JPS63100997A - Method for sterilizing extremely pure water producing system - Google Patents

Method for sterilizing extremely pure water producing system

Info

Publication number
JPS63100997A
JPS63100997A JP24422286A JP24422286A JPS63100997A JP S63100997 A JPS63100997 A JP S63100997A JP 24422286 A JP24422286 A JP 24422286A JP 24422286 A JP24422286 A JP 24422286A JP S63100997 A JPS63100997 A JP S63100997A
Authority
JP
Japan
Prior art keywords
pure water
inorganic salt
ultrapure water
sterilizing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24422286A
Other languages
Japanese (ja)
Other versions
JPH0638955B2 (en
Inventor
Takayuki Saito
孝行 斉藤
Kenichi Sasaki
賢一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP61244222A priority Critical patent/JPH0638955B2/en
Publication of JPS63100997A publication Critical patent/JPS63100997A/en
Publication of JPH0638955B2 publication Critical patent/JPH0638955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To effectively perform sterilization by passing an inorganic salt soln. through a secondary pure water producer and a circulation line for extremely pure water excepting a nonregeneration type ion exchange cartridge. CONSTITUTION:An inorganic salt soln. previously prepared in an inorganic salt tank 6 is introduced into the inlet of a secondary pure water producer 1 via a chemical feed pump 5 by opening a valve 7 provided to the upstream side of the producer 1. It is subjected to sterilizing treatment for 1-3hr. After sterilization is finished, the producer 1 is washed for 3-5hr to wash out inorganic salt. Thereby sterilization effect is extremely enhanced and it can be sterilized safely and completely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば電子工業、医療医薬品工業あるいは精
密機械工業等で用いられるぎわめで高純度の純水、即ち
超純水を製造する超純水製造システムの殺菌方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to ultrapure water for producing ultrapure water, i.e. ultrapure water, which is used, for example, in the electronics industry, medical and pharmaceutical industry, or precision machinery industry. The present invention relates to a method for sterilizing water production systems.

〔従来の技術〕[Conventional technology]

近年特に電子工業等の技術革新は目覚ましく、製造プロ
セスで用いられる超純水もますます厳しい水質が要求さ
れている。例えば電子工業で要求される超純水の水質は
表1に示すごとく、不純物として無機イオンばかりでな
く微粒子、バクテリア(生菌)及び有機物等を能力除去
した限りなく理論純水に近い水質のものが必要である。
In recent years, technological innovations have been remarkable, especially in the electronics industry, and the ultrapure water used in manufacturing processes is now required to have increasingly strict water quality. For example, as shown in Table 1, the quality of ultrapure water required in the electronics industry is as close as possible to theoretically pure water, which has effectively removed impurities such as inorganic ions, as well as fine particles, bacteria (living bacteria), and organic matter. is necessary.

表  1 不純物を除去するに:よ種々の単位操作を組み合わせて
行われるが、大別して無機イオンの除去はイオン交換樹
脂及び逆C′受i3膜(RO膜)が用いられ、微粒子及
びバクテリアはrlOや限外ろ過(UF)あるいはメン
ブランフィルタ(MF)等の膜処理が主として用いられ
る。例えば超純水製造システムのフローは第3図に示す
如く、凝集沈殿21・砂ろ過22等の前処理装置とRO
23及び再生型温床式イオン交換塔24等から成る1次
純水装造装置、更に紫外線殺菌?J15や非再生型イオ
ン交換カートリッジ16及びMF又はUF20等から成
る2次純水製造装置で構成され、2次純水製造装置とユ
ースポイント3間で超純水を超純水循環ライン4を介し
て循環させて常にその純度を保つようにするシステムを
構成するのが一般的である。
Table 1 Removal of impurities: Although various unit operations are combined, they can be roughly divided into ion exchange resins and reverse C' receptor i3 membranes (RO membranes) used to remove inorganic ions, and rlO membranes used to remove fine particles and bacteria. Membrane treatments such as ultrafiltration (UF), membrane filters (MF), etc. are mainly used. For example, the flow of an ultrapure water production system is shown in Figure 3, which includes pre-treatment equipment such as coagulation sedimentation 21 and sand filtration 22, and RO
23 and a regenerative hotbed ion exchange tower 24, etc., the primary water purification equipment, and further UV sterilization? It consists of a secondary pure water production device consisting of J15, non-regenerative ion exchange cartridge 16, MF or UF20, etc., and the ultrapure water is passed through the ultrapure water circulation line 4 between the secondary pure water production device and the use point 3. It is common to construct a system that circulates the water to maintain its purity at all times.

