JPH06269778A - Method for purifying water by using membrane module - Google Patents

Method for purifying water by using membrane module

Info

Publication number
JPH06269778A
JPH06269778A JP8669293A JP8669293A JPH06269778A JP H06269778 A JPH06269778 A JP H06269778A JP 8669293 A JP8669293 A JP 8669293A JP 8669293 A JP8669293 A JP 8669293A JP H06269778 A JPH06269778 A JP H06269778A
Authority
JP
Japan
Prior art keywords
water
membrane module
membrane
water tank
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8669293A
Other languages
Japanese (ja)
Inventor
Muraa Pieeru
ムラー ピエール
Binasu Aran
ビナス アラン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DICK DEGUREMON KK
Original Assignee
DICK DEGUREMON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DICK DEGUREMON KK filed Critical DICK DEGUREMON KK
Priority to JP8669293A priority Critical patent/JPH06269778A/en
Publication of JPH06269778A publication Critical patent/JPH06269778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To provide a water purifying method by which a hydrate secondary Mn having an accumulable property on an inner wall of a treating water tank and an inner wall of a back washing piping and besides on an inner wall of a membrane module does not deposit. CONSTITUTION:Raw water incorporating turbid substance is treated by passing it through the membrane module 4 and the permeated water is introduced into a washing water tank 11, and when the membrane module was clogged, a chlorine type oxidizer is further added to the treating water introduced from the washing water tank to perform back washing of 15, 16, 17 and the membrane module 14 and the permeated water quantity through the membrane module is recovered, and then the raw water is again passed through the membrane module, thus these processes are repeated and the organic substance or inorganic substance incorporated in the raw water are removed to supply it to beverage. When the feed water is passed through the membrane module after the completion of the back washing, the back washing water remaining within the membrane module is introduced to another system without introducing it into the washing water tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、膜モジュールを用いて
原水に含まれる濁質を除去し、原水を飲料に供するよう
にした浄水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating water by removing turbidity contained in raw water by using a membrane module and using the raw water for drinking.

【0002】[0002]

