876983 A JP10876983 A JP 10876983A JP 10876983 A JP10876983 A JP 10876983A JP H0430153 B2 JPH0430153 B2 JP H0430153B2
Authority
JP
Japan
Prior art keywords
electrolyte
filling rate
negative electrode
discharge
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10876983A
Other languages
Japanese (ja)
Other versions
JPS601770A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10876983A priority Critical patent/JPS601770A/en
Publication of JPS601770A publication Critical patent/JPS601770A/en
Publication of JPH0430153B2 publication Critical patent/JPH0430153B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、補聴器用電源などして用いられるボ
タン型空気亜鉛電池に関するものである。 従来例の構成とその問題点 近年、高年齢化に伴つて医療機器の分野が注目
されるようになつてきた。その中で難聴対策とし
て補聴器の需要も急速に伸びてきつつあり、これ
につれて電源電池への要求も高まつてきている。 従来より、補聴器の電源として水銀電池がよく
用いられている。 水銀電池の場合、その利点として容量当りのコ
ストが安価であること、放電電圧が安定している
ことなどがあげられる。ところが、一方では補聴
器電源としては、比較的重量が重く、例えば、直
径11.6mm、高さ5.4mmのもので約3gである。ま
た電池容量が少ないために約2週間で電池の取り
換が必要であること、さらに水銀電池に用いる正
極活物質自身が公害の原因となり得る問題があつ
た。 これらの問題に対して注目されてきた電池とし
てボタン型空気亜鉛電池があげられる。 この電池の特徴は、正極の活物質として空気中
の酸素を用いるために、負極のための封口板内容
積を大きくすることが可能であり、電池の高容量
化がはかれる。又、比較的放電々圧が安定してい
る。低公害性であり、かつ軽量化がはかれるなど
の利点がある。 しかし、この電池は、従来の電池と比較して、
空気孔が設けられているために、放電途中、もし
くは過放電後にその空気孔から漏液現象が認めら
れる、多湿中に保存、もしくは多湿中での放電中
に空気孔から漏液現象が認められる。 この原因としては外部から正極活物質である酸
素を取り入れるために、負極の反応形態から、負
極側の体質は放電が進むと共に増加し、最終10〜
20%増加する。従つて、放電の進行につれて体積
が膨張して電解液を遊離させ、更には空気極を圧
迫し、ついには空気孔より漏液すると考えられ
る。又、多湿下においては水分を電池系内に吸収
し、前述と同じ状態になると考えられる。 発明の目的 本発明は、電解液量、封口板内容積内の充填
率、更には電解液濃度を規制することによつて、
従来の問題点を解決し、保存特性を向上させて信
頼性の高いボタン型空気亜鉛電池を提供すること
を目的とする。 発明の構成 本発明は前記の目的を達成するため、汞化亜鉛
からなる負極活物質1mAh当り、か性アルカリ電
解液量を0.24〜0.23μの量に規制したことを特
徴とするものである。これにより保存特性を向上
させ、容量増大を図ることができる。 実施例の説明 以下、本発明の実施例をR44タイプ(直径11.6
mm、高さ5.4mm、公称容量400mAh)の空気ボタ
ン電池を例に説明する。 第1図は、本実施例を含むボタン型空気亜鉛電
池の半断面図を示し、図中1は正極ケース、2は
正極ケースに設けられた空気取り入れ孔で直径
0.5mmの孔が2個あけられている。3は空気室に
置かれたセルロース系の多孔性紙で空気を拡散さ
せ、かつ空気極より出てきた電解液を吸収させる
ものである。4は4フツ化エチレンを基材とする
撥水膜で漏液を押える働きをする。5はニツケル
多孔体を集電体とし、これに二酸化マンガンと活
性炭と導電材より触媒を塗着してなる空気極、6
はセパレータ、7は電解液含液材である。8はナ
イロンよりなるガスケツトで封口板9とカツプリ
ングしている。10は本発明の特徴とする亜鉛負
極である。8のガスケツトとカツプリングされた
封口板9の内容積は250μで、この中に汞化亜
鉛粉末とか性アルカリ電解液とが充填されてい
る。 この時、亜鉛と電解液との比率がポイントとな
る。即ち、亜鉛1mAh当り電解液の量は0.24〜
0.28μが最適である。0.24μより少量の場合
は、電解液量が少ないために亜鉛の利用率が低
く、電池容量が小さくなる。又、低温試験では更
に亜鉛の利用率が低くなる。一方、0.78μより
も多量では、負極の利用率は向上するが、封口板
内に遊離した電解液があり、保存時、もしくは放
電末期に漏液現象が起こつてくる。この漏液現象
に関して封口板内への亜鉛及び電解液の充填率、
電解液の濃度が影響することがわかつた。封口板
内への充填率は75〜85%、電解液濃度は28〜32%
が最も好ましいことがわかつた。 正極空気孔からの漏液メカニズムはボタン型空
気亜鉛電池の反応過程が Zn+1/2O2→ZnO となり、正極活物質の酸素は外部から取り入れる
が、放電が進むと共に負極側の体積が膨張するた
めに触媒層が圧迫され、更には負極側の電解液が
押し出されて撥水膜の機能が弱まり、酸素は供給
されないようになる。 その結果、電池は窒息状態になり、負極の電位
によつて正極よりガス発生し、これらによつてつ
いに空気孔より漏液現象をきたすようになる。従
つて、封口板への亜鉛等の充填率が高ければ高い
程、漏液までの時間が短くなる。 封口板への充填率が75%以下の場合、第2図に
示すように、電池電圧に影響は認められないが、
内部抵抗が著しく高くなると共に、そのバラツキ
も極めて大きく、特に高率放電に影響を受け易
い。この内部抵抗は、充填率75%以上ではほとん
ど差は認められなかつた。一方充填率が95%では
組立直後に漏液がほぼ全数にわたつて発生する。
又、85%以上の電池では直後の漏液はないが、放
電を行ないその放電深度が70%〜85%以上になる
と、正極の空気孔より漏液が認められる。この度
合は、封口板内の充填率が高くなる程大きくなる
ことがわかつた。 従つて、封口板への充填率は75〜85%が電池特
性、耐漏液特性に優れている。ここでは80%とし
た。 なお、封口板充填率は次式によつて算出した。 充填率(%)亜鉛粉末の体積+汞化に用いた水銀の体
積+電解液量(体積)/封口板内容積×100 一方、電池特性から電解液濃度が大きなポイン
トとなる。即ち、電解液濃度が32wt%よりも高
くなると、空気中の湿気を吸収し、正極触媒の濡
れを加速させて電池が窒息状態になり、ついには
空気孔より漏液状態になる。この傾向は電解濃度
が高くなる程大きくなる。70〜90%の多湿状態で
はシール紙を除いて保存するだけでも空気孔より
の漏液が認められる。電解液濃度が28wt%より
も低いと、空気孔よりの漏液までの時間は長くな
るが、亜鉛の利用率が著しく低下する。従つて、
その適正な電解液濃度は28〜32wt%がよい。こ
こでは30wt%濃度のKOH水溶液を用いた。 次に本発明の効果について述べる。表−1に示
すように本発明の電池構成、即ち、封口板内への
充填率を80%、電解液濃度を30wt%、電解液量
を負極活物質1mAh当り、0.27μ注入した構成
を中心に評価した。なお負極充填容量は450mAh
とした。その他の構成については充填率、電解液
比率によつて、負極電気容量、電解液量を変化さ
