JPH0638955B2 - Ultrapure water production system sterilization method - Google Patents

Ultrapure water production system sterilization method

Info

Publication number
JPH0638955B2
JPH0638955B2 JP61244222A JP24422286A JPH0638955B2 JP H0638955 B2 JPH0638955 B2 JP H0638955B2 JP 61244222 A JP61244222 A JP 61244222A JP 24422286 A JP24422286 A JP 24422286A JP H0638955 B2 JPH0638955 B2 JP H0638955B2
Authority
JP
Japan
Prior art keywords
pure water
ultrapure water
water production
inorganic nutrient
production system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61244222A
Other languages
Japanese (ja)
Other versions
JPS63100997A (en
Inventor
孝行 斉藤
賢一 佐々木
Original Assignee
荏原インフイルコ株式会社
株式会社荏原総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原インフイルコ株式会社, 株式会社荏原総合研究所 filed Critical 荏原インフイルコ株式会社
Priority to JP61244222A priority Critical patent/JPH0638955B2/en
Publication of JPS63100997A publication Critical patent/JPS63100997A/en
Publication of JPH0638955B2 publication Critical patent/JPH0638955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば電子工業、医療医薬品工業あるいは精
密機械工業等で用いられるきわめて高純度の純水、即ち
超純水を製造する超純水製造システムの殺菌方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to ultrapure water for producing extremely high-purity pure water, that is, ultrapure water used in, for example, the electronics industry, medical drug industry, precision machinery industry, and the like. The present invention relates to a sterilization method for a manufacturing system.

〔従来の技術〕[Conventional technology]

近年特に電子工業等の技術確信は目覚ましく、製造プロ
セスで用いられる超純水もますます厳しい水質が要求さ
れている。例えば電子工業で要求される超純水の水質は
表1に示すごとく、不純物として無機イオンばかりでな
く微粒子、バクテリア(生菌)及び有機物等を極力除去
した限りなく理論純水に近い水質のものが必要である。
In recent years, the technical confidence of the electronics industry in particular has been remarkable, and the ultrapure water used in the manufacturing process is required to have increasingly severe water quality. For example, as shown in Table 1, the quality of ultrapure water required in the electronics industry is as close to theoretical pure water as possible without removing fine particles, bacteria (viable bacteria) and organic substances as well as inorganic ions as impurities. is necessary.

不純物を除去するには種々の単位操作を組み合わせて行
われるが、大別して無機イオンの除去はイオン交換樹脂
及び逆浸透膜(RO膜)が用いられ、微粒子及びバクテ
リアはROや限外ろ過(UF)あるいはメンブレンフィ
ルタ(MF)等の膜処理が主として用いられる。例えば
超純水製造システムのフローは第3図に示す如く、凝集
沈殿21・砂ろ過22等の前記処理装置とRO23及び
再生型混床式イオン交換塔24等から成る1次純水製造
装置、更に紫外線殺菌器15や非再生型イオン交換カー
トリッジ16及びMF又はUF20等から成る2次純水
製造装置で構成され、2次純水製造装置とユースポイン
ト3間で超純水を超純水循環ライン4を介して循環させ
て常にその純度を保つようにするシステムを構成するの
が一般的である。
Although various unit operations are combined to remove impurities, broadly speaking, ion exchange resins and reverse osmosis membranes (RO membranes) are used to remove inorganic ions, and fine particles and bacteria are treated with RO or ultrafiltration (UF). ) Or a membrane treatment such as a membrane filter (MF) is mainly used. For example, the flow of the ultrapure water production system is, as shown in FIG. 3, a primary pure water production apparatus comprising the above-mentioned treatment apparatus such as coagulation sedimentation 21 and sand filtration 22 and RO 23 and regenerative mixed bed type ion exchange tower 24, Further, it is composed of an ultraviolet sterilizer 15, a non-regeneration type ion exchange cartridge 16 and a secondary pure water producing device composed of MF or UF20 and the like, and ultrapure water is circulated between the secondary pure water producing device and the point of use 3 It is common to construct a system that circulates through line 4 so as to always maintain its purity.

