JPH01192141A - Wiring of compound semiconductor device - Google Patents

Wiring of compound semiconductor device

Info

Publication number
JPH01192141A
JPH01192141A JP1591888A JP1591888A JPH01192141A JP H01192141 A JPH01192141 A JP H01192141A JP 1591888 A JP1591888 A JP 1591888A JP 1591888 A JP1591888 A JP 1591888A JP H01192141 A JPH01192141 A JP H01192141A
Authority
JP
Japan
Prior art keywords
wiring
ohmic
electrode
way
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1591888A
Other languages
Japanese (ja)
Inventor
Takamaro Mizoguchi
溝口 孝麿
Michiro Futai
二井 理郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1591888A priority Critical patent/JPH01192141A/en
Publication of JPH01192141A publication Critical patent/JPH01192141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To prevent the deterioration of a wiring due to the reactions of an ohmic electrode and a wiring material layer by providing the ohmic electrode with a short lead-out electrode. CONSTITUTION:A GaAs ohmic contact metal layer, which is adhered using a vacuum deposition method and has the composition of a gold-germanium alloy, for example, is formed in such a way that the layer is left on source and drain regions. Regions 6a and 6b show source and drain electrodes of a MESFET formed in such a way, but at this time, the 6a and 6b are formed in such a way that they can be respectively made an electrical contact with 4a and 4b. After this, an insulating film 11 is covered on the whole surface and contact holes 7, 8a and 8b to tungsten nitride film patterns 3, 4a and 4b are formed on this insulating film. Moreover, a patterning of Al alloy wirings 9, 10a and 10b is performed to form a self-alignment type GaAs MESFET. As an ohmic electrode 6 is connected with an Al film 10, which is a first layer wiring, through a lead-out electrode 4, the reactions of both are completely prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は化合物半導体装置の高信頼度の配線法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) This invention relates to a highly reliable wiring method for compound semiconductor devices.

(従来の技術) 従来化合物半導体に配線法として、良好なオーミック電
極の形成fこ例えばAuGe/Au、を主な構成材料と
して用いることが必須であるため、パープルプレーグの
防止を目的としてAj系の配線を避け、T i / P
 t / A u等のAu系配線材料が用いられてきた
(Prior art) As a conventional wiring method for compound semiconductors, it is essential to form good ohmic electrodes, such as using AuGe/Au as the main constituent material. Avoid wiring, T i / P
Au-based wiring materials such as t/Au have been used.

またパープルプレーグの防止を目的として、オーミック
電極と配線材料との間に種々のバリヤメタルを積層する
手段は容易に類推されるが、パープルプレーグの原因と
なるAu−Alの反応性は極めて高く、かつAjの侵入
によるオーミック電極の劣化は極めて急激であるため、
この方法で高温の加速寿命試験に耐える配線技術を確立
した例は、未だ知られていない。
In addition, it is easy to infer that various barrier metals are laminated between ohmic electrodes and wiring materials for the purpose of preventing purple plaque, but the reactivity of Au-Al, which causes purple plaque, is extremely high, and Since the deterioration of the ohmic electrode due to the invasion of Aj is extremely rapid,
There is no known example of establishing a wiring technology that can withstand high-temperature accelerated life tests using this method.

(発明が解決しようとする課@) 本発明の目的は、耐熱性メタルをゲートとし、Au系の
オーミック電極を有する化合物半導体集積回路において
、微細加工性に乏しいAu系の配線のかわりに5iVL
SIで実績の高いAj系の配線技術をほとんどそのtま
適用することができ、かつ工程数を増加することな(、
オーミック電極部におけるAu−Ajの反応を完全に防
止する手段を提供しようとするものである。
(Issue to be solved by the invention@) The object of the present invention is to provide a compound semiconductor integrated circuit having a heat-resistant metal as a gate and an Au-based ohmic electrode, in which a 5iVL is used instead of an Au-based wiring which has poor microfabriability.
The Aj-based wiring technology, which has a proven track record in SI, can be applied to almost the same extent without increasing the number of processes (,
The present invention aims to provide a means for completely preventing the Au-Aj reaction in the ohmic electrode section.

〔発明の構成〕[Structure of the invention]

(11題を解決するための手段) Au−Anの反応を防止する手段は次の概要のとうりで
ある。耐熱性ゲートメタル形成時にゲートメタルと同一
構成の耐熱性材料により、オーミνり電極形成部の周囲
に引出し電極を形成し、ゲートメタルと引出し電極をマ
スクとして、セルファライン的にオーミック電極下地と
なるN+@をイオン注入する。N中層活性化の熱処理工
程の後、リフトオフ工程により上記引出し電極のオーミ
ック劃の辺縁部奢こ重なるようにAu系のオーミックメ
タルを被着する。
(Means for Solving Problem 11) The following outline is a means for preventing the Au-An reaction. When forming a heat-resistant gate metal, an extraction electrode is formed around the ohmic electrode formation part using a heat-resistant material with the same composition as the gate metal, and the gate metal and extraction electrode are used as masks to serve as the base of the ohmic electrode in a self-aligned manner. Ion implantation of N+@. After the heat treatment step for activating the N middle layer, an Au-based ohmic metal is deposited in a lift-off step so as to overlap the edge of the ohmic region of the extraction electrode.