せた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a button-type zinc-air battery used as a power source for hearing aids, etc. Conventional configurations and their problems In recent years, the field of medical devices has been attracting attention as the population ages. Under these circumstances, the demand for hearing aids as a countermeasure for hearing loss is rapidly increasing, and along with this, the demand for power batteries is also increasing. Conventionally, mercury batteries have often been used as a power source for hearing aids. Advantages of mercury batteries include low cost per capacity and stable discharge voltage. However, on the other hand, it is relatively heavy as a power source for a hearing aid, for example, a power source with a diameter of 11.6 mm and a height of 5.4 mm weighs about 3 g. Another problem was that the battery had to be replaced every two weeks due to its low capacity, and the positive electrode active material used in the mercury battery itself could cause pollution. A button-type zinc-air battery is a battery that has received attention in response to these problems. A feature of this battery is that since oxygen in the air is used as the active material of the positive electrode, it is possible to increase the internal volume of the sealing plate for the negative electrode, thereby increasing the capacity of the battery. In addition, the discharge pressure is relatively stable. It has the advantages of being low pollution and lightweight. However, compared to conventional batteries, this battery has
Due to the presence of air holes, liquid may leak from the air holes during discharge or after over-discharge, or liquid may leak from the air holes when stored in high humidity or during discharge in high humidity. . The reason for this is that oxygen, which is a positive electrode active material, is taken in from the outside, and due to the reaction form of the negative electrode, the constitution of the negative electrode increases as the discharge progresses, and the final 10~
Increase by 20%. Therefore, as the discharge progresses, the volume expands, liberating the electrolyte, and further compressing the air electrode, which is thought to eventually cause leakage from the air holes. Furthermore, under high humidity conditions, moisture is absorbed into the battery system, resulting in the same state as described above. Purpose of the Invention The present invention provides a method for controlling the amount of electrolyte, the filling rate within the volume of the sealing plate, and the concentration of the electrolyte.
The purpose is to solve the conventional problems and provide a highly reliable button-type zinc-air battery with improved storage characteristics. Structure of the Invention In order to achieve the above object, the present invention is characterized in that the amount of the caustic alkaline electrolyte is regulated to 0.24 to 0.23 μ per 1 mAh of the negative electrode active material made of zinc chloride. This makes it possible to improve storage characteristics and increase capacity. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described as R44 type (diameter 11.6
An example of this is an air button battery with a diameter of 5.4 mm, a height of 5.4 mm, and a nominal capacity of 400 mAh. FIG. 1 shows a half-sectional view of a button-type zinc-air battery including this embodiment. In the figure, 1 is a positive electrode case, and 2 is an air intake hole provided in the positive electrode case with a diameter of
Two 0.5mm holes are drilled. 3 is a cellulose-based porous paper placed in the air chamber to diffuse air and absorb the electrolyte coming out from the air electrode. 4 is a water-repellent film based on tetrafluoroethylene that works to suppress liquid leakage. 5 is an air electrode formed by using a nickel porous body as a current collector and coating this with a catalyst made of manganese dioxide, activated carbon, and a conductive material; 6;
7 is a separator, and 7 is an electrolyte-containing material. 8 is a gasket made of nylon that is coupled to the sealing plate 9. 10 is a zinc negative electrode that is a feature of the present invention. The internal volume of the sealing plate 9 coupled with the gasket 8 is 250μ, and is filled with zinc oxide powder or alkaline electrolyte. At this time, the ratio of zinc to electrolyte is important. In other words, the amount of electrolyte per 1mAh of zinc is 0.24~
