JPS6297127A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS6297127A
JPS6297127A JP23641585A JP23641585A JPS6297127A JP S6297127 A JPS6297127 A JP S6297127A JP 23641585 A JP23641585 A JP 23641585A JP 23641585 A JP23641585 A JP 23641585A JP S6297127 A JPS6297127 A JP S6297127A
Authority
JP
Japan
Prior art keywords
thin film
magnetic
recording medium
film
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23641585A
Other languages
Japanese (ja)
Other versions
JPH077503B2 (en
Inventor
Jiyouichirou Ezaki
江崎 城一朗
Haruyuki Morita
治幸 森田
Yasushi Uno
宇野 泰史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP60236415A priority Critical patent/JPH077503B2/en
Publication of JPS6297127A publication Critical patent/JPS6297127A/en
Publication of JPH077503B2 publication Critical patent/JPH077503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic recording medium having the improved wear resistance together with high reliability and a long lifetime, by forming an area where a magnetic thin film and a protecting film are welded between these two films. CONSTITUTION:A desired magnetic thin film and its precursor magnetic thin film or the thin film of a precursor material are formed on a nonmagnetic supporter. Then a wear-resistance film or its precursor thin film is formed on the first thin film of the supporter. Then a heat treatment is applied at a prescribed temperature to turn the above-mentioned films into the desired magnetic thin films and protecting films respectively. At the same time, the dispersion is produced among those films to form a solid solution area on the interface between the magnetic thin film and the protecting film. Thus the adhesion properties can be improved between both films by producing the dispersion between them by the heat treatment. This improves both wear resistance and reliability of a magnetic recording medium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非磁性支持体上に磁性薄膜を設けてなる磁気
記録媒体に関し、特に耐摩耗性に優れた高信頼性の磁気
記録媒体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic recording medium comprising a magnetic thin film provided on a non-magnetic support, and particularly to a highly reliable magnetic recording medium with excellent wear resistance. .

〔従来の技術〕[Conventional technology]

磁気記憶装置の大容量化に伴い、それに使用される磁気
記録媒体には増々高記録密度特性と高信頼性が要求され
ている。γ−Fe2O3等の磁性粉を樹脂バインダーに
分散させたものを非磁性支持体上に塗布してなる塗布型
磁気記録媒体が従来一般的に使用されてきたが、近年の
高記録密度化に対応して、蒸着法、めっき法、スパッタ
法等によって磁性薄膜を非磁性基体上に形成した薄膜型
磁気記録媒体が注目されている。
As the capacity of magnetic storage devices increases, the magnetic recording media used therein are required to have increasingly higher recording density characteristics and higher reliability. Coated magnetic recording media, in which magnetic powder such as γ-Fe2O3 is dispersed in a resin binder and coated on a non-magnetic support, have been commonly used in the past. Therefore, thin film magnetic recording media in which a magnetic thin film is formed on a nonmagnetic substrate by a vapor deposition method, a plating method, a sputtering method, or the like are attracting attention.

この薄膜型磁気記録媒体では、磁性層を薄膜化すること
が可能であり、また磁性層中に非磁性である樹脂バイン
ダーを含ま力いため高磁束密度化が可能となり、その結
果高記録密度が可能となる。
In this thin-film magnetic recording medium, it is possible to make the magnetic layer thinner, and since the magnetic layer contains a non-magnetic resin binder, it is possible to increase the magnetic flux density, and as a result, high recording density is possible. becomes.

しかし、この種の磁気記録媒体においては、磁気記録媒
体と磁気ヘッドとの摺動接触により磁性層が破壊される
という問題が塗布型磁気記録媒体に比べて生じ易く、磁
気ヘッドの摺動接触に対して充分な耐摩耗性を持たせる
ために磁性層表面に処理を施すことが重要な課題となっ
ている。例えば、磁気ディスク装置においては磁気ディ
スク媒体の回転開始時と停止時に磁気ヘッドと媒体が摺
動接触する、いわゆるコンタクト・スタート・ストップ
(以下C8Sと記す)方式が採用されるようになってお
り、これに耐えるに充分な耐摩耗性が要求されるようK
なっている。
However, in this type of magnetic recording medium, the problem that the magnetic layer is destroyed due to sliding contact between the magnetic recording medium and the magnetic head is more likely to occur than in coated magnetic recording media, and the sliding contact between the magnetic head and the magnetic layer is more likely to occur. However, it is an important issue to treat the surface of the magnetic layer in order to provide sufficient wear resistance. For example, in magnetic disk drives, a so-called contact start-stop (hereinafter referred to as C8S) system has been adopted, in which the magnetic head and the medium come into sliding contact when the rotation of the magnetic disk medium starts and stops. K requires sufficient wear resistance to withstand this.
It has become.