【従来の技術】膜処理は、海水の淡水化や純水の製造、
糞尿処理、下水処理水の再処理等に用いられ、すでによ
く知られた処理法である。このような処理法を浄水処理
に用いると、コロイドのような微細な浮遊物質を直接分
離でき、凝集沈澱処理を全く必要としなくなるので、操
作上有利となるばかりでなく、その分浄水場の敷地面積
が狭くてすむという利点もでてくる。最近では広い敷地
を必要とする在来形式の浄水処理場を設置することが難
しくなってきているので、このような膜の使用が検討さ
れ、また実際にも使用され始めてきている。更に、この
膜処理では在来の処理法では対応できないような処理、
例えばバクテリアやウイルスのような細菌の除去も可能
であるので、その面での処理も期待され、研究されてい
る。浄水処理では、微細な細孔(0.01〜0.5μ
m)を有する膜材料、例えばポリエチレン、ポリスルフ
ォン、ポリアクリルニトリル、酢酸セルロースを管や中
空糸にし、それらを数千本束ねてろ過面積を大きくした
モジュール形式の精密ろ過膜や限外ろ過膜を用い、懸濁
質やコロイド状になった有機物や無機物を含む原水を上
記膜モジュールに圧送・循環させて固液を分離し、膜を
通過した処理水を洗浄水タンクに導き、そこから溢流し
た水を配水池に送っているが、その溢流水に雑菌が繁殖
しないように次亜塩素酸ソーダを投入して塩素殺菌して
いる。このような処理では、当然原水に含まれる懸濁物
質やコロイド物質が膜に付着して目詰まりを起こし、処
理能力が直ぐ低下するが、これを回復するため、例えば
透過水量が設定値以下あるいは膜の差圧が設定値以上に
なったとき、あるいは定期的に膜の洗浄を行っている。
膜の洗浄は、一般に逆洗ポンプを使用して洗浄水タンク
内の処理水をろ過方向と逆方向に圧送し、その水圧で微
細孔に詰まった粒子を強制的に押し出して行っている。
しかし、粘着性の菌体やその代謝物が膜に付着したり、
コロイド状の水酸化鉄が細孔に詰まっていると、圧力水
のみでは短時間に完全に除去することができないので、
通常処理水に数ppmの塩素系の酸化剤、例えば次亜塩
素酸ソーダを添加して洗浄を行っている。このような逆
洗を数十秒間を行って膜の透過水量が回復すると、直ち
に原水を膜モジュールに送り、その透過水を洗浄水タン
クに送るようにしている。この処理を頻繁に繰り返して
(時間的にみると、通水10分〜1時間に対して逆洗1
5秒〜1分の割合で)原水を処理し、飲料に適した処理
水を得るようにしている。ところで、逆洗直後に通水す
ると、透過水に逆洗に用いた塩素が含まれることになる
が、処理水については前記したように塩素殺菌が行われ
るし、また逆洗が頻繁に繰り返されているのでその都度
廃棄するとかなりの水量が無駄になるので経済的な面を
考えて、そのまま洗浄水タンクに送るようにしている。
また、長期にわたって膜を使用していると、逆洗のみで
は流束や差圧が回復しなくなるので、そのときには薬品
洗浄を行っている。薬品には洗剤やクエン酸等が用いら
れている。
2. Description of the Related Art Membrane treatment is used for desalination of seawater and production of pure water.
It is a well-known treatment method used for excrement treatment and retreatment of sewage treatment water. If such a treatment method is used for water purification treatment, fine suspended solids such as colloids can be directly separated, and no coagulation sedimentation treatment is required. The advantage is that the area is small. Recently, it has become difficult to set up a conventional type water purification plant that requires a large site, so the use of such a membrane has been considered and is beginning to be used. Furthermore, this membrane treatment is a treatment that conventional treatment methods cannot handle,
For example, since it is possible to remove bacteria such as bacteria and viruses, treatments in that respect are also expected and studied. In water purification, fine pores (0.01-0.5μ
m) a membrane material such as polyethylene, polysulfone, polyacrylonitrile, or cellulose acetate into a tube or a hollow fiber, and bundle a few thousand of these to form a module type microfiltration membrane or ultrafiltration membrane. The raw water containing suspended solids and colloidal organic and inorganic substances is pumped and circulated through the membrane module to separate solid and liquid, and the treated water that has passed through the membrane is guided to the wash water tank and overflows from it. The spilled water is sent to the distribution reservoir, but the hypochlorite is sterilized by adding sodium hypochlorite so that various bacteria do not propagate in the overflow water. In such treatment, naturally suspended substances and colloidal substances contained in the raw water adhere to the membrane and cause clogging, and the treatment capacity immediately decreases, but in order to recover this, for example, the amount of permeated water is below the set value or The membrane is cleaned when the pressure difference across the membrane exceeds a set value or periodically.
The membrane is generally washed by using a backwash pump to pump the treated water in the wash water tank in the direction opposite to the filtration direction, and forcibly extruding the particles clogged in the fine pores by the water pressure.
However, sticky cells and their metabolites adhere to the membrane,
If the colloidal iron hydroxide is clogged in the pores, it cannot be completely removed in a short time only with pressure water.
Usually, several ppm of chlorine-based oxidizer such as sodium hypochlorite is added to the treated water for cleaning. Such backwashing is carried out for several tens of seconds, and when the amount of permeated water in the membrane is recovered, the raw water is immediately sent to the membrane module and the permeated water is sent to the wash water tank. Repeat this treatment frequently (in terms of time, 10 minutes to 1 hour of water flow backwash 1
Raw water is treated (at a rate of 5 seconds to 1 minute) to obtain treated water suitable for beverages. By the way, if water is passed immediately after the backwash, the permeated water will contain chlorine used for the backwash, but the treated water is sterilized by chlorine as described above, and the backwash is frequently repeated. Therefore, each time it is discarded, a considerable amount of water is wasted. Therefore, considering the economical aspect, it is sent to the wash water tank as it is.
Further, if the membrane is used for a long period of time, the flux and the differential pressure cannot be recovered only by backwashing, so chemical cleaning is performed at that time. Detergents and citric acid are used as chemicals.