0.28μ is optimal. When the amount is less than 0.24μ, the amount of electrolyte is small, so the utilization rate of zinc is low and the battery capacity is small. Moreover, the utilization rate of zinc becomes even lower in the low-temperature test. On the other hand, if the amount is larger than 0.78 μ, the utilization rate of the negative electrode improves, but there is a free electrolyte in the sealing plate, which causes a leakage phenomenon during storage or at the end of discharge. Regarding this leakage phenomenon, the filling rate of zinc and electrolyte into the sealing plate,
It was found that the concentration of the electrolyte had an effect. The filling rate in the sealing plate is 75-85%, and the electrolyte concentration is 28-32%.
was found to be the most preferable. The mechanism of liquid leakage from the positive electrode air hole is that the reaction process of a button-type zinc-air battery is Zn+1/2O 2 →ZnO, and oxygen for the positive electrode active material is taken in from the outside, but as the discharge progresses, the volume of the negative electrode expands. The catalyst layer is compressed, and furthermore, the electrolyte on the negative electrode side is pushed out, weakening the function of the water-repellent film and preventing oxygen from being supplied. As a result, the battery becomes suffocated, gas is generated from the positive electrode due to the potential of the negative electrode, and this eventually causes liquid leakage from the air holes. Therefore, the higher the filling rate of zinc or the like into the sealing plate, the shorter the time until leakage. When the filling rate of the sealing plate is 75% or less, as shown in Figure 2, there is no effect on the battery voltage, but
The internal resistance becomes extremely high and its variation is also extremely large, and is particularly susceptible to high rate discharge. There was almost no difference in this internal resistance when the filling rate was 75% or more. On the other hand, when the filling rate is 95%, almost all leaks occur immediately after assembly.
In addition, in batteries of 85% or more, there is no leakage immediately after discharge, but when the depth of discharge reaches 70% to 85% or more after discharge, leakage is observed from the air hole of the positive electrode. It was found that this degree increases as the filling rate within the sealing plate increases. Therefore, when the filling rate of the sealing plate is 75 to 85%, the battery characteristics and leakage resistance characteristics are excellent. Here it was set to 80%. Note that the sealing plate filling rate was calculated using the following formula. Filling rate (%) Volume of zinc powder + Volume of mercury used for oxidation + Electrolyte amount (volume) / Sealing plate internal volume x 100 On the other hand, the electrolyte concentration is an important point from the battery characteristics. That is, when the electrolyte concentration is higher than 32 wt%, it absorbs moisture in the air, accelerates wetting of the positive electrode catalyst, and the battery becomes suffocated, eventually causing leakage from the air holes. This tendency increases as the electrolyte concentration increases. In humid conditions of 70 to 90%, leakage from the air holes is observed even if the product is stored without the sticker paper. When the electrolyte concentration is lower than 28 wt%, the time until leakage from the air holes becomes longer, but the utilization rate of zinc decreases significantly. Therefore,
The appropriate electrolyte concentration is preferably 28 to 32 wt%. Here, a KOH aqueous solution with a concentration of 30 wt% was used. Next, the effects of the present invention will be described. As shown in Table 1, the battery configuration of the present invention is mainly based on the configuration in which the filling rate in the sealing plate is 80%, the electrolyte concentration is 30wt%, and the electrolyte amount is 0.27μ per 1mAh of negative electrode active material. It was evaluated as follows. The negative electrode filling capacity is 450mAh.
And so. For other configurations, the negative electrode capacitance and the amount of electrolyte were varied depending on the filling rate and electrolyte ratio.