このような磁気記録媒体の耐摩耗性を確保するため、従
来、All OB 、8101 、 Ti01.5in
N4 、WC,TiC,SiC,B4C等の硬度の高い
物質で成る保護膜を磁性層の上に形成する方法が提案さ
れている。(特公昭55−39047、特開昭53−2
1901.特開昭53−21902、特開昭58−18
5029、特開昭59−〔従来技術の問題点〕 上述した保護膜は、通常、磁性薄膜上にスパッタ法によ
り形成される。しかしこれらの保り膜は、磁性薄膜との
密着性が充分でない場合が多く、磁気ヘッドとの摺動接
触により保護膜が剥離し、この剥離したものが磁気ヘッ
ドと保護膜の間にはさまり、保護膜の他の部分を削りと
り、更には磁性薄膜をも破壊してしまうということが生
じた。
In order to ensure the wear resistance of such magnetic recording media, conventionally, All OB, 8101, Ti01.5in
A method has been proposed in which a protective film made of a highly hard material such as N4, WC, TiC, SiC, or B4C is formed on the magnetic layer. (Special Publication No. 55-39047, Japanese Patent Publication No. 53-2
1901. JP-A-53-21902, JP-A-58-18
5029, JP-A-59-[Problems with Prior Art] The above-mentioned protective film is usually formed on a magnetic thin film by sputtering. However, these protective films often do not have sufficient adhesion to the magnetic thin film, and the protective film peels off due to sliding contact with the magnetic head, and this peeled off film gets stuck between the magnetic head and the protective film. Other parts of the protective film were scraped off, and the magnetic thin film was also destroyed.

またミ磁性薄膜が7− Fe2 OBを主成分とする薄
膜であり、この薄膜上にスパッタ法により保護膜を形成
しようとする場合、一旦α−Fe、Q、またはFe2O
2を主成分とする膜をスパッタ法によす形成し、これを
スパッタ室より取出して雰囲気炉中に配置し、還元、酸
化等の熱処理を行々つてγ−FezO@を主成分とする
薄膜とし、更に再度、これをスパッタ室に配置し保護膜
をスパッタ形成する方法がとられる。しかしこの方法は
スパッタ室より出したり、入れたりしなければならず工
程が複雑となり、量産上の問題となる。
In addition, the mimagnetic thin film is a thin film whose main component is 7-Fe2OB, and when a protective film is to be formed on this thin film by sputtering, it is necessary to first use α-Fe, Q, or Fe2O.
A thin film mainly composed of Then, this is placed in a sputtering chamber again and a protective film is formed by sputtering. However, this method complicates the process because the material must be taken out and put into the sputtering chamber, which poses a problem in mass production.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、磁性薄膜上に保a膜が密□着性よく形
成され、それにより優れた耐摩耗性を持ち、高信頼性の
磁気記録媒体を提供することである。
An object of the present invention is to provide a highly reliable magnetic recording medium in which an a-retaining film is formed on a magnetic thin film with good adhesion, thereby having excellent wear resistance.

また、他の目的は、磁性酸化物よりなる薄膜上に簡便力
る方法で醸化物よりなる保護膜を密着性よく形成した、
優れた耐摩耗性を持ち、高信頼性の磁気記録媒体を提供
することである。
Another object is to form a protective film made of a compound with good adhesion on a thin film made of a magnetic oxide by a simple method.
An object of the present invention is to provide a highly reliable magnetic recording medium that has excellent wear resistance.

