JPS6297349A - Wiring and forming method thereof - Google Patents

Wiring and forming method thereof

Info

Publication number
JPS6297349A
JPS6297349A JP23647785A JP23647785A JPS6297349A JP S6297349 A JPS6297349 A JP S6297349A JP 23647785 A JP23647785 A JP 23647785A JP 23647785 A JP23647785 A JP 23647785A JP S6297349 A JPS6297349 A JP S6297349A
Authority
JP
Japan
Prior art keywords
wiring
thickness
wirings
layer
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23647785A
Other languages
Japanese (ja)
Inventor
Michi Kozuka
古塚 岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP23647785A priority Critical patent/JPS6297349A/en
Publication of JPS6297349A publication Critical patent/JPS6297349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obviate the increase in wiring thicknesses at the connecting parts of the wirings and to improve the manufacturing yield rate, by electrically connecting the wirings made of different materials by way of the wirings, which are formed on the different wiring layers using materials that does not react with the wiring of two or more different kinds of materials on the same wiring layer at a specified using temperature. CONSTITUTION:MOSFET ohmic electrodes 31a-31d comprise laminated metal of AuGe alloy having a thickness of about 0.15mum and Ni having a thickness of about 0.05mum. Gate electrode 41a-41d comprises W5Si3 having a thickness of about 0.3mum. Gate electrode metal is used for wiring from the gate electrode 41a to 41d since the wiring resistance on a circuit poses no problem. Wirings to the gate electrodes 41b and 41c are connected to first wiring layers 81a and 18b comprising W having a thickness of about 0.4mum. The connections are performed by way of second wiring layers 91c and 91e comprising a laminated metal film of Ti having a thickness of about 0.1mum, Pt having a thickness of about 0.1mum and Au having a thickness of about 0.4mum. The Ti-Pt-Au laminated metal film does not react with W5Si3 and W at the using temperature of a GaAs FET (125 deg.C). Therefore the reliability of the wirings is made excellent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置の配線およびその形成方法に関し、
特に同一層上に二種類以上の材料の異なる配線が混載さ
れてなる半導体装置の配線およびその形成方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to wiring of a semiconductor device and a method of forming the same,
In particular, the present invention relates to wiring of a semiconductor device in which wiring of two or more different materials are mixedly mounted on the same layer, and a method of forming the same.

(従来の技術) 半導体装置の配線として多層配線技術が多く用いられて
いるが、同−配線層上に異なる材料よりなる配線を混載
する場合、例えば第3図に示す平面構造が用いられる。
(Prior Art) Multilayer wiring technology is often used for wiring of semiconductor devices, but when wirings made of different materials are mixedly mounted on the same wiring layer, for example, a planar structure shown in FIG. 3 is used.

同図は賦化ガリウム(GaAs)ショットキ障壁ゲート
電界効果トランジスタ(MESFET)を用いた集積回
路の平面パターンの一部を示し、33a乃至33cは厚
さ0.15pmのAuGe合金、厚さ0.05pmのN
iの積層金属膜よりなるオーム性電極、43a及び43
bはW5Si3を用いた厚さ0.3pmのゲート電極で
ある。このようなオーム性電極金属及びゲート電極金属
はシート抵抗値がそれぞれ約3.5Ω及び6.7Ωと高
いため第1層配線としては用いられず、同一層上に厚さ
0.1pmのTi、厚さ0.4pmのAuよりなる積層
膜を用いた第1層配線83a及び83bが形成され、オ
ーム性電極金属およびゲート電極金属と電気的接続がな
される。
The figure shows a part of the planar pattern of an integrated circuit using a gallium oxide (GaAs) Schottky barrier gate field effect transistor (MESFET), 33a to 33c are AuGe alloys with a thickness of 0.15 pm, N of
Ohmic electrodes made of laminated metal films of i, 43a and 43
b is a gate electrode made of W5Si3 and having a thickness of 0.3 pm. These ohmic electrode metals and gate electrode metals have high sheet resistance values of about 3.5Ω and 6.7Ω, respectively, so they are not used as the first layer wiring. First layer interconnections 83a and 83b are formed using a laminated film made of Au with a thickness of 0.4 pm, and are electrically connected to the ohmic electrode metal and the gate electrode metal.