ところで、2次純水製造装置及びユースポイントを含む
超純水循環ライン(以下「超純水系」と称す)内に生息
するバクテリアは、配管、機器類等の壁面にスライム層
を形成して付着増殖する傾向にあるため、壁面を含めた
超純水系内の殺菌を行う必要があり、従来この殺菌は過
酸化水素溶液を用いて行われていた。過酸化水素溶液を
用いる主な理由は、超純水ラインに余分な塩類を持ち込
まずに殺菌できる利点があるからである。
By the way, bacteria that live in the ultrapure water circulation line (hereinafter referred to as "ultra pure water system") including the secondary pure water production device and the point of use form a slime layer on the wall surface of pipes, devices, etc. Since it tends to proliferate, it is necessary to sterilize the ultrapure water system including the wall surface, and conventionally, this sterilization was performed using a hydrogen peroxide solution. The main reason for using a hydrogen peroxide solution is that it has the advantage that it can be sterilized without bringing extra salts into the ultrapure water line.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

過酸化水素の殺菌作用は主に酸化力による外傷殺菌作用
である。通常使用される過酸化水素溶液濃度は1〜5V/
V%であり、浸漬時間は1〜3時間である。しかしなが
ら超純水系内に生息するバクテリアの中には(1)式に示
すような強力なカタラーゼ活性を持つものがおり、これ
らのバクテリアに対しては過酸化水素の殺菌効果はあま
り期待できない。
The sterilizing action of hydrogen peroxide is mainly the sterilizing action of trauma caused by oxidative power. Normally used hydrogen peroxide solution concentration is 1-5V /
V% and immersion time is 1 to 3 hours. However, some bacteria that live in the ultrapure water system have a strong catalase activity as shown in formula (1), and the bactericidal effect of hydrogen peroxide cannot be expected for these bacteria.

2H2O2→2H2O2+O2……(1) また超純水系内で繁殖し、壁面に付着増殖したスライム
層は過酸化水素,次亜塩素酸等の外傷性殺菌作用に対し
て保護物質的役割を果たす。従って、従来の過酸化水素
を用いる超純水系の殺菌処理で、殺菌効果を十分期待す
るためには過酸化水素溶液濃度を5V/V%以上にする必
要がある。しかし過酸化水素溶液の濃度を高濃度にする
のは取り扱い上危険であり好ましくない。しかも過酸化
水素は自己分解を起こすため過酸化水素溶液を長時間保
存できない欠点がある。
2H 2 O 2 → 2H 2 O 2 + O 2 (1) In addition, the slime layer that propagates in the ultrapure water system and adheres to the wall and proliferates against the traumatic bactericidal action of hydrogen peroxide, hypochlorous acid, etc. Play a protective material role. Therefore, in the conventional ultrapure water-based sterilization treatment using hydrogen peroxide, it is necessary to set the hydrogen peroxide solution concentration to 5 V / V% or more in order to fully expect the sterilization effect. However, it is not preferable to increase the concentration of the hydrogen peroxide solution because it is dangerous in handling. Moreover, since hydrogen peroxide undergoes self-decomposition, there is a drawback that the hydrogen peroxide solution cannot be stored for a long time.

本発明は、きわめて高純度の純水即ち超純水を製造する
超純水製造システムの殺菌処理を、安全にかつ効果的に
行う殺菌方法を提供することを目的とするものである。
An object of the present invention is to provide a sterilization method for safely and effectively sterilizing an ultrapure water production system for producing ultrahigh-purity pure water, that is, ultrapure water.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記の問題点を解決すべく、取り扱いが容
易で特に超純水系内に生息するバクテリアに対し殺菌効
果の高い殺菌方法を検討し、従来試みられていなかった
無機栄養塩類を使用する殺菌方法が最も実用的であるこ
とを知見するに至り本発明を完成したものである。
In order to solve the above problems, the present inventors have investigated a sterilization method that is easy to handle and has a particularly high bactericidal effect on bacteria that live in the ultrapure water system, and uses inorganic nutrient salts that have not been attempted in the past. The present invention has been completed by finding that the sterilization method described above is the most practical.

本発明の特徴とする手段は、1次純水製造装置の出口水
中の不純物を更に除去する目的で2次純水製造装置を設
置し、2次純水製造装置の出口水(超純水)の一部を2
次純水製造装置の入口に戻すように2次純水製造装置と
ユースポイント間で常に循環する超純水循環ラインを有
する超純水製造システムにおいて、非再生型イオン交換
カートリッジを除く前記2次純水製造装置及び超純水循
環ラインに0.1W/V%以上の濃度の無機栄養塩類溶液を通
液することを特徴とする超純水製造システムの殺菌方法
である。
A feature of the present invention is that a secondary pure water producing apparatus is installed for the purpose of further removing impurities in the outlet water of the primary pure water producing apparatus, and the outlet water (ultra pure water) of the secondary pure water producing apparatus is installed. Part of 2
In an ultrapure water production system having an ultrapure water circulation line that constantly circulates between the secondary pure water production apparatus and the point of use so as to return to the inlet of the secondary pure water production apparatus, the secondary water excluding the non-regenerative ion exchange cartridge A method for sterilizing an ultrapure water production system, which comprises passing an inorganic nutrient salt solution having a concentration of 0.1 W / V% or more through a pure water production apparatus and an ultrapure water circulation line.

〔作用〕[Action]

超純水中に生息するバクテリアについて詳細に検討した
結果、従来言われていた細菌群以外の極めて低い栄養環
境を至適とするバクテリア群が優占種であることを確認
した。このような低濃度栄養性細菌は少量の有機物のも
とで増殖し、多量の有機物の存在下ではむしろ増殖しな
い細菌であり、無機栄養塩類についても同様にきわめて
耐塩性が低く、無機栄養塩類に対する感受性が高いこと
を見い出した。
As a result of detailed examination of the bacteria inhabiting in ultrapure water, it was confirmed that the bacteria group that optimizes extremely low nutritional environment other than the conventionally said bacteria group is the dominant species. Such low-concentration nutritive bacteria grow in the presence of a small amount of organic matter, but do not grow in the presence of a large amount of organic matter. Similarly, inorganic nutrients have extremely low salt tolerance and It was found to be highly sensitive.

本発明のバクテリアに対する無機栄養塩類の作用は、従
来の過酸化水素、次亜塩素酸等の外傷性殺菌作用とは異
なり、上述のごとく塩類耐性のきわめて低いバクテリア
に対して浸透圧ショック及び塩類による生理機能障害を
与えるものである。また無機栄養塩類は従来の過酸化水
素,次亜塩素酸等の酸化剤系殺菌剤では死滅しずらいカ
タラーゼ活性を持つバクテリア或いは菌体外壁にスライ
ム等の保護物質を形成しているバクテリアに対しても充
分高い殺菌作用を示すものである。
The action of the inorganic nutrient salts on the bacterium of the present invention is different from the conventional traumatic bactericidal action of hydrogen peroxide, hypochlorous acid, etc., as described above, due to the osmotic shock and the salt on the extremely low salt tolerance bacterium. It impairs physiological function. Inorganic nutrient salts are used against conventional bacteria such as hydrogen peroxide and hypochlorous acid, which are hard to be killed by oxidizer-based bactericides, or bacteria that form a protective substance such as slime on the outer wall of cells. However, it has a sufficiently high bactericidal action.

本発明において使用する無機栄養塩類としては種々のも
のを使用することができるが、Nacl,Na2SO4等のナトリ
ウム塩好ましくは食塩が良く、重金属は殺菌処理後、殺
菌廃水の廃水処理を行う必要があることから経済性に欠
ける面がある。また、無機栄養塩類溶液の濃度としては
0.1W/V%以上とし、この無機栄養塩類溶液を孔径1μm
以下のMF又はUFで膜ろ過した後、使用するのも好ま
しく、更には前記無機栄養塩類を水に溶解する前に16
0℃以上好ましくは200℃以上で乾熱殺菌を行うこと
で、使用する無機栄養塩類及び該無機栄養塩類を溶解し
た水溶液から超純水系内に持ち込まれるバクテリアをあ
らかじめ除菌或いは殺菌することでより完全な殺菌処理
を行うことができるものである。
As the inorganic nutrient salts used in the present invention, various ones can be used, but Nacl, sodium salts such as Na 2 SO 4, preferably salt is good, and heavy metals are sterilized, and wastewater treatment of sterilized wastewater is performed. There is a lack of economy because it is necessary. In addition, as the concentration of the inorganic nutrient salt solution,
0.1 W / V% or more, and this inorganic nutrient salt solution has a pore size of 1 μm
It is also preferable to use after membrane filtration with the following MF or UF, and further before dissolving the inorganic nutrient salts in water.
By performing dry heat sterilization at 0 ° C. or higher, preferably 200 ° C. or higher, the inorganic nutrient salts to be used and the bacteria brought into the ultrapure water system from the aqueous solution in which the inorganic nutrient salts are dissolved can be sterilized or sterilized in advance. It can be completely sterilized.

更に本発明を、その一実施様態を示す第1図に基づいて
詳しく説明すれば、殺菌処理を行わない通常運転の場
合、1次純水導入管2より必要量の1次純水が2次純水
製造装置1に流入し、2次純水製造装置1によって超純
水となった水はユースポイント3を介して超純水循環ラ
イン4によりその一部が2次純水製造装置1の入口に戻
される。殺菌処理を行う場合、2次純水製造装置1の上
流側に設けられたバルブ7を開け、あらかじめ無機栄養
塩類タンク6で0.1W/V%以上の濃度に調製した無機栄養
塩類溶液を薬注ポンプ5を介して2次純水製造装置1の
入口に注入する。ここで無機栄養塩類溶液の濃度は2次
純水製造装置1及び超純水循環ライン4を含めて系内の
無機栄養塩類濃度が0.1W/V%以上に保持できるよう適当
な稀釈倍率を考慮した濃度であれば良い。更にはより殺
菌効果を高めるために、好ましくは、0.5W/V%以上で行
うのが良い。但し殺菌処理を行う前に非再生型イオン交
換カートリッジはバイパス等に切り換えることにより、
無機栄養塩類溶液と接触することを未然に防止しなけれ
ばならない。即ち非再生型イオン交換カートリッジが無
機栄養塩類溶液と接触すれば、当然イオン交換反応が起
りイオン交換樹脂のイオン交換容量が低下しついにはブ
レークすることになるからである。
Further, the present invention will be described in detail with reference to FIG. 1 showing an embodiment thereof. In a normal operation without sterilization, a required amount of primary pure water is supplied from the primary pure water introducing pipe 2 to the secondary pure water. The water that has flowed into the pure water production apparatus 1 and has become ultrapure water by the secondary pure water production apparatus 1 is partially passed through the use point 3 by the ultrapure water circulation line 4 to the secondary pure water production apparatus 1 Returned to the entrance. When sterilization is performed, the valve 7 provided on the upstream side of the secondary pure water production apparatus 1 is opened, and the inorganic nutrient salt solution prepared in advance in the inorganic nutrient salt tank 6 to a concentration of 0.1 W / V% or more is dosed. It is injected into the inlet of the secondary pure water producing apparatus 1 via the pump 5. Here, regarding the concentration of the inorganic nutrient salt solution, consider an appropriate dilution ratio so that the concentration of the inorganic nutrient salt in the system including the secondary pure water production apparatus 1 and the ultrapure water circulation line 4 can be maintained at 0.1 W / V% or more. Any concentration may be used. Furthermore, in order to further enhance the bactericidal effect, it is preferably performed at 0.5 W / V% or more. However, by switching the non-regenerative ion exchange cartridge to bypass etc. before performing sterilization treatment,
Contact with inorganic nutrient solutions must be prevented in advance. That is, if the non-regeneration type ion exchange cartridge is brought into contact with the inorganic nutrient salt solution, an ion exchange reaction naturally occurs, the ion exchange capacity of the ion exchange resin is reduced, and eventually a break occurs.

また無機栄養塩類溶液を2次純水製造装置1に注入する
前にMF又はUF10によりろ過することで、無機栄養
塩類溶液から持ち込まれるバクテリアや粒子をも除去し
て不必要に超純水系内に不純物を持ち込むことを未然に
防止することにより、殺菌効果をより向上させることが
できる。更には例えば食塩を用いる場合、品質の低い食
塩中には好塩性菌が存在することから、使用前に160
℃以上好ましくは200℃以上で乾熱殺菌した食塩を用
いれば、品質の低い食塩であっても簡単に殺菌学的に清
潔なものにすることができる。
In addition, by filtering the inorganic nutrient solution with MF or UF10 before injecting it into the secondary pure water producing apparatus 1, bacteria and particles brought in from the inorganic nutrient solution are also removed to unnecessarily enter the ultrapure water system. By preventing the introduction of impurities, the bactericidal effect can be further improved. Furthermore, when using salt, for example, since halophilic bacteria are present in low-quality salt, 160% before use.
By using salt that has been sterilized by dry heat at a temperature of not lower than 200.degree. C., preferably not lower than 200.degree. C., even low-quality salt can be easily sterilized and clean.

超純水系内の殺菌処理時間は1〜3時間程度で良く、こ
れは従来の過酸化水素溶液を用いる場合とほぼ同じであ
る。この時第1図のバルブ8を開けて超純水系内で循環
しても良く、またバルブ9を開け無機栄養塩類溶液の一
部或いは全量を系外に排出しても良い、次に殺菌終了後
残留する無機栄養塩類を洗い出す洗浄工程となるが、そ
の洗浄時間は3〜5時間程度である。従来の過酸化水素
を用いる場合でも少なくとも3時間以上必要なことか
ら、無機栄養塩類を用いる本発明の洗浄時間が従来法に
比べ特別長くなることはない。しかも過酸化水素と異な
り無機栄養塩類を使用する場合、洗浄の終点を比抵抗或
いは導電率を測定することにより容易に知ることができ
る。この点から過酸化水素と無機栄養塩類とを併用すれ
ば従来法でも容易に洗浄の終点を知ることができると言
える。
The sterilization time in the ultrapure water system may be about 1 to 3 hours, which is almost the same as when using the conventional hydrogen peroxide solution. At this time, the valve 8 shown in FIG. 1 may be opened to circulate in the ultrapure water system, or the valve 9 may be opened to discharge a part or all of the inorganic nutrient solution outside the system. The cleaning step is to wash out residual inorganic nutrient salts, and the cleaning time is about 3 to 5 hours. Even if the conventional hydrogen peroxide is used, at least 3 hours or more is required, so that the cleaning time of the present invention using the inorganic nutrient salts is not particularly long as compared with the conventional method. Moreover, when using an inorganic nutrient salt unlike hydrogen peroxide, the end point of washing can be easily known by measuring the specific resistance or the electrical conductivity. From this point, it can be said that the combined use of hydrogen peroxide and inorganic nutrients makes it possible to easily know the end point of washing even by the conventional method.

〔実施例〕〔Example〕

次に本発明の実施例の実験装置フローを第2図に示す。 Next, FIG. 2 shows the experimental apparatus flow of the embodiment of the present invention.

第2図を説明すれば、1次純水は1次純水導入管2によ
り必要量を高純水タンク11に補給する。高純水タンク
11は窒素ガスライン13によりN2ガスでシールさ
れ、エアフィルタ12を介して大気と連通している。
Referring to FIG. 2, the required amount of primary pure water is supplied to the high pure water tank 11 through the primary pure water introducing pipe 2. The high pure water tank 11 is sealed with N 2 gas by a nitrogen gas line 13 and communicates with the atmosphere via an air filter 12.

2次純水ポンプ14により非再生型イオン交換カートリ
ッジ16、0.6μm MF20及び超純水循環ライン4
介して超純水は高純水タンク11に戻る。上記実験装置
を約1ケ月運転し、その後本発明により食塩を用いて殺
菌処理を行った。まずバルブ18及び19を閉として非
再生型イオン交換カートリッジ16への通液を遮断し、
バルブ17を開とする。次にバルブ7を開けあらかじめ
無機栄養塩類タンク6に調製した0.5W/V%の食塩溶液を
薬注ポンプ5により孔径0.45μmのMF10を介して2
次純水ポンプ14の吐出側に注入し、バルブ9を開にし
て食塩溶液を系外に排出した。殺菌時間は約1時間とし
た。また同様に約1ケ月実験装置を運転した後、従来法
である1V/V%の過酸化水素溶液で殺菌した。その結果
を表1にまとめて示す。尚バクテリアの計測はASTM
メンブランフィルタ培養法で行った。
Non-regeneration type ion exchange cartridge 16, 0.6 μm MF 20 and ultrapure water circulation line 4 by the secondary pure water pump 14.
Through this, the ultrapure water returns to the high pure water tank 11. The above experimental apparatus was operated for about 1 month, and then sterilized by using salt according to the present invention. First, the valves 18 and 19 are closed to block the passage of liquid to the non-regeneration type ion exchange cartridge 16,
The valve 17 is opened. Next, the valve 7 was opened, and 0.5 W / V% salt solution prepared in advance in the inorganic nutrient salt tank 6 was passed through the MF 10 having a pore diameter of 0.45 μm by the chemical injection pump 5.
Next, water was injected into the discharge side of the pure water pump 14, the valve 9 was opened, and the saline solution was discharged out of the system. The sterilization time was about 1 hour. Similarly, after the experimental apparatus was operated for about one month, it was sterilized by the conventional method of 1 V / V% hydrogen peroxide solution. The results are summarized in Table 1. Bacteria measurement is ASTM
The membrane filter culture method was used.

表2の結果から明らかなように、本発明では殺菌後バク
テリアは不検出であったが、過酸化水素を用いた従来法
では0.1〜0.2個/mlのバクテリアが計測され、殺菌が不
充分であった。この原因は過酸化水素ではカタラーゼ活
性を持つバクテリアあるいはスライム等の保護物質を形
成しているバクテリアに対して効果が小さいためであ
る。
As is clear from the results of Table 2, in the present invention, bacteria were not detected after sterilization, but in the conventional method using hydrogen peroxide, 0.1 to 0.2 bacteria / ml of bacteria were measured and sterilization was insufficient. there were. This is because hydrogen peroxide has a small effect on bacteria having a catalase activity or bacteria forming a protective substance such as slime.

〔発明の効果〕〔The invention's effect〕

以上述べたことからも明らかなように、本発明は従来超
純水の殺菌には用いることがなかった無機栄養塩類を濃
度0.1W/V%以上で使用することで、殺菌効果を極めて高
くし、より完全かつ完全な殺菌が可能となる。
As is clear from the above, the present invention uses an inorganic nutrient salt, which has not been used for sterilization of ultrapure water, at a concentration of 0.1 W / V% or more, and thus the sterilization effect is extremely enhanced. , More complete and complete sterilization is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施態様を示すフローの説明図、第
2図は本発明の実施例の実験装置のフローを示す説明図
で、第3図は超純水製造システムのフローを示す説明図
である。 1…2次純水製造装置、2…1次純水導入管、 3…ユースポイント、4…超純水循環ライン、 5…薬注ポンプ、6…無機栄養塩類タンク、 7,8,9…バルブ、10…MF又はUF、 11…高純水タンク、12…エアフィルタ、 13…窒素ガスライン、14…2次純水ポンプ、 15…紫外線殺菌器、16…非再生型イオン交換 カートリッジ、17,18,19…バルブ、 20…MF、21…凝集沈殿、22…砂ろ過、 23…RO、24…再生型混床式イオン交換塔。
FIG. 1 is an explanatory view of a flow showing an embodiment of the present invention, FIG. 2 is an explanatory view showing a flow of an experimental apparatus of an embodiment of the present invention, and FIG. 3 shows a flow of an ultrapure water production system. FIG. 1 ... Secondary pure water production device, 2 ... Primary pure water introduction pipe, 3 ... Use point, 4 ... Ultra pure water circulation line, 5 ... Chemical injection pump, 6 ... Inorganic nutrient salt tank, 7, 8, 9 ... Valve, 10 ... MF or UF, 11 ... High pure water tank, 12 ... Air filter, 13 ... Nitrogen gas line, 14 ... Secondary pure water pump, 15 ... UV sterilizer, 16 ... Non-regenerative ion exchange cartridge, 17, 18 , 19 ... Valve, 20 ... MF, 21 ... Coagulating sedimentation, 22 ... Sand filtration, 23 ... RO, 24 ... Regenerative mixed bed type ion exchange tower.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】1次純純水製造装置の出口水中の不純物を
更に除去する目的で2次純水製造装置を設置し、2次純
水製造装置の出口水(超純水)の一部を2次純水製造装
置の入口に戻すように2次純水製造装置とユースポイン
ト間で常に循環する超純水循環ラインを有する超純水製
造システムにおいて、非再生型イオン交換カートリッジ
を除く前記2次純水製造装置及び超純水循環ラインに0.
1W/V%以上の濃度の無機栄養塩類を通液することを特徴
とする超純水製造システムの殺菌方法。
1. A secondary pure water producing device is installed for the purpose of further removing impurities in the outlet water of the primary pure water producing device, and a part of the outlet water (ultra pure water) of the secondary pure water producing device is installed. In the ultrapure water production system having an ultrapure water circulation line that constantly circulates between the secondary pure water production apparatus and the point of use so as to return the water to the inlet of the secondary pure water production apparatus, the non-regenerative ion exchange cartridge is excluded. 0.
A sterilization method for an ultrapure water production system, which comprises passing an inorganic nutrient salt having a concentration of 1 W / V% or more.
【請求項2】前記無機栄養塩類溶液が孔径1μm以下の
メンブランフィルタ又は限外ろ過膜でろ過されたもので
ある特許請求の範囲第1項記載の超純水製造システムの
殺菌方法。
2. The sterilization method for an ultrapure water production system according to claim 1, wherein the inorganic nutrient salt solution is filtered with a membrane filter or an ultrafiltration membrane having a pore size of 1 μm or less.
【請求項3】前記無機栄養塩類溶液が乾燥殺菌された無
機栄養塩類を溶解して調製されたものである特許請求の
範囲第1項又は第2項記載の超純水製造システムの殺菌
方法。
3. The sterilization method for an ultrapure water production system according to claim 1, wherein the inorganic nutrient salt solution is prepared by dissolving dry sterilized inorganic nutrient salts.
JP61244222A 1986-10-16 1986-10-16 Ultrapure water production system sterilization method Expired - Lifetime JPH0638955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244222A JPH0638955B2 (en) 1986-10-16 1986-10-16 Ultrapure water production system sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244222A JPH0638955B2 (en) 1986-10-16 1986-10-16 Ultrapure water production system sterilization method