【0003】[0003]

【発明が解決しようとする課題】ところが、この従来の
方法で十数日間〜数十日間処理すると、薬品洗浄するよ
うな時期ではないのに逆洗期間が急激に短くなり、逆洗
を頻繁に繰り返しても膜の流束や差圧が回復せず透過水
量が急激に減少する現象が生じた。このような現象を詳
しく調べてみると、洗浄水タンクの内壁や逆洗用の配管
内壁、更に膜モジュールの容器内壁に水和第2マンガン
が沈積して上記のような障害が起きていることが判っ
た。そこで、本発明の目的はこのようなマンガン障害が
起こらない浄水処理方法を提供することにある。
However, when this conventional method is used for a few dozen to several tens of days, the backwashing period is drastically shortened even though it is not the time for chemical cleaning, and backwashing is frequently performed. Even if repeated, the flux of the membrane and the differential pressure did not recover and the amount of permeated water decreased sharply. A close examination of such a phenomenon reveals that hydrated ferric manganese is deposited on the inner wall of the wash water tank, the inner wall of the pipe for backwashing, and the inner wall of the container of the membrane module, and the above-mentioned problems occur. I understood. Therefore, an object of the present invention is to provide a water purification method that does not cause such manganese damage.

【0004】[0004]

【課題を解決するための手段】上記課題は、浄水用の原
水を膜モジュールに通して濁質を除き、その透過水を洗
浄水タンクに導き、該膜モジュールが目詰まりを起こし
たとき、洗浄水タンクから導かれた処理水に更に塩素系
の酸化剤を添加して膜モジュールを逆洗し、膜モジュー
ルの透過水量を再生した後、また原水を膜モジュールに
通し、これを繰り返して原水中に含まれる濁質を除去し
て飲料に供するようにする、膜モジュールを用いた浄水
処理方法において、前記逆洗を終了して原水を膜モジュ
ールに通すとき、膜モジュール内に残留している逆洗水
を洗浄水タンク内に導かずに別系統に導くことで、解決
される。逆洗終了時の膜モジュール内に残留している逆
洗水を廃棄せず直接配水池に導くようにすれば無駄にな
ることもないので経済的である。また、逆洗の終了直前
に塩素系酸化剤の供給を停止して処理水のみを送れば洗
浄水タンクと膜モジュールを連結する逆洗水供給管内に
塩素系酸化剤を残置させることもないので一層好まし
い。
[Means for Solving the Problems] The above problems are solved by passing raw water for water purification through a membrane module to remove turbidity, guiding the permeated water to a wash water tank, and washing when the membrane module is clogged. A chlorine-based oxidizing agent is added to the treated water introduced from the water tank to backwash the membrane module to regenerate the amount of permeated water in the membrane module, and then the raw water is passed through the membrane module again to repeat the raw water. In the water purification method using a membrane module, which removes the suspended matter contained in the membrane module, and when the raw water is passed through the membrane module after the backwashing, the reverse residual water remaining in the membrane module is used. It is solved by introducing the wash water to another system without introducing it into the wash water tank. If the backwash water remaining in the membrane module at the end of the backwash is not directly discarded but is directly guided to the reservoir, it is economical because it is not wasted. Also, if the supply of the chlorine-based oxidant is stopped immediately before the end of the backwash and only the treated water is sent, the chlorine-based oxidant will not be left in the backwash water supply pipe that connects the wash water tank and the membrane module. More preferable.

【0005】[0005]

【作用】原水には多少なりとも鉄分が含まれ、更にそれ
より少ない量であるがマンガンイオンが含まれている。
マンガンイオンは鉄より標準還元電位が高いので水中に
含まれる溶存酸素に酸化されず、そのままろ過膜を通過
する。ところが、マンガンイオンは逆洗に使用されてい
る塩素系の酸化剤とは非常に緩慢ではあるが酸化する。
酸化・析出した水和第2酸化マンガンは自触媒的に酸化
析出するので蓄積性が高い。したがって、緩慢とはい
へ、塩素系酸化剤を含んだ処理水を、その処理水が希釈
されて塩素濃度がほとんど痕跡程度になったとしても系
内で循環させることは、塩素系酸化剤と処理水の接触時
間を長くするので好ましくない。本発明によれば、塩素
系酸化剤を含んだ処理水を系内で長く滞留させることな
く直ちに別系統で処理するようにしたので、従来のよう
な水和第2酸化マンガンの沈積障害を洗浄水タンク、逆
洗水供給管及び膜モジュール内壁で起こすことがほとん
どない。
[Operation] Raw water contains iron to some extent, and manganese ions are contained in a smaller amount.
Since manganese ion has a higher standard reduction potential than iron, it is not oxidized to dissolved oxygen contained in water and passes through the filtration membrane as it is. However, manganese ions oxidize, though very slowly, with the chlorine-based oxidizer used for backwashing.
Oxidized and precipitated hydrated secondary manganese oxide is highly accumulative because it is autocatalytically oxidized and precipitated. Therefore, even if the treated water containing chlorine-based oxidizer is slowly circulated in the system even if the treated water is diluted and the chlorine concentration becomes almost trace, It is not preferable because it increases the contact time with water. According to the present invention, the treated water containing the chlorine-based oxidant is immediately treated in another system without staying in the system for a long time. It rarely occurs in the water tank, backwash water supply pipe and inner wall of the membrane module.