また、この様な配線はゲート電極並びにオーム性電極を
形成した後、通常のエツチング法若しくはリフトオフ法
により例えば厚さ0.1pmのTi、厚さ0.4pmの
Auよりなる積層膜を用いた第1層配線を形成し、つい
でCVD法による厚さ0.5μmの5i02膜を被着し
、CF4ガスを用いたドライエツチング法によりスルー
ホール開口をし、厚さ0.1pmのTi、厚さ0.1p
mのPt、厚さ0.4pmのAuよりなる積層膜を用い
た第2層配線を形成することにより得られる。
In addition, after forming the gate electrode and the ohmic electrode, such wiring is formed using a laminated film made of, for example, Ti with a thickness of 0.1 pm and Au with a thickness of 0.4 pm by a normal etching method or lift-off method. A one-layer wiring is formed, then a 5i02 film with a thickness of 0.5 μm is deposited by CVD, a through hole is opened by dry etching using CF4 gas, and a Ti film with a thickness of 0.1 pm and a 0.5 μm thick film are deposited. .1p
This can be obtained by forming a second layer wiring using a laminated film made of Pt with a thickness of m and Au with a thickness of 0.4 pm.

(発明が解決しようとする問題点) 上述した従来の配線はゲート電極と第1層配線の重なり
部、及びオーム性電極と第1層配線の重なり部において
金属膜厚が他に比べて厚くなるため、層間絶縁膜被着後
のりソゲラフイエ程で大きな問題を生じる。即ち、ホト
レジストの塗布工程では、上記重なり部の塗布膜厚が他
と比べて薄(なりピンホールを生じやすくなる。また広
(用いられている密着露光法によると、上記重なり部が
他に比べて突出しているため、この部分のホトレジスト
がホトマスクに接着する欠点がある。
(Problems to be Solved by the Invention) In the conventional wiring described above, the metal film thickness is thicker in the overlapping part of the gate electrode and the first layer wiring, and in the overlapping part of the ohmic electrode and the first layer wiring, compared to other parts. Therefore, a big problem arises in the process of drying after depositing the interlayer insulating film. That is, in the photoresist coating process, the thickness of the coating film in the overlapped area is thinner than the other parts (which makes pinholes more likely to occur), and it is also wider (according to the contact exposure method used, the thickness of the coating film in the overlapped part is thinner than the other parts). This protrusion has the disadvantage that the photoresist in this area may adhere to the photomask.

また上述した従来の配線の形成方法の中で第1層配線を
エツチング法で形成する場合、上記重なり部分の配線厚
さが他に比べて厚くなるため、第1層配線形成のための
ホトレジスト膜が重なり部分で特に薄くなること、段差
部でのホトレジストパターニングが困難となること等の
問題を生じ、このため重なり部分での第1層配線パター
ンの微細化が極めて難しい。一方策1層配線をリフトオ
フ法で形成する場合、リフトオフを容易ならしめるため
のスペーサ材の設置が必要であるが、下地に形成されて
いるMESFETの特性に影響を与えることなくスペー
サ材を設置、除去することは容易ではなく、製造上の大
きな制約となる。
Furthermore, in the conventional wiring formation method described above, when the first layer wiring is formed by the etching method, the thickness of the wiring at the overlapped portion is thicker than the other layers, so the photoresist film for forming the first layer wiring is This causes problems such as the layer becomes particularly thin in the overlapped portion and photoresist patterning becomes difficult in the stepped portion, and therefore it is extremely difficult to miniaturize the first layer wiring pattern in the overlapped portion. On the other hand, when forming one-layer wiring using the lift-off method, it is necessary to install a spacer material to facilitate lift-off, but it is possible to install the spacer material without affecting the characteristics of the MESFET formed on the base. Removal is not easy and poses a major manufacturing constraint.