Publications (2)

Publication Number Publication Date
JPS63100997A JPS63100997A (en) 1988-05-06
JPH0638955B2 true JPH0638955B2 (en) 1994-05-25

Family

ID=17115561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244222A Expired - Lifetime JPH0638955B2 (en) 1986-10-16 1986-10-16 Ultrapure water production system sterilization method

Country Status (1)

Country Link
JP (1) JPH0638955B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630764B2 (en) * 1989-03-06 1994-04-27 森田化学工業株式会社 Ultrapure water line sterilization method
JP7204597B2 (en) * 2019-07-08 2023-01-16 オルガノ株式会社 Ultrapure water production system and ultrapure water production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216687A (en) * 1983-05-24 1984-12-06 Daicel Chem Ind Ltd Pasturization of pure water apparatus
JPS6154297A (en) * 1984-08-22 1986-03-18 Hitachi Ltd Manufacturing apparatus of demineralized water

Also Published As

Publication number Publication date
JPS63100997A (en) 1988-05-06

Similar Documents

Publication Publication Date Title
CN102138568B (en) Method and equipment for preparing isosmotic disinfection cleaning solution
JP3152897B2 (en) Sterilizing composition for producing ultrapure water for semiconductor device manufacturing process and sterilizing method for ultrapure water producing apparatus using the same
JPH02233194A (en) Sterilization of super pure water line
JPH0760291A (en) Production of pyrogen-free high-purity water
CN105330004B (en) A kind for the treatment of process of Treated sewage reusing
CN207845415U (en) A kind of pharmaceutical bipolar reverse osmosis equipment
JPH084728B2 (en) Membrane module cleaning method
JPH0638955B2 (en) Ultrapure water production system sterilization method
JPS6336890A (en) Apparatus for producing high-purity water
JP2004209478A (en) Method and apparatus for backwashing membrane module for removing turbidness
JP2002336886A (en) Extrapure water making device and extrapure water making method
CN111760460B (en) Cleaning process for RO (reverse osmosis) membrane for recycling reclaimed water of electrolytic copper foil
Pavlova Study on the cleaning of new ultrafiltration spiral-woundmodules to prevent membrane fouling (including biological fouling)
JPH11207392A (en) Water purifying treatment device
JP3998997B2 (en) Disinfection method of ultrapure water supply pipe
WO2021192582A1 (en) Water treatment method, water treatment device and slime inhibitor for membranes
CN208265935U (en) A kind of high-purity water treatment system of space flight
JP3353810B2 (en) Reverse osmosis seawater desalination system
GB2197860A (en) Apparatus for and the method of water purification
JP4661009B2 (en) Ultrapure water production system
CN201947852U (en) Production equipment for isotonic disinfectant cleaning liquids
JP3609470B2 (en) Water purification method and purification device
JPH0815596B2 (en) Ultrapure water production method
JPH0649141B2 (en) Method of regenerating ultrafiltration membrane
JP2000042373A (en) Sterilization method in reverse osmosis membrane separation process