〔発明の構成〕[Structure of the invention]

本発明の磁気記録媒体は、非磁性支持体の上に磁性薄膜
を形成し、さらKその上に耐摩耗性保護膜を形成して成
り、前記磁性薄膜と耐摩耗性保護膜との間にこれら両膜
の固溶した領域を形成したことを特徴とする。この磁気
記録媒体によれば、固溶領域の形成により磁性薄膜と保
護膜との間の結合力及び密着性が格段に高まり、後述の
CC8試験から分るように耐摩耗性が増大して保護膜の
剥離が無くなり、高信頼性で寿命の長い磁気記録媒体が
提供できる。
The magnetic recording medium of the present invention comprises a magnetic thin film formed on a non-magnetic support, and a wear-resistant protective film formed thereon, and between the magnetic thin film and the wear-resistant protective film. It is characterized by forming a region in which both of these films are dissolved in solid solution. According to this magnetic recording medium, the bonding strength and adhesion between the magnetic thin film and the protective film are significantly increased by the formation of the solid solution region, and as shown in the CC8 test described below, the wear resistance is increased and the protective film is protected. There is no peeling of the film, and a highly reliable and long-life magnetic recording medium can be provided.

本発明の磁気記録媒体の製造方法は、非磁性支持体の上
に目的とする磁性薄膜、その前駆磁性薄1または前駆物
質の薄膜を形成し、その上に耐摩耗性膜またはその前駆
物質の薄膜を形成し、所定の温度で熱処理することによ
り、上記の膜をそれぞれ目的とする磁性薄膜及び耐摩耗
性保護膜にすると共に、これらの膜の間に拡散を生じさ
せて両者の界面に固溶領域を形成することより成る。
The method for manufacturing a magnetic recording medium of the present invention involves forming a desired magnetic thin film, its precursor magnetic thin film 1, or a thin film of a precursor material on a nonmagnetic support, and then forming a wear-resistant film or a thin film of its precursor material thereon. By forming a thin film and heat-treating it at a predetermined temperature, the above-mentioned films can be made into the desired magnetic thin film and wear-resistant protective film, respectively, and at the same time, diffusion can occur between these films to cause a hardening at the interface between the two. It consists of forming a melting region.

この方法によれば、熱処理により磁性薄膜と保護膜の間
に拡散が生じ、両者の密着性を高めることにより、上記
のすぐれた磁気記録媒・体を提供することができる。ま
た、本発明の方法によると、目的とする磁性薄膜、その
前駆磁性薄膜または前駆物質薄膜と保護膜またはその前
駆物質膜とは、順次成膜した上熱処理すれば良いから、
例えばスパッタ法等の真空成膜を行う際に、従来の方法
のよ5に磁性薄膜の前駆酸化物膜をスパッタ成膜し、真
空リークをして熱処理炉に移し、所定の磁性薄膜を形成
した後、再びスパッタ装置へ装入して保W!膜をスパッ
タ成膜を行うという面倒な手順が簡略化する。すなわち
、本発明の方法ではスパッタ成膜は真空リークしないで
引続いて行い、次いで熱処理炉で処理すれば良く能率が
良い。それにも拘らず、上記のように本発明の方法で得
られる磁気記録媒体の特性は従来のものよりも優れてい
る。
According to this method, diffusion occurs between the magnetic thin film and the protective film due to the heat treatment, and the adhesion between the two is improved, thereby making it possible to provide the above-mentioned excellent magnetic recording medium/body. Furthermore, according to the method of the present invention, the desired magnetic thin film, its precursor magnetic thin film or precursor thin film, and the protective film or its precursor film may be formed in sequence and then subjected to heat treatment.
For example, when performing vacuum film formation such as sputtering, a precursor oxide film for a magnetic thin film is sputter-formed as in the conventional method, and then vacuum leaked and transferred to a heat treatment furnace to form a predetermined magnetic thin film. After that, load it into the sputtering equipment again and keep it W! The troublesome procedure of sputtering a film is simplified. That is, in the method of the present invention, sputtering film formation can be performed successively without vacuum leakage, and then processing can be performed in a heat treatment furnace, which is efficient. Nevertheless, as described above, the characteristics of the magnetic recording medium obtained by the method of the present invention are superior to those of the conventional ones.

本発明が意図した密着性及び耐摩耗性を十分向上させる
には、固溶領域の厚さを100Å以上、好ましくは20
0λ以上にする。これにより耐C8S特性が十分に向上
する。固溶領域の厚さは熱処理温度及び時間により制御
される。熱処理の温度が高い程、また熱処理の時間が長
い程固洛した領域の厚さは大きくなる。通常熱処理の温
度は100℃以上で行われる。これ以下だと、所定厚の
固溶した領域を形成するのに時間がかかり過ぎる。
In order to sufficiently improve the adhesion and wear resistance intended by the present invention, the thickness of the solid solution region should be 100 Å or more, preferably 20 Å or more.
Set it to 0λ or more. This sufficiently improves the C8S resistance. The thickness of the solid solution region is controlled by the heat treatment temperature and time. The higher the heat treatment temperature and the longer the heat treatment time, the greater the thickness of the solidified region. The heat treatment is usually performed at a temperature of 100°C or higher. If it is less than this, it takes too much time to form a solid solution region of a predetermined thickness.