【表】 表−2には電池組立後45℃の温度で16時保存し
た後の内部抵抗値を示す。 その結果、内部抵抗値に電解液濃度の影響は認
められず、電解液比率と封口板充填率の影響が大
きいことが明らかになつた。 充填率が70%の場合は、内部抵抗値が2.7〜
5.0Ωとなり、その値が高いばかりでなく、その
バラツキも大きいと言える。 充填率が80%以上になるとその値は小さく、バ
ラツキも少なく安定している。しかし、電解液比
率も影響があり、特に充填率が80%以下でかつそ
の電解液比率が0.22μ/1mAh以下の場合は高
い傾向がある。 この原因として、電池を構成する要素の密着性
が充填率、電解液比率によつて影響を受けると考
えられる。
[Table] Table 2 shows the internal resistance values after battery assembly and storage at 45°C for 4 hours. As a result, it was found that the internal resistance value was not influenced by the electrolyte concentration, but was greatly influenced by the electrolyte ratio and the sealing plate filling rate. When the filling rate is 70%, the internal resistance value is 2.7~
The value was 5.0Ω, and it can be said that not only is the value high, but the variation is also large. When the filling rate is 80% or more, the value is small and stable with little variation. However, the electrolyte ratio also has an influence, and tends to be particularly high when the filling rate is 80% or less and the electrolyte ratio is 0.22μ/1mAh or less. The reason for this is thought to be that the adhesion of the elements constituting the battery is affected by the filling rate and the electrolyte ratio.