ところで、2次純水製造装置及びユースポイントを含む
超純水循環ライン(以下「超純水系」と称す)内に生息
するバクテリアは、配管、機器類等の壁面にスライム層
を形成して付着増殖する(頃向にあるため、超純水系の
殺菌を行う必要があり、従来この殺菌は過酸化水素溶液
を用いて行われていた。過酸化水素溶液を用いる主な理
由は、超純水ラインに余分な塩類を持ち込まずに殺菌で
きる利点があるからである。
By the way, bacteria living in the ultrapure water circulation line (hereinafter referred to as the "ultrapure water system"), which includes secondary water purification equipment and use points, forms a slime layer and adheres to the walls of piping, equipment, etc. The main reason for using a hydrogen peroxide solution is that ultrapure water-based sterilization is necessary, and conventionally this sterilization was performed using a hydrogen peroxide solution. This is because it has the advantage of being able to sterilize without introducing excess salt into the line.

〔発明が解決しようとする問題点0 1局酸化水素の殺菌作用は主に酸化力による外傷殺菌作
用である。通常使用される過酸化水素溶液・;度は1〜
5 V/V%であり、浸潤時間は】〜3時間である。し
かじながa超純水系内に生息するバクテリアの中には(
1)式に示すような強力なカタラーゼ活性を持つものが
おり、これらのバクテリアに対しては過酸化水素の殺菌
効果はあまiつ期待できない。
[Problem to be Solved by the Invention No. 1 The bactericidal action of hydrogen oxide is mainly a wound bactericidal action due to its oxidizing power. Usually used hydrogen peroxide solution; degree is 1~
5 V/V% and the infiltration time is ~3 hours. Some of the bacteria that live in ultrapure water systems are (
1) There are some bacteria that have strong catalase activity as shown in the formula, and hydrogen peroxide cannot be expected to have much of a bactericidal effect against these bacteria.

2H20□ →  2+120  +  0□ ・・・
・・・・・・ (1)また超純水系内で繁殖し、壁面に
付着増殖したスライム層は過酸化水素等の外傷性殺菌作
用に対して保護物質的役割を果たす。従って、従来の過
酸化水素を用いる超純水系の殺菌処理で、殺菌効果を充
分期待するためには過酸化水素溶液濃度を5 V/V%
以上にする必要がある。しかし過酸化水素溶液の濃度を
間濃度にするのはセリ扱い上危険であり好ましくない。
2H20□ → 2+120 + 0□ ・・・
(1) Furthermore, the slime layer that grows in the ultrapure water system and adheres to the wall surface plays the role of a protective substance against the traumatic sterilizing effects of hydrogen peroxide and the like. Therefore, in the conventional sterilization treatment of ultrapure water using hydrogen peroxide, in order to expect sufficient sterilization effect, the hydrogen peroxide solution concentration must be 5 V/V%.
It is necessary to do more than that. However, lowering the concentration of the hydrogen peroxide solution to a medium concentration is dangerous and undesirable in handling the parsley.

しかも過酸化水素は自己分解を起こすため過酸化水素溶
液を長時間保存できない欠点がある。
Moreover, since hydrogen peroxide self-decomposes, a hydrogen peroxide solution cannot be stored for a long time.