磁性薄膜を形成する磁性酸化物の代表的な例はγ−Fe
2O3またはこれを主体とする酸化物である。このよう
な薄膜は、例えばα−Fe20g薄膜をスパッタ法によ
り形成し、これを還元性雰囲気の炉中で還元してFea
r4薄膜とし、更に酸化性雰囲気の炉中で酸化してγ−
Fe*Os薄膜とすることにより行なわれる。また他の
方法は、Fe104薄膜をスパッタ法により形成し、こ
れを酸化性雰囲気の炉中で酸化してγ−Fe20g薄膜
とすることにより行なわれる。また、他の例では磁性薄
膜としてはCo、Co−P、Co−Ni、Co−Cr。
A typical example of magnetic oxide that forms magnetic thin films is γ-Fe.
It is 2O3 or an oxide mainly composed of 2O3. Such a thin film is made by forming, for example, a 20 g α-Fe thin film by sputtering, and reducing it in a furnace with a reducing atmosphere to obtain Fe.
r4 thin film and further oxidized in an oxidizing atmosphere furnace to form γ-
This is done by forming a Fe*Os thin film. Another method is to form a Fe104 thin film by sputtering and oxidize it in a furnace with an oxidizing atmosphere to form a γ-Fe20g thin film. In other examples, the magnetic thin film is Co, Co--P, Co--Ni, or Co--Cr.

Co−N1−P 等の金属を用いることができる。Metals such as Co-N1-P can be used.

本発明の1つの態様における上記のγ−Fe*Os薄膜
への変換は、α−Fe20BやFe@04薄膜の表面に
保護膜またはその前駆物質の薄膜を形成した後に行われ
る。熱処理によってα−Fe20BやFe3O3が?−
FetOH磁性薄膜に変換する間に、保護膜またはその
前駆物質が保護膜に変換し、しかも両膜の間に両者の固
溶層が形成されることになる。
In one embodiment of the present invention, the conversion to the γ-Fe*Os thin film described above is performed after forming a protective film or a thin film of its precursor on the surface of the α-Fe20B or Fe@04 thin film. α-Fe20B and Fe3O3 due to heat treatment? −
During the conversion into the FetOH magnetic thin film, the protective film or its precursor will be converted into the protective film, and a solid solution layer of both will be formed between the two films.

保護膜またはその前駆物質としては、Al2O3、Ti
O鵞Os 。
As the protective film or its precursor, Al2O3, Ti
O Goose Os.

TiOx 、510t 、AI、Ti%Si等が使用で
き、これらが熱処理の間にA ly Os 、T 10
t 、S iOH等の耐摩耗性保護膜に変換される。保
護膜は十分に耐摩耗性であるだけでなく磁性薄膜との間
で拡散による固溶領域を形成しうるものでなければなら
ない。
TiOx, 510t, AI, Ti%Si, etc. can be used, and these can be converted into A ly Os , T 10 during heat treatment.
t, SiOH, etc. is converted into a wear-resistant protective film. The protective film must not only be sufficiently wear resistant but also capable of forming a solid solution region by diffusion with the magnetic thin film.

本発明の方法は、代表的にはスパッタ法により実行でき
る。本発明では同じ真空チャンバ内にFe 、 α−F
e20B 、 Fe3O4等のターゲットと、AI 、
 Al1 O8等のターゲットを設置し、これらを非磁
性支持体上にスパッタさせて成膜する。次いで、熱処理
炉中で還元や酸化を行って各層を所定の磁性薄膜及び耐
摩耗性酸化物に変化させ、またそれらの界面を固溶領域
にする。この方法が、従来の方法に比してすぐれている
ことは先きに述べた通りである。第3図はこの点を示す
。同図(a)は本発明の方法を、(b)は従来法を示す
。図のように従来法のうち2重枠で示した工程は本発明
の方法よりも多い。このように本発明では工程が簡略化
されるため、磁気記録体の製造時間が短縮される。
The method of the present invention can typically be performed by sputtering. In the present invention, Fe, α-F are contained in the same vacuum chamber.
Targets such as e20B, Fe3O4, AI,
A target such as Al1 O8 is set up, and a film is formed by sputtering these targets onto a nonmagnetic support. Next, reduction and oxidation are performed in a heat treatment furnace to transform each layer into a predetermined magnetic thin film and wear-resistant oxide, and to make the interface between them a solid solution region. As mentioned above, this method is superior to conventional methods. Figure 3 illustrates this point. FIG. 4(a) shows the method of the present invention, and FIG. 2(b) shows the conventional method. As shown in the figure, there are more steps indicated by double frames in the conventional method than in the method of the present invention. As described above, the present invention simplifies the process, thereby shortening the manufacturing time of the magnetic recording medium.