【表】【table】

【表】 表−3に620Ω抵抗によつて放電した時の表−
1中A−2の構成を100とした容量指数を示す。
なお、終止電圧は0.9Vとし、放電終了までの時
間の1/2のところを放電々圧として容量を算出し
た。 この結果、構成B,C,Dの70%の充填率で
は、内部抵抗が高く、又充填率の関係から負極の
充填容量が少ない結果である。 充填率80%の構成A,E,Fは他の充填率に比
べて容量指数は高い。その中で電解液比率が
0.22μ/mAhは絶対電解液量が少なく、又、
0.32μ/mAhは絶対亜鉛量が少ない。従つて、
前者は電解液律速となり平担電圧が低く安定した
放電曲線は得られない。 後者は、電解液が多く安定した放電曲線は得ら
れるが、亜鉛律速となる。また充填率90%の構成
では容量低下が生じる。 即ち前に述べたように Zn+1/2O2→ZnO の放電反応から、酸素が外気から取り入れている
ために、放電が進んでいくと共に負極側の体積が
膨張するために、触媒層が圧迫され、更には負極
側の電解液が押し出され、撥水膜の機能が低下し
ついには酸素が供給されないようになる。 その結果、電池は窒息状態になり機能しなくな
る。この傾向は充填率が高くなる程大きくなる。
従つて、放電容量指数も低くなる。総合的に判断
すると、充填率70%では容量的に問題があり、又
90%では容量的にも低く、かつ漏液(組立直後、
および放電途中、もしくは過放電時)が生じやす
くなる。 充填率90%では7〜9個の直後漏液が認められ
た。しかも前述したように放電途中で、直後漏液
の起こつていない電池も空気孔からの漏液があつ
た。 ちなみに、従来の水銀電池、酸化電池では封口
板への充填率が90〜95%に構成されているが、前
述のような直後漏液、放電途中、過放電時の漏液
は認められなく、ボタン型電池特有の問題であ
り、この傾向は封口板への充填率75〜85%におい
ては認められなかつた。 又、表−3の容量指数から、電解液濃度が高い
程、指数が高くなる傾向がある。 しかしながら、濃度が35wt%以上にした場合、
電解液の特性によつて空気中の湿気を吸収するた
めに、特に多湿環境下におかれると放電途中、も
しくは放電後に空気孔より漏液現象が認められ
る。 表−4に、封口板充填率80%における構成 (E−1〜E3,A−1〜A3,F−1〜3)で
の放電開始から、漏液(空気孔)までの日数を示
したものである。なお放電抵抗は620Ω、放電環
境は30℃、70%とした。 その結果、電解液濃度35%では5〜8日で漏液
現象が認められ、窒息状態のため放電曲線も不安
定になつた。従つて、放電容量指数も小さかつ
た。 25%、30%ではこの様な傾向は見られなかつ
た。
[Table] Table 3 shows the table when discharging through a 620Ω resistor.
The capacity index is shown with the configuration of A-2 in 1 as 100.
Note that the final voltage was 0.9 V, and the capacity was calculated using the discharge voltage at 1/2 of the time until the end of discharge. As a result, at a filling rate of 70% in configurations B, C, and D, the internal resistance is high and the filling capacity of the negative electrode is small due to the relationship of the filling rate. Configurations A, E, and F with a filling rate of 80% have higher capacity indexes than those with other filling rates. Among them, the electrolyte ratio is
0.22μ/mAh has a small absolute amount of electrolyte, and
0.32μ/mAh has a small absolute amount of zinc. Therefore,
In the former case, the electrolytic solution is rate-limiting, and a stable discharge curve cannot be obtained because the flat voltage is low. In the latter case, a stable discharge curve can be obtained due to the large amount of electrolyte, but the rate is determined by zinc. Also, in a configuration with a filling rate of 90%, capacity decreases. That is, as mentioned earlier, oxygen is taken in from the outside air from the discharge reaction of Zn+1/2O 2 →ZnO, so as the discharge progresses, the volume on the negative electrode side expands, and the catalyst layer is compressed. Furthermore, the electrolyte on the negative electrode side is pushed out, the function of the water-repellent film deteriorates, and eventually oxygen is no longer supplied. As a result, the battery becomes suffocated and ceases to function. This tendency increases as the filling rate increases.
Therefore, the discharge capacity index also becomes low. Judging comprehensively, a filling rate of 70% is problematic in terms of capacity, and
At 90%, the capacity is low and leakage (immediately after assembly,
(and during discharge or during overdischarge) are more likely to occur. At a filling rate of 90%, 7 to 9 leaks were observed immediately after. Moreover, as mentioned above, during discharge, even batteries that had not immediately leaked leaked from the air holes. By the way, in conventional mercury batteries and oxidation batteries, the filling rate of the sealing plate is 90 to 95%, but the aforementioned leakage immediately after discharge, during discharge, or during overdischarge is not observed. This problem is unique to button-type batteries, and this tendency was not observed when the sealing plate was filled with a filling rate of 75 to 85%. Furthermore, from the capacity index in Table 3, there is a tendency for the index to increase as the electrolyte concentration increases. However, when the concentration is 35wt% or more,
Due to the characteristics of the electrolyte, it absorbs moisture in the air, so if it is placed in a particularly humid environment, leakage from the air holes is observed during or after discharge. Table 4 shows the number of days from the start of discharge to leakage (air hole) in the configurations (E-1 to E3, A-1 to A3, F-1 to 3) with a sealing plate filling rate of 80%. It is something. The discharge resistance was 620Ω, and the discharge environment was 30°C and 70%. As a result, when the electrolyte concentration was 35%, a leakage phenomenon was observed after 5 to 8 days, and the discharge curve became unstable due to suffocation. Therefore, the discharge capacity index was also small. This trend was not observed for 25% and 30%.