本発明はきわめて高純度の純水即ち超純水を製造する超
純水製乃システJ、の殺菌処理を、安全にかつ効果的に
行う殺菌方法を提供することを目的とするものである。
An object of the present invention is to provide a sterilization method for safely and effectively sterilizing an ultrapure water production system that produces extremely high purity water, that is, ultrapure water.

c問題点を解決するための手段〕 本発明者らは上記の問題点を解決すべく、取り扱いが容
易で特に超純水系内に生息するバクテリアに対し殺…効
果の高い殺菌方法を検討し、従来試みられていなかった
無機塩類を使用する殺菌方法が最も実用的であることを
知見するに至り本発明を完成したものである。
Means for Solving Problems] In order to solve the above problems, the present inventors have studied a sterilization method that is easy to handle and is particularly effective against bacteria living in ultrapure water systems. The present invention was completed after discovering that a sterilization method using inorganic salts, which had not been tried before, was the most practical.

本発明の特徴とする手段は、1次純水製造装置の出口水
中の不純物を更に除去する目的で2次純水製造′2置を
設!し、2次純水製造装置の出口水(超純水)の一部を
2次純水製造装置の入口に戻すように2次純水製造装置
とユースポイント間で常に循環する超純水循環ラインを
有する超純水製造システムにおいて、非再生型イオン交
換カートリッジを除く前記2次純水製造装置及び超純水
循環ラインに無機塩類/8液を通液することを特徴とす
る超純水製造システムの殺菌方法である。
The feature of the present invention is that a secondary pure water production device is installed for the purpose of further removing impurities in the outlet water of the primary pure water production device. Ultrapure water circulation that constantly circulates between the secondary pure water production equipment and the point of use so that a part of the outlet water (ultra pure water) of the secondary pure water production equipment is returned to the inlet of the secondary pure water production equipment. An ultrapure water production system having an ultrapure water production line, characterized in that an inorganic salt/8 solution is passed through the secondary pure water production device excluding the non-regenerating ion exchange cartridge and the ultrapure water circulation line. This is a method of sterilizing the system.

〔作 用〕[For production]

超純水中に生息するバクテリアについて詳細に検討した
結果、従来言われていた細菌群以外の事へめで低い栄養
環境を至適とするバクテリア群が優占種であることを確
認した。このような低濃度栄養性細凹は少量の有機物の
もとで増殖し、多量の有機物の存在下ではむしろ増殖し
ない細菌であり、無機塩類についても同様にきわめて耐
塩1±が低く、無機塩類に対する感受性が高いことを見
い出した。
As a result of a detailed study of the bacteria that live in ultrapure water, we confirmed that the dominant species is a bacterial group that is best suited to a low-nutrient environment, in addition to what was previously thought to be the bacterial group. These low-concentration trophic cavities are bacteria that proliferate in the presence of small amounts of organic matter, but rather do not proliferate in the presence of large amounts of organic matter, and they similarly have extremely low salt tolerance 1± to inorganic salts. I found that I was highly sensitive.

本発明のバクテリアに対する無機塩類の作用は、従来の
過酸化水素等の外傷性殺菌作用とは異なり、上述のごと
く塩類耐性のきわめて低いバクテリアに対して浸透圧シ
ョック及び塩類による生理機能障害を与えるものである
。また無機塩類は従来の過酸化水素等の酸化剤系殺菌剤
では死滅しずらいカタラーゼ活性を持つバクテリア或い
は菌体外壁にスライム等の保護物質を形成しているバク
テリアに対しても充分高い殺菌作用を示すものである。
The effect of inorganic salts on bacteria of the present invention is different from the traumatic sterilization effect of conventional hydrogen peroxide, etc., and as mentioned above, it causes osmotic shock and physiological dysfunction due to salts to bacteria that have extremely low tolerance to salts. It is. In addition, inorganic salts have a sufficiently high bactericidal effect against bacteria that are difficult to kill with conventional oxidizing agent disinfectants such as hydrogen peroxide, and against bacteria that have catalase activity or bacteria that form protective substances such as slime on the outer wall of the bacterial cell. This shows that.