磁性薄膜としては前駆物質を用いないでCo 。Co was used as the magnetic thin film without using a precursor.

Cr、Co−P、Co−N1−PlCo−Ni、Co−
Cr等の磁性金属薄膜を用いることができる。この場合
には磁性薄膜とAl2O3、TiO.0.等の保護用の
薄膜を相ついでスパッタ形成し、次いで熱処理炉に入れ
て非酸化性雰囲気中で加熱処理を行う。これにより、保
護膜と磁性金属との間に固溶領域を形成することができ
る。
Cr, Co-P, Co-N1-PlCo-Ni, Co-
A magnetic metal thin film such as Cr can be used. In this case, the magnetic thin film and Al2O3, TiO. 0. A protective thin film is successively formed by sputtering, and then placed in a heat treatment furnace and heat treated in a non-oxidizing atmosphere. Thereby, a solid solution region can be formed between the protective film and the magnetic metal.

なお、固溶した領域の厚みは、ESCA分析、オージェ
分析、RBS分析等によって測定できる。
The thickness of the solid-dissolved region can be measured by ESCA analysis, Auger analysis, RBS analysis, etc.

例えば、オージェ分析では保護膜と磁性薄膜を構成する
原子について厚み方向でプロフィールを観察することに
より行なわれる。Co−Ni薄膜上にAl、O,保護膜
を形成した場合の例を第1図に示す。AIとCoの分布
が重なった部分の半値幅dを固溶した領域と考えること
ができるが、固溶した領域が無い場合でもオージェ分析
装置の分解能のためにdはゼロではな(20〜100人
(各装置によって異なる)の値を持つ。従って実際の固
溶した領域の厚さはdからこの値を引いた値、すなわち
、本発明者らが使用しているオージェ分析装置では固溶
した領域が無い場合の半値幅が約60人であるので実際
の固溶した領域の厚さはd−60で定義する。
For example, Auger analysis is performed by observing the profile of atoms constituting a protective film and a magnetic thin film in the thickness direction. FIG. 1 shows an example in which Al, O, and protective films are formed on a Co--Ni thin film. The half-width d of the part where the distributions of AI and Co overlap can be considered as a solid solution region, but even if there is no solid solution region, d is not zero due to the resolution of the Auger analyzer (20 to 100 Therefore, the actual thickness of the solid-dissolved region is the value obtained by subtracting this value from d, that is, in the Auger analyzer used by the present inventors, Since the half width when there is no region is about 60, the actual thickness of the solid solution region is defined as d-60.

〔実施例1〕 基板としてアルミ合金上に50μmのN1−Pめつき層
を形成し、この表面を研磨したものを用いた。形状は外
径130fi、内径40順、厚さ19mのディスク円板
状である。
[Example 1] As a substrate, a 50 μm N1-P plating layer was formed on an aluminum alloy, and the surface thereof was polished. The shape is a disc with an outer diameter of 130fi, an inner diameter of 40mm, and a thickness of 19m.

この基板上KCr薄膜をスパッタ法により3000人形
成し、この上にCo −20wt%Ni薄膜をスパッタ
法により500人形成した。更にAl2O3、TiO.
O,の保護膜を300人形成した。これを窒素雰囲気中
、各温度で1時間熱処理して磁気ディスクを完成させた
A KCr thin film was formed on this substrate by a sputtering method for 3000 people, and a Co-20wt%Ni thin film was formed thereon by a sputtering method for 500 people. Furthermore, Al2O3, TiO.
300 people formed a protective film for O. This was heat-treated at each temperature for 1 hour in a nitrogen atmosphere to complete a magnetic disk.