(問題点を解決するための手段) 本願の第一の発明による配線は同一配線層上に材料の異
なる二種類以上の配線が混載され、且つこれら材料の異
なる配線に対して所定の使用温度では反応を起こさない
材料を用いて形成された配線層の異なる配線層上に形成
された配線を介してこれら材料の異なる配線同志が電気
的に接続されてなり、本願の第二の発明である配線の形
成方法は第1の配線を形成する工程と、後工程で保護す
べき領域をカバー材で覆う工程と、第2の配線材料を被
着する工程と、エツチングにより第2の配線を形成する
工程と、層間絶縁膜を被着し、所定部分にスルーホール
を開口する工程と、第1、第2の配線材料とは所定の使
用温度では反応を起こさない材料を被着し、加工するこ
とにより前記第1、第2の気的に接続する場合、これら
の配線同志を同一配線層上で直接接続せず、異なる配線
層上に形成された配線を介して接続することにより、直
接接続の場合に生じる配線同志の接続部での配線厚さの
増大を解消でき、配線厚さの増大に起因する製造上の問
題点が解決できる。またエツチング保護膜を形成した後
に配線加工を行なうので、既に形成されたMESFET
の特性を配線加工時に劣化させることもない。
(Means for Solving the Problems) The wiring according to the first invention of the present application has two or more types of wirings made of different materials mixedly mounted on the same wiring layer, and the wirings made of different materials do not meet the specified operating temperature. Wirings made of different materials are electrically connected to each other through wirings formed on different wiring layers of wiring layers formed using materials that do not cause reactions, and the wiring is the second invention of the present application. The formation method includes a step of forming a first wiring, a step of covering an area to be protected in a subsequent process with a cover material, a step of applying a second wiring material, and a step of forming a second wiring by etching. The process includes depositing an interlayer insulating film and opening through-holes in predetermined portions, and depositing and processing materials that do not react at a predetermined usage temperature as the first and second wiring materials. When connecting the first and second electrically, these wirings are not directly connected on the same wiring layer, but are connected via wiring formed on different wiring layers, thereby achieving direct connection. It is possible to eliminate the increase in the wiring thickness at the connection portion between the wirings, which occurs in some cases, and to solve manufacturing problems caused by the increase in the wiring thickness. In addition, since the wiring is processed after forming the etching protection film, the MESFET that has already been formed
The characteristics of the wire do not deteriorate during wiring processing.

(実施例1) 次に本発明の配線についてGaAsMESFETを例に
とり、図面を参照して説明する。第1図は本発明の第1
の実施例を説明するめだめの平面図である。図において
31a乃至31dは厚さ0.15pmのAuGe合金、
厚さ0.05pmのNiの積層金属よりなるMESFE
Tのオーム性電極、41a乃至41dは厚さ0.3pm
のW5Si3よりなるゲート電極で、ゲート電極41a
がら41dに至る配線は回路上配線抵抗を問題にしない
のでゲート電極金属を用いている。ゲート電極41b 
j3よび41cへの配線は厚さ0.4pmのWよりなる
第1層配線81aおよび81bにそれぞれ接続されるが
、これらの接続は層間絶縁膜上に形成された厚さ0.1
pmのTi、厚さ0.1μmのpt、厚さ0.4μmの
Auの積層金属膜よりなる第二層配線91cおよび91
eを介してそれぞれ行なわれている。尚Tx、pt、A
u積層金属膜はGaAsMESFETの使用温度(12
5°C)ではW5Si3およびWとは反応を起こさない
ので本配線の信頼性は良好である。この様な本発明にな
る配線によれば第1層上の異なる材料よりなる配線同志
は互いに重なり(実施例2) 次に本発明の配線の形成方法につき図面を参照して説明
する。第2図は本発明の第2の発明の一実施例を説明す
るための工程断面図である。図において12は半絶縁性
GaAs基板13はGaAsMESFETの計領域、3
2aおよび32bは厚さ0.15pmのAuGe合金、
厚さ0.05pmの積層金属よりなるMESFETのオ
ーム性電極、42aは厚さ0.3pm (7)W5Si
3よりなるゲート電極、52aはW5Si3よりなる第
1層配線でゲート電極と同時に形成された(第2図(a
))。
(Example 1) Next, the wiring of the present invention will be explained with reference to the drawings, taking a GaAs MESFET as an example. FIG. 1 shows the first embodiment of the present invention.
FIG. In the figure, 31a to 31d are AuGe alloys with a thickness of 0.15 pm;
MESFE made of Ni laminated metal with a thickness of 0.05 pm
The ohmic electrodes 41a to 41d of T are 0.3 pm thick.
The gate electrode 41a is made of W5Si3.
However, the wiring leading to 41d is made of gate electrode metal since wiring resistance is not a problem in the circuit. Gate electrode 41b
The wirings to j3 and 41c are respectively connected to first layer wirings 81a and 81b made of W with a thickness of 0.4 pm, but these connections are made using a 0.1 pm thick wire formed on an interlayer insulating film.
The second layer wirings 91c and 91 are made of a laminated metal film of pm Ti, 0.1 μm thick PT, and 0.4 μm thick Au.
This is done via e. Furthermore, Tx, pt, A
u The laminated metal film has a GaAs MESFET operating temperature (12
5° C.), there is no reaction with W5Si3 and W, so the reliability of this wiring is good. According to the wiring according to the present invention, the wirings made of different materials on the first layer overlap each other (Example 2) Next, the method for forming the wiring according to the present invention will be explained with reference to the drawings. FIG. 2 is a process sectional view for explaining an embodiment of the second invention of the present invention. In the figure, 12 is a semi-insulating GaAs substrate 13, which is the total area of the GaAs MESFET;
2a and 32b are AuGe alloys with a thickness of 0.15 pm,
The ohmic electrode of MESFET, 42a, is made of laminated metal with a thickness of 0.05 pm and has a thickness of 0.3 pm. (7) W5Si
The gate electrode 52a made of 3 is formed at the same time as the gate electrode with the first layer wiring made of W5Si3 (Fig. 2(a)
)).