本発明において使用する無機塩類としては種々のものを
使用することができるが、NaCl、 NazSOa等
のナトリウム塩好ましくは食塩が良く、重金属は殺菌処
理後殺菌廃水の廃水処理を行う必要があることから経済
性に欠ける面がある。また、無機塩類溶液の濃度として
は0.1 W/V%以上が好ましく、この無機塩類溶液
を孔径1μm以下のMF又はUFで膜ろ過した後使用す
るのも好ましく、更には前記無機塩類を水に溶解する前
に160℃以上好ましくは200℃以上で乾熱殺菌を行
うことで、使用する無機塩類及び該無機塩類を?8解し
た水?8液から超純水系内に持ち込まれるバクテリアを
あらかじめ除菌或いは殺菌することでより完全な殺菌処
理を行うことができるものである。
Various inorganic salts can be used as the inorganic salts used in the present invention, but sodium salts such as NaCl and NazSOa are preferred, and common salt is preferable.For heavy metals, it is necessary to carry out wastewater treatment of sterilized wastewater after sterilization treatment. There are some aspects that are uneconomical. Further, the concentration of the inorganic salt solution is preferably 0.1 W/V% or more, and it is also preferable to use this inorganic salt solution after membrane filtration with MF or UF with a pore size of 1 μm or less. By performing dry heat sterilization at 160°C or higher, preferably 200°C or higher, before dissolving the inorganic salts to be used and the inorganic salts, 8. Water that has been solved? By eliminating or sterilizing bacteria brought into the ultrapure water system from the 8 liquid in advance, more complete sterilization can be performed.

更に本発明を、その一実施態様を示す第1図に基づいて
詳しく説明すれば、殺菌処理を行わない通常運転の場合
、1次純水導入管2より必要量の1次純水が2次純水製
造装置1に流入し、2次純水製造装置1によって超純水
となった水はユースポイント3を介して超純水循環ライ
ン4によりその一部が2次純水製造装置1の入口に戻さ
れる。
Further, the present invention will be explained in detail based on FIG. 1 showing one embodiment of the present invention. In the case of normal operation without sterilization treatment, a necessary amount of primary pure water is supplied to the secondary water from the primary pure water introduction pipe 2. The water that flows into the pure water production device 1 and becomes ultrapure water by the secondary pure water production device 1 passes through the use point 3 to the ultrapure water circulation line 4 where a part of it is sent to the secondary pure water production device 1. You will be returned to the entrance.

殺菌処理を行う場合、2次純水製造装置1の上流側に設
けられたパルプ7を開け、あらかしめ無機塩類タンク6
に調製した無機塩類溶液を薬注ポンプ5を介して2次純
水製造装置1の入口に注入する。ここで無機塩類溶液の
濃度は2次純水製造装置1及び超純水循環ライン4を含
めて系内の無機塩類濃度が0.IW/V%以上に保持で
きるよう適当な希釈倍率を考慮した濃度であれば良い。
When performing sterilization treatment, open the pulp 7 provided on the upstream side of the secondary pure water production device 1, and open the inorganic salt tank 6.
The inorganic salt solution prepared above is injected into the inlet of the secondary pure water production apparatus 1 via the chemical injection pump 5. Here, the concentration of the inorganic salt solution is such that the inorganic salt concentration in the system including the secondary pure water production device 1 and the ultrapure water circulation line 4 is 0. The concentration may be determined by considering an appropriate dilution rate so that it can be maintained at IW/V% or higher.

更にはより殺菌効果を裔めるために、好ましくは0.5
 W/V%以上で行うのが良い。但し殺菌処理を行う前
に非再生型イオン交換カートリッジはバイパス等に切り
換えることにより、殺菌剤である無機塩類溶液と接触す
ることを未然に防止しなければならない。即ち非再生型
イオン交換カートリッジが無機塩類溶液と接触すれば、
当然イオン交換反応が起りイオン交換樹脂のイオン交換
容量が低下しついにはブレークすることになるからであ
る。
Furthermore, in order to obtain a better bactericidal effect, preferably 0.5
It is better to carry out at W/V% or higher. However, before performing the sterilization process, the non-regenerative ion exchange cartridge must be switched to a bypass or the like to prevent it from coming into contact with the inorganic salt solution that is the sterilizing agent. That is, if a non-regenerative ion exchange cartridge comes into contact with an inorganic salt solution,
Naturally, an ion exchange reaction occurs, and the ion exchange capacity of the ion exchange resin decreases, eventually leading to breakdown.

また無機塩類溶液を2次純水製造装置1に注入する前に
M F又はUPIOによりろ過することで、無機塩類/
8液から持ち込まれるバクテリアや粒子をも除去して不
必要に超純水系内に不純物を持ち込む、ことを未然に防
止することにより、殺菌効果をより向上させることがで
きる。更には例えば食塩を用いる場合、品質の低い食塩
中には好塩性菌が存在することから、使用前に160℃
以上好ましくは200℃以上で乾熱殺菌した食塩を用い
れば、品質の低い食塩であっても簡単に細苗学的に’l
r; 1Mなものにすることができる。
In addition, by filtering the inorganic salt solution with MF or UPIO before injecting it into the secondary pure water production device 1, the inorganic salt solution/
The sterilizing effect can be further improved by removing bacteria and particles brought in from the liquid 8 and preventing unnecessary impurities from being brought into the ultrapure water system. Furthermore, when using table salt, for example, low-quality table salt contains halophilic bacteria, so it must be heated to 160°C before use.
As mentioned above, if you use salt that has been dry heat sterilized preferably at 200°C or higher, even low-quality salt can be easily sterilized for fine seedlings.
r; Can be made into 1M.

超純水系内の殺菌処理時間は1〜3時間程度で良く、こ
れは従来の過酸化水素溶液を用いる場合とほぼ同じであ
る。この時第1図のパルプ8を開けて超純水系内で循環
しても良く、またパルプ9を開は殺菌剤である無機塩類
溶液の一部或いは全量を系外に排出しても良い。次に殺
菌終了後残留する殺菌剤である無機塩類を洗い出す洗浄
工程となるが、その洗浄時間は3〜5時間程度である。
The sterilization time in the ultrapure water system may be about 1 to 3 hours, which is approximately the same as when using a conventional hydrogen peroxide solution. At this time, the pulp 8 in FIG. 1 may be opened to circulate in the ultrapure water system, or the pulp 9 may be opened to discharge part or all of the inorganic salt solution as a disinfectant to the outside of the system. Next, there is a cleaning step to wash out the inorganic salts that are the disinfectants remaining after the sterilization, and the cleaning time is about 3 to 5 hours.

従来の過酸化水素を用いる場合でも少なくとも3時間以
上必要なことから、無機塩類を用いる本発明の洗浄時間
が従来法に比べ特別長くなることはない、しかも過酸化
水素と異なり無機塩類を使用する場合、洗浄の終点を比
抵抗或いは導電率を測定することにより容易に知ること
ができる。この点から過酸化水素と無機塩類とを併用す
れば従来法でも容易に洗浄の終点を知ることができると
言える。
Even when using conventional hydrogen peroxide, at least 3 hours are required, so the cleaning time of the present invention using inorganic salts is not particularly longer than the conventional method, and unlike hydrogen peroxide, inorganic salts are used. In this case, the end point of cleaning can be easily determined by measuring specific resistance or conductivity. From this point of view, it can be said that if hydrogen peroxide and inorganic salts are used together, the end point of cleaning can be easily determined even with conventional methods.

〔実施例〕〔Example〕

次に本発明の実施例の実験装置フローを第2図に示す。 Next, FIG. 2 shows a flowchart of an experimental apparatus according to an embodiment of the present invention.

第2図を説明すれば、1次純水は1次純水4人管2によ
り必要機を高純水タンク11に÷111給する。
To explain FIG. 2, primary pure water is supplied to the high-purity water tank 11 by 111 through the primary pure water four-person pipe 2.

高純水タンク11は窒素ガスライン13によりN2ガス
でシールされ、エアフィルタ12を介して大気と連通し
ている。
The high-purity water tank 11 is sealed with N2 gas by a nitrogen gas line 13 and communicated with the atmosphere via an air filter 12.

2次純水ポンプ14により非再生型イオン交換カートリ
ッジ16.0.2μmMF20及び超純水?’tt環ラ
イン4介して超純水は高純水クンク11に戻る。上記実
験装置を約1ケ月運転し、その後本発明により食塩を用
いて殺菌処理を行った。まずバルブ18及び19を閉と
して非再生型イオン交換カートリッジ16への通液を遮
断し、バルブI7を開とする。次にバルブ7を開けあら
かしめ無機塩類タンク6に調製した0、 5 W/V%
の食塩溶液を薬注ポンプ5により孔径0,45μm(7
)MFIOを介して2次純水ポンプ14の吐出側に注入
し、バルブ9を開にして大塩溶液を系外に排出した。
Non-regenerative ion exchange cartridge 16.0.2 μm MF20 and ultrapure water by secondary pure water pump 14? The ultrapure water returns to the high purity water pump 11 via the 'tt ring line 4. The above experimental apparatus was operated for about one month, and then sterilized using common salt according to the present invention. First, valves 18 and 19 are closed to cut off liquid flow to non-regenerative ion exchange cartridge 16, and valve I7 is opened. Next, open the valve 7 and add the prepared 0.5 W/V% to the inorganic salt tank 6.
A saline solution is poured into a pore size of 0.45 μm (7
) The large salt solution was injected into the discharge side of the secondary pure water pump 14 via the MFIO, and the valve 9 was opened to discharge the large salt solution out of the system.

殺菌時間は約1時間とした。また同様に約1ケ月実験装
置を運転した後従来法であるI V/V%の過酸化水素
溶液で殺菌した。その結果を表1にまとめて示す。尚バ
クテリアの計測はAST〜へメンブランフィルク培養法
で行った。
The sterilization time was about 1 hour. Similarly, after operating the experimental equipment for about one month, it was sterilized using a conventional method of IV/V% hydrogen peroxide solution. The results are summarized in Table 1. Bacteria were measured using the AST membrane filter culture method.

表  2 表2の結果から明らかなように、本発明では殺菌後バク
テリアは不検出であったが、過酸化水素を用いた従来法
では0.1〜0.2個7mlのバクテリアが計測され、
殺菌が不充分であった。この原因は過酸化水素ではカタ
ラーゼ活性を持つバクテリアあるいはスライム等の保護
物質を形成しているバクテリアに対して効果が小さいた
めである。
Table 2 As is clear from the results in Table 2, no bacteria were detected after sterilization in the present invention, but in the conventional method using hydrogen peroxide, 0.1 to 0.2 bacteria per 7 ml were measured.
Sterilization was insufficient. The reason for this is that hydrogen peroxide has little effect on bacteria that have catalase activity or bacteria that form protective substances such as slime.

〔発明の効果〕〔Effect of the invention〕

以上述べたことからも明らかなように、本発明は従来超
純水の殺菌には用いることがなかった無機塩類を使用す
ることで、殺菌効果を極めて高くし、より安全かつ完全
な殺菌が可能となる。
As is clear from the above, the present invention uses inorganic salts that have not been conventionally used to sterilize ultrapure water, thereby achieving extremely high sterilization effects and enabling safer and more complete sterilization. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を示すフローの説明図、第
2図は本発明の実施例の実験装置のフローを示す説明図
で、第3図は超純水!!!造システムのフローを示す説
明図である。 1・・・2次純水裂造装置、2・・弓次純水導入管、3
・・・ユースポイント、4・・・超1屯水L%mライン
、5・・・′f′!l主ボンフ゛、6・・・: 機塩i
iタンク、7.8.9・・・バルブ、10・・・MF又
はUF。 11・・・尚純水タンク、12・・・エアフィルタ、1
3・・・窒素ガスライン、14・・・2次純水ポンプ、
15・・・紫外線殺菌器、16・・・非再生型イオン交
換カートリッジ、17,18.19・・・バルブ、20
・・・MF、21・・・凝集沈殿、22・・・砂ろ過、
23・・・RO124・・・再生型温床式イオン交換塔
Fig. 1 is an explanatory diagram of a flow showing one embodiment of the present invention, Fig. 2 is an explanatory diagram showing a flow of an experimental apparatus according to an embodiment of the present invention, and Fig. 3 is an explanatory diagram of a flow of an experimental apparatus according to an embodiment of the present invention. ! ! FIG. 2 is an explanatory diagram showing the flow of the construction system. 1... Secondary pure water cracking device, 2... Yuji pure water introduction pipe, 3
...Use point, 4...Super 1 ton water L%m line, 5...'f'! l Main bomb, 6...: Machine salt i
i Tank, 7.8.9... Valve, 10... MF or UF. 11... Pure water tank, 12... Air filter, 1
3... Nitrogen gas line, 14... Secondary pure water pump,
15... Ultraviolet sterilizer, 16... Non-regenerative ion exchange cartridge, 17, 18.19... Valve, 20
...MF, 21...coagulation sedimentation, 22...sand filtration,
23...RO124...Regenerative hotbed type ion exchange tower.

Claims (4)

【特許請求の範囲】[Claims] (1)1次純水製造装置の出口水中の不純物を更に除去
する目的で2次純水製造装置を設置し、2次純水製造装
置の出口水(超純水)の一部を2次純水製造装置の入口
に戻すように2次純水製造装置とユースポイント間で常
に循環する超純水循環ラインを有する超純水製造システ
ムにおいて、非再生型イオン交換カートリッジを除く前
記2次純水製造装置及び超純水循環ラインに無機塩類溶
液を通液することを特徴とする超純水製造システムの殺
菌方法。
(1) In order to further remove impurities in the water at the outlet of the primary water purification equipment, a secondary water purification equipment is installed, and a part of the outlet water (ultra pure water) of the secondary water purification equipment is transferred to the secondary water purification equipment. In an ultrapure water production system having an ultrapure water circulation line that constantly circulates between the secondary water purification equipment and the point of use so as to return it to the inlet of the water purification equipment, the secondary water purification excluding non-regenerative ion exchange cartridges A method for sterilizing an ultrapure water production system, which comprises passing an inorganic salt solution through a water production device and an ultrapure water circulation line.
(2)前記無機塩類溶液の濃度が0.1W/V%以上で
ある特許請求の範囲第1項記載の超純水製造システムの
殺菌方法。
(2) The method for sterilizing an ultrapure water production system according to claim 1, wherein the concentration of the inorganic salt solution is 0.1 W/V% or more.
(3)前記無機塩類溶液が孔径1μm以下のメンブラン
フィルタ又は限外ろ過膜でろ過されたものである特許請
求の範囲第1項又は第2項記載の超純水製造システムの
殺菌方法。
(3) The method for sterilizing an ultrapure water production system according to claim 1 or 2, wherein the inorganic salt solution is filtered through a membrane filter or ultrafiltration membrane with a pore size of 1 μm or less.
(4)前記無機塩類溶液が乾熱殺菌された無機塩類を溶
解して調製されたものである特許請求の範囲第1〜3項
のいずれか一つの項記載の超純水製造システムの殺菌方
法。
(4) A method for sterilizing an ultrapure water production system according to any one of claims 1 to 3, wherein the inorganic salt solution is prepared by dissolving dry heat sterilized inorganic salts. .
JP61244222A 1986-10-16 1986-10-16 Ultrapure water production system sterilization method Expired - Lifetime JPH0638955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244222A JPH0638955B2 (en) 1986-10-16 1986-10-16 Ultrapure water production system sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244222A JPH0638955B2 (en) 1986-10-16 1986-10-16 Ultrapure water production system sterilization method