完成した磁気ディスクについて、オージェ分析により固
溶した領域の厚さくa−SO)の測定、およびC8S試
験を行ない結果を表1に示す。
Regarding the completed magnetic disk, the thickness of the solid solution region (a-SO) was measured by Auger analysis, and the C8S test was performed. The results are shown in Table 1.

C8S試験は次のようにして行なった。The C8S test was conducted as follows.

C8S試験 、ウィンチェスタ−タイプのMn−Znフェライトヘッ
ド(荷重95I)を使用してC8S試験を行なった。C
8Sは第2図に示したサイクルの繰返しにより行なった
。C8S回数は、記録再生出方が初期の半分以下になる
までの回数で、最大a o、 o o o回まで行なっ
た。
C8S Test The C8S test was conducted using a Winchester type Mn-Zn ferrite head (95I load). C
8S was carried out by repeating the cycle shown in FIG. The number of C8S is the number of times until the recording/reproduction output becomes less than half of the initial value, up to a maximum of a o, o o o times.

表1の結果を見ると、固溶した領域を形成することKよ
りC8号特性が改善され、固溶した領域の厚さを100
Å以上にすると格段に改善され、200Å以上にすると
更に良くなることがわかる。
Looking at the results in Table 1, it can be seen that forming a solid solution region improved the C8 characteristics compared to K, and the thickness of the solid solution region was reduced to 100%.
It can be seen that when the thickness is increased to 200 Å or more, the improvement is markedly improved, and when the thickness is increased to 200 Å or more, the improvement is further improved.

表1 〔実施例2〕 基板として陽極酸化によりアルマイト層を2μm形成し
たアルミ合金基板を使用した。形状は外径15 Q I
EII、内径40m、、厚さ19mのディスク円板状で
ある。この基板上に鉄をターゲットとし、A r + 
O*雰囲気(混合比5oチ、真空度5×10Torr)
でスパッタすることによりα−Fe、O,膜を2000
人形成した。更にこの上にAl2O3、TiO.O,保
護膜をスパッタ法により形成した。
Table 1 [Example 2] As a substrate, an aluminum alloy substrate on which a 2 μm thick alumite layer was formed by anodizing was used. The shape is outer diameter 15 Q I
EII, it has a disk shape with an inner diameter of 40 m and a thickness of 19 m. With iron as a target on this substrate, A r +
O* atmosphere (mixing ratio 5o, degree of vacuum 5 x 10 Torr)
α-Fe, O, film was formed by sputtering at 2000
Formed a person. Furthermore, on top of this, Al2O3, TiO. O, a protective film was formed by sputtering.

次に水素雰囲気炉中で2時間還元しα−FezO@膜を
Fe104膜とした。このときAI、O,膜も一部還元
されてAl2O3、TiOを含んだ膜となる。還元の温
度については表2に示す。更に空気中で310℃、1時
間酸化してFe104膜をγ−Fe@OH膜とし、保護
膜はAI、O,膜とした。
Next, the α-FezO@ film was reduced to a Fe104 film by reduction in a hydrogen atmosphere furnace for 2 hours. At this time, AI, O, and the film are also partially reduced to become a film containing Al2O3 and TiO. The reduction temperatures are shown in Table 2. Further, the Fe104 film was oxidized in air at 310° C. for 1 hour to form a γ-Fe@OH film, and the protective film was an AI, O, film.

以上の工程をフローチャートにしてまとめると第3図(
a)のようになる。これに対して従来の方法−では第3
図(b)のようになり、二重の四角で囲んだ工程が本発
明では省略され磁気記録媒体の製造時間が短縮されるこ
とがわかる。
The above steps can be summarized in a flowchart as shown in Figure 3 (
It will be like a). In contrast, the conventional method
As shown in Figure (b), it can be seen that the steps surrounded by double squares are omitted in the present invention, thereby shortening the manufacturing time of the magnetic recording medium.

完成した磁気ディスクについてオージェ分析により固溶
した領域の厚さくa−SO)の測定、およびC8S試験
を行ない、結果を表2に示す。一方、従来の方法(第3
図(b))で形成した磁気ディスクについても同様の試
験を行なったところd−60=0、C85=14,00
0回′であった。
The thickness of the solid-dissolved region (a-SO) of the completed magnetic disk was measured by Auger analysis, and the C8S test was performed. The results are shown in Table 2. On the other hand, the conventional method (third
A similar test was performed on the magnetic disk formed in Figure (b)), and d-60 = 0, C85 = 14,00.
0 times'.