次に第2図(b)に示すように、後工程の他の第1層配
線の加工時のエツチング保護のために常圧CVD法によ
り厚さ0.2pmの5i02膜62a、62bをMES
FET上および第1層配線52a上に形成する。
Next, as shown in FIG. 2(b), 5i02 films 62a and 62b with a thickness of 0.2 pm are formed by MES using an atmospheric pressure CVD method to protect them from etching during the processing of other first layer wiring in the subsequent process.
It is formed on the FET and the first layer wiring 52a.

次に第2図(e)に示すように他の第1層配線金属とし
て厚さ0.4pmのW膜12をスパッタ蒸着法により被
着する。
Next, as shown in FIG. 2(e), a W film 12 having a thickness of 0.4 pm is deposited as another first layer wiring metal by sputter deposition.

続いて第2図(d)に示すように第1層配線金属72を
ホトレジストをマスクとしてSF6ガスを用いて反応性
イオンエツチング法により加工して配線82aを形成し
、エツチング保護膜62a、62bをバッフアート弗酸
を用いて除去する。
Subsequently, as shown in FIG. 2(d), the first layer wiring metal 72 is processed by reactive ion etching using photoresist as a mask and using SF6 gas to form a wiring 82a, and the etching protection films 62a and 62b are etched. Remove using buffered hydrofluoric acid.

次に第2図(e)に示すように層間絶縁膜として常圧C
VD法により厚す0.3pmノ5i02膜112を被着
し、所定の位置にCF4ガスを用いてスルーホールを開
口する。
Next, as shown in FIG. 2(e), as an interlayer insulating film, a normal pressure C
A 0.3 pm thick 5i02 film 112 is deposited by the VD method, and through holes are opened at predetermined positions using CF4 gas.

次いで第2図(0に示すように、GaAsMESFET
の使用温度(125°C)ではAuGe合金、Niより
なる積層金属、W5Si3.及びWとは反応を起こさな
い材料として厚さ0.1pmのTi、厚さ0.1pmの
pt、厚さ0.4pmのPtを順次スパッタ蒸着法によ
り被着し、ホトレジストをマスクとしてイオンミリング
法により第2層配線92a乃至92cを形成し、該ホト
レジストを除去する。W5Si3よりなる第1層配線5
2aとWよりなる第1層配線82aは第2層配線92c
により電気的接続がなされる。
Then, as shown in Figure 2 (0), the GaAs MESFET
At the operating temperature (125°C), AuGe alloy, laminated metal made of Ni, W5Si3. As a material that does not react with W, Ti with a thickness of 0.1 pm, PT with a thickness of 0.1 pm, and Pt with a thickness of 0.4 pm were sequentially deposited by sputter deposition and ion milling using photoresist as a mask. Then, second layer wirings 92a to 92c are formed, and the photoresist is removed. First layer wiring 5 made of W5Si3
The first layer wiring 82a made of 2a and W is the second layer wiring 92c.
An electrical connection is made.