Publications (2)

Publication Number Publication Date
JPS63100997A true JPS63100997A (en) 1988-05-06
JPH0638955B2 JPH0638955B2 (en) 1994-05-25

Family

ID=17115561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244222A Expired - Lifetime JPH0638955B2 (en) 1986-10-16 1986-10-16 Ultrapure water production system sterilization method

Country Status (1)

Country Link
JP (1) JPH0638955B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233194A (en) * 1989-03-06 1990-09-14 Morita Kagaku Kogyo Kk Sterilization of super pure water line
JP2021010880A (en) * 2019-07-08 2021-02-04 オルガノ株式会社 Ultrapure water producing system and ultrapure water producing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216687A (en) * 1983-05-24 1984-12-06 Daicel Chem Ind Ltd Pasturization of pure water apparatus
JPS6154297A (en) * 1984-08-22 1986-03-18 Hitachi Ltd Manufacturing apparatus of demineralized water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216687A (en) * 1983-05-24 1984-12-06 Daicel Chem Ind Ltd Pasturization of pure water apparatus
JPS6154297A (en) * 1984-08-22 1986-03-18 Hitachi Ltd Manufacturing apparatus of demineralized water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233194A (en) * 1989-03-06 1990-09-14 Morita Kagaku Kogyo Kk Sterilization of super pure water line
JP2021010880A (en) * 2019-07-08 2021-02-04 オルガノ株式会社 Ultrapure water producing system and ultrapure water producing method

Also Published As

Publication number Publication date
JPH0638955B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
JP4241684B2 (en) Membrane module cleaning method
JPH0490885A (en) Apparatus and method for making pure water
JP3152897B2 (en) Sterilizing composition for producing ultrapure water for semiconductor device manufacturing process and sterilizing method for ultrapure water producing apparatus using the same
JPH02233194A (en) Sterilization of super pure water line
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
CN105330004B (en) A kind for the treatment of process of Treated sewage reusing
CN109179816A (en) A kind of ultrapure hydraulic art purifying technique
JPH05293469A (en) Production of sterilized and purified water and equipment thereof
JPS63100997A (en) Method for sterilizing extremely pure water producing system
JPS6336890A (en) Apparatus for producing high-purity water
CN206318824U (en) Industrial cooling tower water treatment purification equipment system
JP2514929B2 (en) Method for cleaning terminal reverse osmosis membrane device
JP2002336886A (en) Extrapure water making device and extrapure water making method
JP3998997B2 (en) Disinfection method of ultrapure water supply pipe
CN208265935U (en) A kind of high-purity water treatment system of space flight
GB2197860A (en) Apparatus for and the method of water purification
JP4661009B2 (en) Ultrapure water production system
JP2002336887A (en) Extrapure water making device and extrapure water making method
JPH0815596B2 (en) Ultrapure water production method
CN113526727B (en) Concentrated filling system of natural hot spring water
JPH0630792B2 (en) Treatment method of water supply treatment device
JPH03293087A (en) Production of ultra-pure water
JPS61254293A (en) Method for preventing contamination of permeable membrane
JPH06269778A (en) Method for purifying water by using membrane module
JPH01245893A (en) Method for making ultrapure water