【表】 他の封口板への充填率においても、漏液までの
日数には差はあるものの同じような傾向があつ
た。 発明の効果 これらの結果から、本発明における封口板への
充填率を76〜85%、電解液比率を0.24〜0.28μ
/1mAhとした構成のボタン型空気亜鉛電池は
容量、漏液性能に最もすぐれている。
[Table] Similar trends were observed for the filling rates of other sealing plates, although there were differences in the number of days until leakage. Effects of the Invention From these results, the filling rate of the sealing plate in the present invention is 76 to 85%, and the electrolyte ratio is 0.24 to 0.28μ.
/1mAh button type zinc-air battery has the best capacity and leakage performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はボタン型空気亜鉛電池の半断面図、第
2図は封口板への亜鉛等の充填率と内部抵抗との
関係を示す図である。 1……正極ケース、5……空気極、6……セパ
レータ、7……電解液含浸材、9……封口板、1
0……亜鉛負極。
FIG. 1 is a half-sectional view of a button-type zinc-air battery, and FIG. 2 is a diagram showing the relationship between the filling rate of zinc or the like in the sealing plate and the internal resistance. 1... Positive electrode case, 5... Air electrode, 6... Separator, 7... Electrolyte impregnated material, 9... Sealing plate, 1
0...Zinc negative electrode.

Claims (1)

【特許請求の範囲】 1 正極活物質に酸素、負極活物質に汞化亜鉛、
電解液にか性アルカリ水溶液をそれぞれ用い、負
極活物質1mAh当り電解液を0.24〜0.28μの量と
し、負極活物質とアルカリ電解液を収納する負極
封口板内容積の充填率を75〜85%に規制したボタ
ン型空気亜鉛電池。 2 電解液であるか性アルカリ水溶液の濃度を28
〜32wt%に規制した特許請求の範囲第1項記載
のボタン型空気亜鉛電池。
[Claims] 1. Oxygen as a positive electrode active material, zinc chloride as a negative electrode active material,
A caustic alkaline aqueous solution is used as the electrolyte, the amount of electrolyte is 0.24 to 0.28 μ per 1 mAh of the negative electrode active material, and the filling rate of the internal volume of the negative electrode sealing plate containing the negative electrode active material and the alkaline electrolyte is 75 to 85%. Button-type zinc-air batteries regulated by 2 The concentration of the caustic alkaline aqueous solution as the electrolyte is 28
The button-type zinc-air battery according to claim 1, which is regulated to ~32wt%.
JP10876983A 1983-06-16 1983-06-16 Button-type air zinc battery Granted JPS601770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10876983A JPS601770A (en) 1983-06-16 1983-06-16 Button-type air zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10876983A JPS601770A (en) 1983-06-16 1983-06-16 Button-type air zinc battery

Publications (2)

Publication Number Publication Date
JPS601770A JPS601770A (en) 1985-01-07
JPH0430153B2 true JPH0430153B2 (en) 1992-05-20

Family

ID=14493018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10876983A Granted JPS601770A (en) 1983-06-16 1983-06-16 Button-type air zinc battery

Country Status (1)

Country Link
JP (1) JPS601770A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102921A (en) * 1979-01-30 1980-08-06 Fujitsu Ltd Signal processor
JP2008541395A (en) * 2005-05-27 2008-11-20 イー.エム.ダブリュ.エナジー カンパニー リミテッド Battery and manufacturing method thereof

Also Published As

Publication number Publication date
JPS601770A (en) 1985-01-07

Similar Documents

Publication Publication Date Title
US4209574A (en) Long-life alkaline primary cell having low water content
US4009056A (en) Primary alkaline cell having a stable divalent silver oxide depolarizer mix
US2829189A (en) Alkaline dry cell
US3592693A (en) Consumable metal anode with dry electrolytic enclosed in envelope
US4192908A (en) Mass-transport separator for alkaline nickel-zinc cells and cell
US3418172A (en) Method of manufacturing a small, button-type alkaline cell having a loose, powdered zinc anode
JPH0430153B2 (en)
US3368924A (en) Battery with zinc anode coated with alkali metal getter
US4250234A (en) Divalent silver oxide cell
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JP2764921B2 (en) Organic electrolyte subsurface
JP2585250B2 (en) Sealant for air battery
JPH06203886A (en) Button type air-zinc battery
JPH0445938B2 (en)
JPS63175357A (en) Air-zinc cell
KR20070100595A (en) Anode active material for mercury-free air zinc cell and mercury-free air zinc cell comprising the same
JPS63102163A (en) Organic electrolyte battery
JPH09306509A (en) Manufacture of oxygen-reduced electrode, and battery therewith
JPH0298059A (en) Manufacture of water activated immediately usable silver oxide-zinc battery
Brodd High energy primary batteries
JPH0136673B2 (en)
JPS62126570A (en) Sealant for air cell
JPS58123674A (en) Button-type air cell
JPS5816473A (en) Tubular alkali cell
JPS63310553A (en) Sealed lead-acid battery