このような本発明によれば材料の異なる第1層配線同志
が重なり合うことがないので、従来よりあった配線層な
り部でのホトレジストパターニングの困難はなくなり、
第1層配線パターンの微細化も問題なく行なうことがで
きた。また厚さ0.2pmの常圧CVD成長5i02膜
を用いた保護膜を設けたために、第1層配線82a形成
のためのエツチングに於けるMESFET電極及び動作
層のエツチングはなく、またドライエツチング損傷もな
いため、MESFETの特性劣化は全く観測されなかっ
た。
According to the present invention, since the first layer wirings made of different materials do not overlap, the conventional difficulty in patterning photoresist at the wiring layer area is eliminated.
The first layer wiring pattern could also be made finer without any problem. Furthermore, since a protective film is provided using a 5i02 film grown by atmospheric pressure CVD with a thickness of 0.2 pm, there is no etching of the MESFET electrode and active layer during etching for forming the first layer wiring 82a, and there is no dry etching damage. Therefore, no deterioration of the MESFET characteristics was observed at all.

(発明の効果) 以上詳細に説明した様に、本発明の配線によれば、同一
配線層上の材料の異なる配線同志が重なり合うことがな
いため、従来の様な配線層なり部の配線厚さの増加に起
因する後工程でのホトレジスト膜のピンホールの問題が
大幅に改善された。
(Effects of the Invention) As explained above in detail, according to the wiring of the present invention, wirings made of different materials on the same wiring layer do not overlap, so that the wiring thickness at the portion where the wiring layer overlaps is reduced compared to the conventional wiring layer. The problem of pinholes in the photoresist film in post-processes caused by an increase in the number of photoresists has been significantly improved.

また後工程の密着露光工程に於けるホトレジスト膜のホ
トマスクへの接着の問題も解決され、安価で生産性に優
れた密着露光方式を用いてなお且っになった。実に保護
膜を設置するため第1層配線の加工工程に起因するME
SFETの特性劣化はなく、しかも第1層配線材料と第
2層配線材料とはMESFETの使用温度では反応を起
こさないため、高信頼性の配線が実現でき、本発明の効
果は大きい。
Furthermore, the problem of adhesion of the photoresist film to the photomask in the subsequent contact exposure step has been solved, and it has become possible to use the contact exposure method, which is inexpensive and has excellent productivity. In fact, ME caused by the processing process of the first layer wiring to install a protective film.
There is no characteristic deterioration of the SFET, and since the first layer wiring material and the second layer wiring material do not react at the operating temperature of the MESFET, highly reliable wiring can be realized, and the effects of the present invention are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の第一、および第
二の発明の詳細な説明するための平面図および工程断面
図、第3図は従来例を説明するための平面図である。 12・・・半絶縁性GaAs基板、 31,32.33・・・オーム性電極、41.42,4
3、・・・ゲート電極、62・・・エツチング保護膜、 81.82.83・・・第1層配線、  91,92.
93・・・第2層配線、101.103・・・スルーホ
ール、 112・・・層間絶縁膜。 工業技術院長等々力 達 第 / 図 g々乃至/!71ムズルーボづし 躬2図 Ra II l 92c 粗j配7敦 y、ib舒Z層配東
1 and 2 are plan views and process sectional views for explaining in detail the first and second inventions of the present invention, respectively, and FIG. 3 is a plan view for explaining a conventional example. 12...Semi-insulating GaAs substrate, 31,32.33...Ohmic electrode, 41.42,4
3,... Gate electrode, 62... Etching protective film, 81.82.83... First layer wiring, 91,92.
93...Second layer wiring, 101.103...Through hole, 112...Interlayer insulating film. Director of the Agency of Industrial Science and Technology Todoroki Tatsudai / Figures /! 71 Muzurubo Zushiman 2 Figure Ra II l 92c Rough j distribution 7 Atsushi, ib Shu Z layer distribution east

Claims (1)