【0006】[0006]

【実施例】以下、図面を参照して本発明を具体的に説明
する。プレフィルタ1を通った原水は、先ず供給タンク
2に供給され、そこから供給ポンプ3により膜モジュー
ル4に供給される。ろ過膜には限外ろ過膜と精密ろ過膜
があるが、本発明はいずれのろ過膜でもよく、またろ過
膜の材質は塩素系酸化剤に強いものならどんなものでも
よい。ろ過膜は通常単位体積あたりの処理量を大きくす
るためモジュール化されている。本発明では、例えばポ
リエチレンないしは酢酸セルロースで形成した中空糸形
モジュールが使用される。このような中空糸を用いた場
合、原水は膜の外から内側に通される。そして、ろ過膜
を内在させた膜モジュール4には原水の供給口5、濃縮
水口6及び透過水口7の3つの出入口を有し、上記した
供給ポンプ3の吐出口は供給口5に接続される。この膜
モジュール4に供給された原水の一部はろ過膜を透過し
て透過水口7に流れる。透過するときに有機物や無機物
が除去されるので、透過しない原水は有機物や無機物の
濃度が高くなり、このような濃縮水は濃縮水口6より排
出される。この濃縮水は、通常そのまま廃棄することな
く、循環ポンプ8を介して膜モジュール4の供給口5に
戻される。これは水資源を有効に利用するためである。
したがって、膜モジュール4には、供給タンク2から透
過水量と同じ水量の原水が常に供給される。この膜モジ
ュールは、25℃で、0.5Kgf/cm2 の圧力で、
14m3 /日の水を処理する能力がある。更に濃縮水口
6には逆洗した洗浄水を廃棄する電磁開閉バルブ9が備
えられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. The raw water that has passed through the pre-filter 1 is first supplied to the supply tank 2 and then supplied from the supply pump 3 to the membrane module 4. The filtration membrane includes an ultrafiltration membrane and a microfiltration membrane, but the present invention may be any filtration membrane, and the filtration membrane may be made of any material that is strong against chlorine-based oxidants. The filtration membrane is usually modularized to increase the throughput per unit volume. In the present invention, a hollow fiber module made of, for example, polyethylene or cellulose acetate is used. When such a hollow fiber is used, raw water is passed from the outside of the membrane to the inside. The membrane module 4 having the filtration membrane therein has three inlets / outlets of a raw water supply port 5, a concentrated water port 6 and a permeated water port 7, and the discharge port of the above-mentioned supply pump 3 is connected to the supply port 5. . Part of the raw water supplied to the membrane module 4 permeates the filtration membrane and flows to the permeated water port 7. Since organic substances and inorganic substances are removed when they permeate, raw water that does not permeate has a high concentration of organic substances and inorganic substances, and such concentrated water is discharged from the concentrated water port 6. This concentrated water is normally returned to the supply port 5 of the membrane module 4 via the circulation pump 8 without being discarded as it is. This is to make effective use of water resources.
Therefore, the membrane module 4 is always supplied with the same amount of raw water as the amount of permeated water from the supply tank 2. This membrane module has a pressure of 0.5 Kgf / cm 2 at 25 ° C.
It is capable of treating 14 m 3 / day of water. Further, the concentrated water inlet 6 is provided with an electromagnetic opening / closing valve 9 for discarding backwashed washing water.

【0007】膜モジュールで処理された透過水は管10
を介して一旦洗浄水タンク11で受けるが、これは洗浄
用の綺麗な水を確保するためである。したがって、洗浄
水タンク11は逆洗及び薬品洗浄に必要な水が確保でき
るような大きさ、例えば200リットル程度の大きさに
されている。洗浄水タンク11の底部からは逆洗水供給
管12、逆洗ポンプ13及び電磁開閉バルブ14を介し
て上記管10に接続され、膜モジュール4の透過水口7
に連通させられている。透過水口7と電磁開閉バルブ1
4との間には、逆洗時に塩素系酸化剤を供給するため
に、塩素系酸化剤を溶解した酸化剤タンク15が酸化剤
供給ポンプ16を介して接続されている。実施例では次
亜塩素酸ソーダを用いたが、これに替えて塩素ガス、高
度さらし粉等を用いることができる。
The permeate treated by the membrane module is pipe 10
The water is once received by the washing water tank 11 through the above in order to secure clean water for washing. Therefore, the wash water tank 11 is sized so that water necessary for back washing and chemical washing can be secured, for example, about 200 liters. The bottom portion of the wash water tank 11 is connected to the pipe 10 through a backwash water supply pipe 12, a backwash pump 13, and an electromagnetic opening / closing valve 14, and the permeate port 7 of the membrane module 4 is connected.
Is in communication with. Permeate water port 7 and electromagnetic on-off valve 1
An oxidant tank 15 in which a chlorine-based oxidant is dissolved is connected to the No. 4 via an oxidant supply pump 16 in order to supply the chlorine-based oxidant during backwashing. Although sodium hypochlorite was used in the examples, chlorine gas, highly exposed powder, or the like can be used instead of this.

【0008】本発明においては逆洗後原水を膜モジュー
ルに通して運転を再開したとき、膜モジュール内に残留
する洗浄水を洗浄水タンク11に入れることなく別系統
に通すため、逆洗水供給管12と管10との接合点以下
の下流で洗浄水タンク11の上流に電磁式の3方弁17
が設けられている。一方の口は当然洗浄水タンク11に
接続されているが、他方の口は洗浄水を直接洗浄水タン
ク11に入れないように別系統に接続されている。通
常、洗浄水タンク11の溢流水は塩素殺菌した後配水池
に送られる。洗浄水はもともと塩素が含まれていて塩素
殺菌する必要がないので、実施例においては上記他方の
口が直接配水池に接続されている。このようにすると、
処理効率を従来と同じにすることができる。
In the present invention, when the raw water is passed through the membrane module after the backwash and the operation is restarted, the wash water remaining in the membrane module is passed through another system without being put in the wash water tank 11, so that the backwash water is supplied. An electromagnetic three-way valve 17 is provided upstream of the cleaning water tank 11 at a downstream of the junction between the pipe 12 and the pipe 10.
Is provided. One of the ports is naturally connected to the wash water tank 11, but the other port is connected to another system so that the wash water cannot directly enter the wash water tank 11. Normally, the overflow water in the wash water tank 11 is sterilized with chlorine and then sent to the distribution reservoir. Since the wash water originally contains chlorine and does not need to be sterilized with chlorine, the other port is directly connected to the reservoir in the embodiment. This way,
The processing efficiency can be the same as the conventional one.

【0009】以上本発明に使用される装置を説明したの
で、以下この装置に関連して本発明方法を具体的に説明
する。地下水には鉄分やマンガンイオンが比較的多く含
まれる場合があるが、河川表流水であっても、有機物の
他、コロイド状あるいは微粒子状になった水酸化鉄と共
に極微量であるがマンガンイオンが含まれている。マン
ガンは標準還元電位が鉄よりも高く、中性溶液中では溶
存酸素により酸化されない。したがって原水中ではほと
んどマンガンイオンの状態で溶存するので、このような
原水をプレフィルタ1で粗粒子を除去して供給タンク2
に入れた後、供給ポンプ3により膜モジュール4に圧送
すると、原水中に含まれる有機物と水酸化鉄の大部分が
前述のろ過膜により除去されるがマンガンイオンはその
ままろ過膜を通過して洗浄水タンク11に入る。洗浄水
タンク11から溢流した処理水は下流で塩素殺菌された
後配水池に送られる。
Now that the apparatus used in the present invention has been described, the method of the present invention will be described in detail with reference to this apparatus. Groundwater may contain a relatively large amount of iron and manganese ions, but even river surface water contains trace amounts of manganese ions, in addition to organic matter and colloidal or particulate iron hydroxide. include. Manganese has a higher standard reduction potential than iron and is not oxidized by dissolved oxygen in neutral solution. Therefore, since most of the raw water is dissolved in the state of manganese ions, the pre-filter 1 removes coarse particles from the raw water and the supply tank 2
After being put into the membrane, the feed pump 3 pressure-feeds it to the membrane module 4, and most of the organic substances and iron hydroxide contained in the raw water are removed by the above-mentioned filtration membrane, but manganese ions pass through the filtration membrane as they are and washed. Enter the water tank 11. The treated water that overflows from the wash water tank 11 is sent to a distribution reservoir after being sterilized with chlorine on the downstream side.

【0010】循環ポンプ8で濃縮水を循環しながら透過
水量に相当する原水を供給口5に供給していくと、ろ過
膜の目詰まりが次第に進行して供給口5と透過水口の差
圧が大きくなる。この差圧が極端に大きくならない時間
を見計らって定期的に、すなわち10〜60分毎に、又
はこの差圧がある所定値、例えば1.5Kgf/cm2
になったとき、ろ過膜の流束を回復するため、通常自動
的に逆洗が開始される。先ず最初に濃縮水口6にある電
磁開閉バルブ9が開けられる。次いで3方口弁17が閉
じられ、更に逆洗系統の電磁開閉バルブ14が開けられ
る。その状態で、逆洗ポンプ13と塩素系酸化剤の供給
ポンプ16が駆動される。通常、洗浄水の塩素濃度が3
ppmになるように次亜塩素酸ソーダが加えられる。上
記例では逆洗時間は約30〜45秒程度、水量にして4
5〜60リットル程度であるが、その直前で塩素系酸化
剤の供給ポンプ16が停止されて処理水のみが透過水口
7から膜モジュール4に供給される。これは逆洗終了後
に塩素系酸化剤を含んだ処理水が洗浄系12と配管系1
0にできるだけ残らないようにしたものである。ろ過膜
を逆洗した洗浄液は濃縮水口6を通り、電磁開閉バルブ
9を介して系外に廃棄される。このようにして逆洗が終
了すると、自動的に逆洗ポンプ13が停止され、電磁開
閉バルブ14,9が閉じられる。そして、逆洗が終了し
て運転が再開されるとき、前記した3方口弁17は、洗
浄水タンク11ではなく、自動的に一時的に別系統に切
り換えられる。この切り換え時間は残留洗浄水を排出す
る時間で膜モジュール4の大きさや供給ポンプ3の容量
により異なる。実施例では残留洗浄水を配水池に送るよ
うにしているのでできるだけ長く約15分程度とるよう
にしている。この切り換え時間が経過すると、3方口弁
17は洗浄水タンク11側に切り換えられる。そして、
上記行程が繰り返されて飲料に供せられる浄水が製造さ
れる。
When the raw water corresponding to the amount of permeated water is supplied to the supply port 5 while circulating the concentrated water by the circulation pump 8, the clogging of the filtration membrane gradually progresses, and the differential pressure between the supply port 5 and the permeated water port is increased. growing. Periodically, that is, every 10 to 60 minutes, or at a predetermined value, for example, 1.5 Kgf / cm 2 where this differential pressure is, in anticipation of the time when this differential pressure does not become extremely large.
When this occurs, backwashing is usually started automatically to restore the flux of the filtration membrane. First, the electromagnetic opening / closing valve 9 at the concentrated water inlet 6 is opened. Next, the three-way valve 17 is closed, and the electromagnetic opening / closing valve 14 of the backwash system is opened. In this state, the backwash pump 13 and the chlorine-based oxidant supply pump 16 are driven. Normally, the chlorine concentration in the wash water is 3
Sodium hypochlorite is added to reach ppm. In the above example, the backwash time is about 30 to 45 seconds and the amount of water is 4
Although it is about 5 to 60 liters, immediately before that, the chlorine-based oxidant supply pump 16 is stopped and only treated water is supplied to the membrane module 4 from the permeated water port 7. This is because the treated water containing the chlorine-based oxidizer after the backwash is the cleaning system 12 and the piping system 1.
It was set to 0 as little as possible. The washing liquid obtained by backwashing the filtration membrane passes through the concentrated water port 6 and is discharged to the outside of the system through the electromagnetic opening / closing valve 9. When the backwash is completed in this way, the backwash pump 13 is automatically stopped and the electromagnetic opening / closing valves 14 and 9 are closed. Then, when the backwashing is completed and the operation is restarted, the above-described three-way valve 17 is not the washing water tank 11 but is automatically and temporarily switched to another system. This switching time is the time for discharging the residual cleaning water and varies depending on the size of the membrane module 4 and the capacity of the supply pump 3. In the embodiment, since the residual cleaning water is sent to the distribution reservoir, it takes about 15 minutes as long as possible. When this switching time elapses, the three-way valve 17 is switched to the wash water tank 11 side. And
The above process is repeated to produce purified water to be used for beverages.

【0011】[0011]

【発明の効果】従来においては、マンガンイオンが塩素
により酸化されるとしてもその反応速度が非常に緩慢で
あり、したがって膜モジュール内に残留する逆洗水を洗
浄水タンク内に導いても一時的に塩素濃度が高くなるだ
けで、その後は大量の透過水により希釈され、洗浄水タ
ンク内の塩素濃度が短時間でほとんど痕跡程度になって
しまうのでマンガンイオンが酸化されて蓄積性のある水
和第2酸化マンガンになるとは考えられていなかった。
このため、残留する逆洗水を洗浄水タンク内に導いたと
しても処理装置に悪い影響を与えるはずがなく、むしろ
処理効率の面から有利であると思われていた。ところ
が、微量になったとしても洗浄水タンク内の塩素の滞留
時間が比較的長く、逆洗と運転が頻繁に繰り返されてい
ると、処理水中に含まれる微量のマンガンイオンが塩素
により除々に酸化析出される。この析出した水和2酸化
マンガンは自触媒的な作用をするので他のマンガンイオ
ンを更に酸化析出させる。この自触媒的な作用は、逆洗
時のみならず、原水の処理中にも起こるので沈積量が急
激に増加し、ある量に達したところで水流の変化に刺激
されて粉末状に剥離し、膜モジュール内を浮遊し始め
る。この浮遊物は膜の目詰まりの原因となるので膜の逆
洗回数が増え、膜の寿命を縮める。本発明においては、
前記したように逆洗終了後運転を再開するときに、膜モ
ジュール内や循環系に残留する洗浄水を一時的に別系統
に排水するようにしたので、洗浄水タンクに塩素が混入
しない。したがって、前記のような酸化反応が起きない
ので蓄積性のある水和第2酸化マンガンが膜モジュール
内壁や逆洗系統の配管に沈積して前述のような障害を起
こすことはない。
In the prior art, even if manganese ions are oxidized by chlorine, their reaction rate is very slow. Therefore, even if the backwash water remaining in the membrane module is introduced into the wash water tank, However, since the chlorine concentration in the wash water tank becomes almost traces in a short time, the manganese ion is oxidized to accumulate hydration which is likely to accumulate. It was not considered to be secondary manganese oxide.
For this reason, even if the residual backwash water is introduced into the wash water tank, it should not adversely affect the treatment equipment, and rather, it was considered advantageous in terms of treatment efficiency. However, even if the amount becomes very small, the retention time of chlorine in the wash water tank is relatively long, and if backwashing and operation are repeated frequently, a small amount of manganese ions contained in the treated water are gradually oxidized by chlorine. Is deposited. The precipitated hydrated manganese dioxide has an autocatalytic action, so that other manganese ions are further oxidized and precipitated. This autocatalytic action occurs not only during backwashing, but also during the treatment of raw water, so that the deposition amount increases rapidly, and when it reaches a certain amount, it is stimulated by the change in the water flow and peels into powder, Begins to float in the membrane module. Since the suspended matter causes the membrane to be clogged, the number of times of backwashing of the membrane is increased and the life of the membrane is shortened. In the present invention,
As described above, when restarting the operation after backwashing, the cleaning water remaining in the membrane module and the circulation system is temporarily discharged to another system, so that chlorine is not mixed in the cleaning water tank. Therefore, since the oxidation reaction as described above does not occur, hydrated secondary manganese oxide, which has a possibility of accumulation, does not deposit on the inner wall of the membrane module or the pipe of the backwash system and cause the above-mentioned trouble.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いられる浄水処理装置のブロック図
である。
FIG. 1 is a block diagram of a water purification apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1 プレフィルタ 2 供給タンク 3 供給ポンプ 4 膜モジュール 5 供給口 6 濃縮水口 7 透過水口 8 循環ポンプ 9 電磁開閉バルブ 10 管 11 洗浄水タンク 12 逆洗水供給管 13 逆洗ポンプ 14 電磁開閉バルブ 15 塩素系酸化剤を溶解したタンク 16 供給ポンプ 17 3方口弁 1 Pre-filter 2 Supply tank 3 Supply pump 4 Membrane module 5 Supply port 6 Concentrated water port 7 Permeate water port 8 Circulation pump 9 Electromagnetic on-off valve 10 Tube 11 Wash water tank 12 Backwash water supply pipe 13 Backwash pump 14 Electromagnetic on-off valve 15 Chlorine Tank in which system oxidant is dissolved 16 Supply pump 17 3 way valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 浄水用の原水を膜モジュールに通して濁
質を除き、その透過水を洗浄水タンクに導き、該膜モジ
ュールが目詰まりを起こしたとき、洗浄水タンクから導
かれた処理水に更に塩素系の酸化剤を添加して膜モジュ
ールを逆洗し、膜モジュールの透過水量を再生した後、
また原水を膜モジュールに通し、これを繰り返して原水
中に含まれる濁質を除去して飲料に供するようにする、
膜モジュールを用いた浄水処理方法において、前記逆洗
を終了して原水を膜モジュールに通すとき、膜モジュー
ル内に残留している逆洗水を洗浄水タンク内に導かずに
別系統に導くことを特徴とする膜モジュールを用いた浄
水処理方法。
1. Processed water led from the wash water tank when purified water is passed through a membrane module to remove suspended solids and the permeated water is led to a wash water tank and when the membrane module is clogged. After further backwashing the membrane module by adding a chlorine-based oxidant to the, regenerate the amount of permeate of the membrane module,
In addition, the raw water is passed through the membrane module, and this is repeated so that the suspended matter contained in the raw water is removed and the beverage is served.
In the water purification method using a membrane module, when the above-mentioned backwashing is finished and the raw water is passed through the membrane module, the backwashing water remaining in the membrane module should be guided to another system without being guided to the wash water tank. A method for purifying water using a membrane module.
JP8669293A 1993-03-22 1993-03-22 Method for purifying water by using membrane module Pending JPH06269778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8669293A JPH06269778A (en) 1993-03-22 1993-03-22 Method for purifying water by using membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8669293A JPH06269778A (en) 1993-03-22 1993-03-22 Method for purifying water by using membrane module

Publications (1)

Publication Number Publication Date
JPH06269778A true JPH06269778A (en) 1994-09-27

Family

ID=13894023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8669293A Pending JPH06269778A (en) 1993-03-22 1993-03-22 Method for purifying water by using membrane module

Country Status (1)

Country Link
JP (1) JPH06269778A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313895A (en) * 1996-05-30 1997-12-09 Daisen Menburen Syst Kk Regenerating device for waste water
JP2012200640A (en) * 2011-03-24 2012-10-22 Hitachi Plant Technologies Ltd Drinking water supply system
JP2019188369A (en) * 2018-04-27 2019-10-31 株式会社清水合金製作所 Portable water purification system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313895A (en) * 1996-05-30 1997-12-09 Daisen Menburen Syst Kk Regenerating device for waste water
JP2012200640A (en) * 2011-03-24 2012-10-22 Hitachi Plant Technologies Ltd Drinking water supply system
JP2019188369A (en) * 2018-04-27 2019-10-31 株式会社清水合金製作所 Portable water purification system

Similar Documents

Publication Publication Date Title
US5647988A (en) Method of back-washing submerged-type ceramic membrane separation apparatus
JP4241684B2 (en) Membrane module cleaning method
JP2005087887A (en) Membrane washing method
JPH1015365A (en) Method for cleaning membrane
JPH06277664A (en) Method and apparatus for clarifying surface flowing water with membrane
CN103492054A (en) Method for cleaning membrane module
CN115121124A (en) Method and apparatus for cleaning filtration membrane, and water treatment system
CN103619451A (en) Washing method for separation membrane module
JP5049623B2 (en) Membrane separator for drinking water production and operation method thereof
JP3735883B2 (en) Membrane separation apparatus and membrane module cleaning method
JP2782566B2 (en) Membrane filtration device
JPH07236818A (en) Backwashing of inner pressure type hollow yarn module
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
JP2827877B2 (en) Membrane separation device and cleaning method thereof
JPH09290141A (en) Method for back-washing membrane separation apparatus
JPH1119490A (en) Method for filtration-backwashing clarifying membrane module
JPH06269778A (en) Method for purifying water by using membrane module
JP2009082858A (en) Cleaning method for filter membrane
JP2007301469A (en) Water treatment method
JPH09220449A (en) Membrane separation device
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JPH119972A (en) Membrane filtration apparatus and membrane filtration method
JP3919893B2 (en) Cleaning method
WO1999026886A1 (en) A method for purifying water, in particular ground water, under anaerobic conditions, using a membrane filtration unit, a device for purifying water, as well as drinking water obtained by using such a method
JP2002113336A (en) Method of cleaning membrane filtration device and water treatment apparatus