次に全体を絶縁膜で覆った後、引出し電亜の配線側で、
かつ上記オーミックメタルとの重ならない位置にコンタ
クトホールを設け、絶縁膜上に形成したAj系配線と接
続する。この方法によればコンタクトホール形成後は5
iVLSIの配線技術をほとんどそのtt用いることが
でき、かつ耐熱性引出し電極面上におけるオーミックメ
タルと配線メタル間のギャップを確保することにより、
両者の反応は完全に防止される。
Next, after covering the whole thing with an insulating film, on the wiring side of the drawer electrical,
A contact hole is provided at a position that does not overlap with the ohmic metal, and is connected to the Aj-based wiring formed on the insulating film. According to this method, after forming the contact hole, 5
By being able to use most of the iVLSI wiring technology and ensuring a gap between the ohmic metal and the wiring metal on the heat-resistant extraction electrode surface,
Both reactions are completely prevented.

(作用) 本発明の方法によれば、従来おこなわれてきた反応性の
高い異種材料の中間の厚み方向にバリヤメタルを積層す
ることにより両者の反応を防止する方法にくらべて、ピ
ンホール、マスクずれに伴う労化を生ずるおそれがなく
、かつ反応防止に用いる耐熱性引出し電極材料の選択の
自由度も高い。
(Function) According to the method of the present invention, compared to the conventional method of laminating a barrier metal in the thickness direction midway between highly reactive dissimilar materials to prevent reactions between the two, pinholes and mask misalignment can be prevented. There is no risk of labor fatigue associated with this process, and there is also a high degree of freedom in selecting the heat-resistant extraction electrode material used for reaction prevention.

またこの方法を自己整合形の耐熱性メタルゲートのFE
Tに適用するとき、とくに工程数を増加することなくS
tの配線技術を用いることができるほか、FET等の回
路素子上も配線エリヤとして使用できるので、高密度化
の点でも従来技術にくらべて遜色はない。
We also applied this method to a self-aligned heat-resistant metal gate FE.
When applied to T, S without increasing the number of processes.
In addition to being able to use the wiring technology of t, it is also possible to use circuit elements such as FETs as wiring areas, so it is comparable to the conventional technology in terms of higher density.

(実施例) 以下、本発明の詳細について化合物半導体GaAaを母
体にしたMESFET  を例着ことり、図面を用いて
説明する。
(Example) Hereinafter, details of the present invention will be explained with reference to the drawings, taking as an example a MESFET using a compound semiconductor GaAa as a matrix.

第1図甑)〜(e)は、本発明の一実施例の製造工程に
おける平面図である。
FIGS. 1) to 1(e) are plan views showing the manufacturing process of an embodiment of the present invention.

まず、第1図(&)のように半絶縁性半導体基板(1)
上に、形成方法を問わないが例えばイオン注入法により
活性II!域Q)を形成し、全面に窒化タングステン嘆
を堆積した後、因示しないレジストパターンを形成し、
窒化タングステン模を周知のエツチング技術で選択的に
エツチングしてパターン(3)。
First, as shown in Figure 1 (&), a semi-insulating semiconductor substrate (1) is
Active II! can be formed by any method of formation, for example, by ion implantation. After forming a region Q) and depositing tungsten nitride on the entire surface, a resist pattern (not shown) is formed,
Pattern (3) is created by selectively etching the tungsten nitride pattern using a well-known etching technique.

(4m)、(4b)を形成する。パp −y (4a)
(4b)は、活性II Its (2)と重ならない、
予め定められた領域に設けられる。
(4m) and (4b) are formed. pap-y (4a)
(4b) does not overlap with activity II Its (2),
It is provided in a predetermined area.

次に、第11!ii!1(b)のよう曇こ、レジストパ
ターンをイオン注入のマスクとして1例えばStイオン
を不純物イオンとしてイオン注入を行い、n中型のソー
ス・ドレイン領域(5)を形成する。Cの際、窒化タン
グステン膜パターンはイオン注入のマスクとしての働き
をする。この後1周知の熱処理方法によりソース・ドレ
イン注入部は活性化される。
Next, the 11th! ii! As shown in FIG. 1(b), using the resist pattern as a mask for ion implantation, ion implantation is performed using, for example, St ions as impurity ions to form n-medium source/drain regions (5). During C, the tungsten nitride film pattern functions as a mask for ion implantation. Thereafter, the source/drain implants are activated by a well-known heat treatment method.

続いてレジスト、絶縁膜等を用いた、リフトオフ法によ
り、真空蒸着法を用いて被着した例えば金・ゲルマニウ
ム合金の組成をもつGaAaへのオーム性接触金属層を
、ソース・ドレイン領域上に残す如(形成する。第1図
(clに示す(6a)(6b)の領域はこのようにして
形成されたMESFETのソース・ドレイン電極を示す
が、この際に(6a)、(6b)はそれぞれ(4a)(
4b)と電気的な接触が行われるように形成される。こ
の後、全面に絶縁1[(11)を被覆し、第1図(d)
に示すように、窒化タングステン膜パターン(3) 、
 (4a)、(4b)に対するコンタクトホール(η、
 (8a)、(8b)をこの絶縁膜に対して窓開けする
。絶縁膜は例えばCVD法で全面lこ堆積した酸化シリ
コンであり、CF、ガス等を用いた反応性イオンエツチ
ング法によりコンタクトホールの形成を行う、さらにア
ルミニウム又はアルミニウム合金配線[9) 、 (1
0a)、 (10b )のパター=yグを行い、第1図
(e)に示す自己整合壁のGaAa MESFETを形
成する。尚第2図は第1図(e) fこ示す本発明の一
実施例のA −A’に沿うで切りた断面−である。
Next, by a lift-off method using a resist, an insulating film, etc., an ohmic contact metal layer to GaAa having a composition of, for example, a gold-germanium alloy deposited using a vacuum evaporation method is left on the source/drain region. The regions (6a) and (6b) shown in FIG. 1 (cl) show the source and drain electrodes of the MESFET thus formed. (4a) (
4b) so that electrical contact is made. After this, the entire surface is coated with insulation 1 [(11), as shown in Fig. 1(d).
As shown in tungsten nitride film pattern (3),
Contact holes (η,
Windows (8a) and (8b) are opened in this insulating film. The insulating film is, for example, silicon oxide deposited on the entire surface by CVD, contact holes are formed by reactive ion etching using CF, gas, etc., and aluminum or aluminum alloy wiring [9], (1).
0a) and (10b) are performed to form a GaAa MESFET with self-aligned walls as shown in FIG. 1(e). FIG. 2 is a cross section taken along line A-A' of one embodiment of the present invention shown in FIGS. 1(e) and 1(f).

この実施例による配線方法によれば、Au合金より構成
されるオーミック電N(6)は第1@配線であるA j
 (10)と引出し電極(4)を介して接続されている
ので、両者の反応は完全に防止される。又。
According to the wiring method according to this embodiment, the ohmic conductor N (6) made of Au alloy is the first @ wiring A j
(10) through the extraction electrode (4), reaction between the two is completely prevented. or.

AI系配線を用いるため、コンタクトホール形成後はS
 i VLS Iの配線技術をほとんどそのtま用いる
ことができるうえ、この際、引き出し電極はゲートメタ
ル電極と同時形成されるためとくに工程数の増か口はな
い、なお、引き出し電極に用いる導電性嘆は、例えば窒
化タングステン以外に% T i N。
Since AI-based wiring is used, after contact holes are formed, S
i VLS I wiring technology can be used for almost the entire time, and in this case, the extraction electrode is formed at the same time as the gate metal electrode, so there is no increase in the number of steps. For example, in addition to tungsten nitride, % TiN.

TaN、WSINなどでもよい0次に、第3図は別の実
症例を示すものであって、例えばソース電極側に対する
引出し電極をゲート電極と一体化して形成し、以下第1
図と同様な工程を経て、ゲート1他とソース電極との共
通のコンタクトホール(12)を通してAI系の配線を
行い負荷蟹のFETを得る。第4図は第3の実施例とし
てダイオードの配線法を示す平面図である。ダイオード
の正極(14)と引き出し′?IL極(15)が同一材
料のシ3ットキーメタルで形成されたのち、オーミック
メタル(16)がダイオードの負極として第1の実施例
と同様の製作工程を経て形成される。ここではオーミッ
クメタル(16)と離れて形成されたコンタクトホール
(17)を介してAJ系の配線を形成する。このように
して得られたダイオードでも反応も完全lこ防止する同
様の効果を得ることができる。なお基板はcaAs番こ
限られない。
FIG. 3 shows another actual case in which, for example, the lead electrode for the source electrode side is formed integrally with the gate electrode.
Through the same process as shown in the figure, AI wiring is made through a common contact hole (12) between the gate 1 and the source electrode to obtain a load crab FET. FIG. 4 is a plan view showing a diode wiring method as a third embodiment. The positive terminal (14) of the diode and the lead-out '? After the IL pole (15) is formed of the same material as the three-dimensional key metal, the ohmic metal (16) is formed as the negative electrode of the diode through the same manufacturing process as in the first embodiment. Here, AJ-based wiring is formed through a contact hole (17) formed apart from the ohmic metal (16). The diode thus obtained can also achieve the same effect of completely preventing the reaction. Note that the number of substrates is not limited to caAs.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の構成ζこよれば、オーミッ
ク電極と配線材料の反応に伴う労化を、オーミック電極
に短い引き出し電極を設けること齋こより防止すること
ができ、化合物半導体装置の高信頼度なAI系配線化が
図れる。
As described above, according to the structure of the present invention, labor fatigue due to the reaction between the ohmic electrode and the wiring material can be prevented by providing a short lead electrode on the ohmic electrode, and the high performance of the compound semiconductor device can be prevented. Reliable AI system wiring can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の製造工程を示す上面図、第
2図は第1図(e) lこ示すM′FJSFETの一断
面図、第3図および第4図は、本発明の他の実施例をそ
れぞれ説明するための上面図である。 1・・・GaAs半絶縁性基板、2・・・活性層、3゜
4a、4b、14,15・・・窒化タングステン模、5
・・・ンース・ドレイ/@域、6,6a、6b・・・オ
ーミVり電極、7,8a、8b、12,17・−・:r
ンタクトホール、9.10a 、10b 、18.19
・・・アルミニウム又はその合金の配線。 第  3v!J 第4図
FIG. 1 is a top view showing the manufacturing process of an embodiment of the present invention, FIG. 2 is a sectional view of the M'FJSFET shown in FIG. FIG. 6 is a top view for explaining other embodiments of the invention. DESCRIPTION OF SYMBOLS 1... GaAs semi-insulating substrate, 2... Active layer, 3°4a, 4b, 14, 15... Tungsten nitride model, 5
...Nce Doray/@ area, 6, 6a, 6b... Ohmi V electrode, 7, 8a, 8b, 12, 17...:r
Contact hall, 9.10a, 10b, 18.19
...Aluminum or its alloy wiring. 3rd v! J Figure 4

Claims (1)

【特許請求の範囲】[Claims]  化合物半導体装置の配線において、当該装置のオーミ
ック電極および配線パターン構成材料と相互に反応し難
い金属材料を用いて、オーミック電極に短い引出し電極
を設け、これを配線パターンに接続することにより、オ
ーミック電極と配線材料の反応に伴う劣化を防止するこ
とを特徴とする化合物半導体装置の配線方法。
In the wiring of compound semiconductor devices, ohmic electrodes can be formed by providing short lead electrodes on the ohmic electrodes using metal materials that do not easily react with the ohmic electrodes and wiring pattern constituent materials of the device, and connecting these to the wiring patterns. A wiring method for a compound semiconductor device characterized by preventing deterioration caused by a reaction between the wiring material and the wiring material.
JP1591888A 1988-01-28 1988-01-28 Wiring of compound semiconductor device Pending JPH01192141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1591888A JPH01192141A (en) 1988-01-28 1988-01-28 Wiring of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1591888A JPH01192141A (en) 1988-01-28 1988-01-28 Wiring of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH01192141A true JPH01192141A (en) 1989-08-02

Family

ID=11902158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1591888A Pending JPH01192141A (en) 1988-01-28 1988-01-28 Wiring of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH01192141A (en)

Similar Documents

Publication Publication Date Title
US5614762A (en) Field effect transistors having comb-shaped electrode assemblies
US5121174A (en) Gate-to-ohmic metal contact scheme for III-V devices
JPH01192141A (en) Wiring of compound semiconductor device
US5254483A (en) Gate-to-ohmic metal contact scheme for III-V devices
JPH0543291B2 (en)
JPS61102071A (en) Semiconductor device
JPH0394451A (en) Wiring structure of semiconductor device
JPS62104176A (en) Field effect transistor
JPH05167063A (en) Ohmic electrode, its formation method and semiconductor device
JPS6155967A (en) Manufacture of field-effect transistor
JPS62177920A (en) Manufacture of semiconductor device
JP2003163225A (en) Semiconductor device and manufacturing method therefor
JPH0311652A (en) Integrated circuit and its manufacture
JPS634611A (en) Semiconductor device and manufacture thereof
JPH0439228B2 (en)
JPH05275457A (en) Semiconductor device and its manufacture
JPS58134428A (en) Manufacture of semiconductor device
JPH05275456A (en) Semiconductor device and its manufacture
JPS63122247A (en) Semiconductor device
JPS6323665B2 (en)
JPH0834224B2 (en) Method for manufacturing field effect transistor
JPH03292747A (en) Field-effect transistor and manufacture thereof
JPS61117828A (en) Manufacture of gaas ic
JPS62188279A (en) Field effect transistor
JPH03225823A (en) Compound semiconductor device