【特許請求の範囲】 1、同一配線層上に材料の異なる二種類以上の配線が混
載され、且つこれら材料の異なる配線に対して所定の使
用温度では反応を起こさない材料を用いて形成された配
線層の異なる配線層上に形成された配線を介してこれら
材料の異なる配線同志が電気的に接続されてなることを
特徴とする配線。 2、第1の配線を形成する工程と、後工程で保護すべき
領域をカバー材で覆う工程と、第2の配線材料を被着す
る工程と、エツチングにより第2の配線を形成する工程
と、層間絶縁膜を被着し、所定部分にスルーホールを開
口する工程と、第1、第2の配線材料とは所定の使用温
度では反応を起こさない材料を被着し、加工することに
より前記第1、第2の配線を電気的に接続する配線を形
成する工程とからなる配線の形成方法。
[Claims] 1. Two or more types of wiring made of different materials are mixed on the same wiring layer, and the wiring is formed using a material that does not react with the wiring made of these different materials at a predetermined operating temperature. A wiring characterized in that wirings made of different materials are electrically connected to each other through wirings formed on different wiring layers. 2. A step of forming a first wiring, a step of covering an area to be protected in a subsequent process with a cover material, a step of applying a second wiring material, and a step of forming a second wiring by etching. , the process of depositing an interlayer insulating film and opening through holes in predetermined portions, and depositing materials that do not react at a predetermined operating temperature as the first and second wiring materials, and processing them. A method for forming a wiring, comprising the step of forming a wiring that electrically connects a first wiring and a second wiring.
JP23647785A 1985-10-24 1985-10-24 Wiring and forming method thereof Pending JPS6297349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23647785A JPS6297349A (en) 1985-10-24 1985-10-24 Wiring and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23647785A JPS6297349A (en) 1985-10-24 1985-10-24 Wiring and forming method thereof

Publications (1)

Publication Number Publication Date
JPS6297349A true JPS6297349A (en) 1987-05-06

Family

ID=17001315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23647785A Pending JPS6297349A (en) 1985-10-24 1985-10-24 Wiring and forming method thereof

Country Status (1)

Country Link
JP (1) JPS6297349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524980A (en) * 2003-12-16 2007-08-30 インターナショナル・ビジネス・マシーンズ・コーポレーション Bipolar and CMOS integrated circuit structures with reduced contact height

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105283A (en) * 1974-01-25 1975-08-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105283A (en) * 1974-01-25 1975-08-19

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524980A (en) * 2003-12-16 2007-08-30 インターナショナル・ビジネス・マシーンズ・コーポレーション Bipolar and CMOS integrated circuit structures with reduced contact height
JP4716870B2 (en) * 2003-12-16 2011-07-06 インターナショナル・ビジネス・マシーンズ・コーポレーション Bipolar and CMOS integrated circuit structures with reduced contact height

Similar Documents

Publication Publication Date Title
US11476110B2 (en) Semiconductor device
US5389564A (en) Method of forming a GaAs FET having etched ohmic contacts
US4824800A (en) Method of fabricating semiconductor devices
JPS6297349A (en) Wiring and forming method thereof
EP1976010B1 (en) Semiconductor device and manufacturing method therefor
US6548386B1 (en) Method for forming and patterning film
JP3219056B2 (en) Processing method of organic insulating film
EP1976009B1 (en) Semiconductor device and manufacturing method therefor
EP1100120B1 (en) Method for fabricating thin film devices
JPH08111519A (en) Semiconductor device
JPS5890727A (en) Electrode or wiring
JP2720442B2 (en) Method of manufacturing magnetoresistive element
JPH0330428A (en) Formation of wiring substrate
JP2001035854A (en) Method for formation of film and electrode or wiring
JPH0394451A (en) Wiring structure of semiconductor device
JPH03244128A (en) Semiconductor device
JPH0794481A (en) Manufacture of semiconductor device
JPH02140955A (en) Semiconductor device
JPH01192141A (en) Wiring of compound semiconductor device
JPS613466A (en) Manufacture of semiconductor device
JPS62281356A (en) Manufacture of semiconductor device
JPS62104176A (en) Field effect transistor
JP2000311914A (en) Method of manufacturing semiconductor device
JPH04269833A (en) Semiconductor device
JPH0484422A (en) Formation of fine metal wiring