これに対して本発明の優位性は表2より明らかである。In contrast, the superiority of the present invention is clear from Table 2.

表2 第1図は固溶した領域の厚さを測定する方法を示す図、
第2図はC8S試験の方法を示す図、及び第3図は実施
例2の方法と従来法の工程比較図である。
Table 2 Figure 1 is a diagram showing the method of measuring the thickness of the solid solution region.
FIG. 2 is a diagram showing the C8S test method, and FIG. 3 is a process comparison diagram of the method of Example 2 and the conventional method.

第1図 炙面か5ty>凛ぐ (X) 第2図 時間(叙) 手続補正書 昭和60年12月170 特許庁長′S 宇 賀 瓜 部 殿 事件の表示 昭和60年特 願第23641、発明の名
称  磁気記録媒体及びそのS遣方性補正をする者
Figure 1 Broiled side or 5ty > Ringu (X) Figure 2 Time (description) Procedural amendment December 1985 170 Indication of the case of Mr. Uga Urabe, Commissioner of the Patent Office 1985 Patent Application No. 23641, Title of invention: Magnetic recording medium and person who corrects its S orientation

Claims (10)

【特許請求の範囲】[Claims] (1)非磁性支持体上に磁性薄膜を形成し更に保護膜を
形成してなる磁気記録媒体において、磁性薄膜と保護膜
の間に磁性薄膜と保護膜が固溶した領域が存在すること
を特徴とする磁気記録媒体。
(1) In a magnetic recording medium in which a magnetic thin film is formed on a non-magnetic support and a protective film is further formed, there exists a region between the magnetic thin film and the protective film in which the magnetic thin film and the protective film are solidly dissolved. Features of magnetic recording media.
(2)固溶した領域の厚さが100Å以上であることを
特徴とする特許請求の範囲第1項記載の磁気記録媒体。
(2) The magnetic recording medium according to claim 1, wherein the solid solution region has a thickness of 100 Å or more.
(3)固溶した領域が200Å以上であることを特徴と
する特許請求の範囲第1項記載の磁気記録媒体。
(3) The magnetic recording medium according to claim 1, wherein the solid solution region is 200 Å or more.
(4)保護膜がAl_2O_3、TiO_2およびSi
O_2の少なくとも1つを主成分とすることを特徴とす
る特許請求の範囲第1項、第2項および第3項のいずれ
かに記載の磁気記録媒体。
(4) Protective film is Al_2O_3, TiO_2 and Si
The magnetic recording medium according to any one of claims 1, 2, and 3, characterized in that the magnetic recording medium contains at least one of O_2 as a main component.
(5)非磁性支持体上に磁性薄膜(B)、その前駆磁性
薄膜(A)、または磁性薄膜(B)の前駆物質よりなる
第1の薄膜を形成し、この第1の薄膜上に耐摩耗性酸化
物またはその前駆物質よりなる第2の薄膜を形成し、熱
処理を施すことにより第1の薄膜を前記磁性薄膜(B)
とし、第2の薄膜を耐摩耗性酸化物膜にすることを特徴
とする 磁気記録媒体の製造方法。
(5) A first thin film made of a magnetic thin film (B), its precursor magnetic thin film (A), or a precursor of the magnetic thin film (B) is formed on a nonmagnetic support, and a magnetic thin film (B) is formed on the first thin film. A second thin film made of an abrasive oxide or its precursor is formed, and heat treatment is performed to transform the first thin film into the magnetic thin film (B).
A method of manufacturing a magnetic recording medium, characterized in that the second thin film is a wear-resistant oxide film.
(6)第1の薄膜はα−Fe_2O_3またはFe_3
O_4のいずれかを主成分とする薄膜であり、第2の薄
膜はAl、Al_2O_3、Ti、TiO_2、Siお
よびSiO_2よりなる群から選ばれた少なくとも1つ
を主成分とすることを特徴とする特許請求の範囲第5項
記載の磁気記録媒体の製造方法。
(6) The first thin film is α-Fe_2O_3 or Fe_3
A patent characterized in that the second thin film has at least one main component selected from the group consisting of Al, Al_2O_3, Ti, TiO_2, Si, and SiO_2. A method for manufacturing a magnetic recording medium according to claim 5.
(7)磁性薄膜(B)はγ−Fe_2O_3を主成分と
し、耐摩耗性酸化物膜はAl_2O_3、TiO_2お
よびSiO_2の少なくとも1つを主成分とすることを
特徴とする特許請求の範囲第5項または第6項記載の磁
気記録媒体の製造方法。
(7) The magnetic thin film (B) is mainly composed of γ-Fe_2O_3, and the wear-resistant oxide film is mainly composed of at least one of Al_2O_3, TiO_2, and SiO_2. Or the method for manufacturing a magnetic recording medium according to item 6.
(8)磁性薄膜(B)と耐摩耗性酸化物膜の界面に固溶
領域が存在することを特徴とする特許請求の範囲第5項
、第6項および第7項のいずれかに記載の磁気記録媒体
の製造方法。
(8) A solid solution region is present at the interface between the magnetic thin film (B) and the wear-resistant oxide film, according to any one of claims 5, 6, and 7. A method for manufacturing a magnetic recording medium.
(9)固溶領域の厚さが100Å以上であることを特徴
とする特許請求の範囲第8項記載の磁気記録媒体の製造
方法。
(9) The method for manufacturing a magnetic recording medium according to claim 8, wherein the solid solution region has a thickness of 100 Å or more.
(10)固溶領域の厚さが200Å以上であることを特
徴とする特許請求の範囲第8項記載の磁気記録媒体の製
造方法。
(10) The method for manufacturing a magnetic recording medium according to claim 8, wherein the solid solution region has a thickness of 200 Å or more.
JP60236415A 1985-10-24 1985-10-24 Magnetic recording medium and manufacturing method thereof Expired - Fee Related JPH077503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60236415A JPH077503B2 (en) 1985-10-24 1985-10-24 Magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60236415A JPH077503B2 (en) 1985-10-24 1985-10-24 Magnetic recording medium and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP34196497A Division JP2857136B2 (en) 1997-11-28 1997-11-28 Magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS6297127A true JPS6297127A (en) 1987-05-06
JPH077503B2 JPH077503B2 (en) 1995-01-30

Family

ID=17000415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60236415A Expired - Fee Related JPH077503B2 (en) 1985-10-24 1985-10-24 Magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH077503B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172A (en) * 1981-06-25 1983-01-05 Oki Electric Ind Co Ltd Manufacturing method for semiconductor integrated circuit device
JPS586528A (en) * 1981-07-02 1983-01-14 Nec Corp Flexible magnetic recording medium
JPS60187425A (en) * 1984-12-28 1985-09-24 Hitachi Cable Ltd Working device of inside grooved metallic tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172A (en) * 1981-06-25 1983-01-05 Oki Electric Ind Co Ltd Manufacturing method for semiconductor integrated circuit device
JPS586528A (en) * 1981-07-02 1983-01-14 Nec Corp Flexible magnetic recording medium
JPS60187425A (en) * 1984-12-28 1985-09-24 Hitachi Cable Ltd Working device of inside grooved metallic tube

Also Published As

Publication number Publication date
JPH077503B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US4029541A (en) Magnetic recording disc of improved durability having tin-nickel undercoating
US5252367A (en) Method of manufacturing a magnetic recording medium
JPS6297127A (en) Magnetic recording medium and its production
JP2857136B2 (en) Magnetic recording medium and method of manufacturing the same
US5466524A (en) Barium hexaferrite-silicon nitride-carbon magnetic recording medium
JPH03273525A (en) Production of magnetic recording medium
JPS6313118A (en) Magnetic recording medium
JPS613317A (en) Magnetic recording medium
JP2721624B2 (en) Metal thin-film magnetic recording media
JPS61267922A (en) Magnetic disk
JPS63222313A (en) Magnetic head
JPH0315254B2 (en)
JPS62293512A (en) Magnetic recording medium
JPS62243115A (en) Magnetic recording medium
JPH0416855B2 (en)
JPH0514325B2 (en)
JPS61243928A (en) Magnetic storage body
JPS6242315A (en) Magnetic recording medium
JPS61184725A (en) Magnetic recording medium and its production
JPS63104214A (en) Magnetic memory body and its production
JPH01138617A (en) Production of magnetic disk
JPH0522283B2 (en)
JPH0440620A (en) Magnetic recording disk and production thereof
JPS63217520A (en) Magnetic memory body
JPH06150239A (en) Production of magnetic head and chromium nitride film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees