JPS613317A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS613317A
JPS613317A JP12257584A JP12257584A JPS613317A JP S613317 A JPS613317 A JP S613317A JP 12257584 A JP12257584 A JP 12257584A JP 12257584 A JP12257584 A JP 12257584A JP S613317 A JPS613317 A JP S613317A
Authority
JP
Japan
Prior art keywords
magnetic
layer
film
recording medium
underlying layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12257584A
Other languages
Japanese (ja)
Other versions
JPH0576684B2 (en
Inventor
Tomonobu Ogasawara
小笠原 友信
Nobuyuki Takahashi
伸幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12257584A priority Critical patent/JPS613317A/en
Publication of JPS613317A publication Critical patent/JPS613317A/en
Publication of JPH0576684B2 publication Critical patent/JPH0576684B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To form an underlying layer having excellent smoothness without generating magnetism even if a magnetic recording medium is heated to a high temp. and to form the medium suitable for high-density recording by providing a magnetic layer via the underlying layer consisting of Ni-Cu-P contg. Ni at a specific ratio or below onto a non-magnetic metallic substrate. CONSTITUTION:The underlying layer 2 consisting of the Ni-Cu-P contg. <=88wt% Ni, >=9wt% Cu and >=3wt% P is provided by using an alkaline electroless plating bath on the surface of the non-magnetic metallic substrate 1 consisting of Al (alloy), etc. The surface of the underlying layer may be mechanochemically polished, if necessary, to improve further the surface smoothness. Co-Ni-P is plated on the underlying layer to form the magnetic layer 3. A gamma-Fe2O3 magnetic layer 3 is otherwise formed by a sputtering method, etc. on the underlying layer. The underlying layer is not magnetized at all even if said layer is exposed to the high temp. in the stage of forming the magnetic layer and since the low- purity Al alloy is usable as the substrate, the magnetic recording medium is obtd. at a low cost.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、磁気記録装置の磁気ディスク、磁気ドラムに
用いられる非磁性金属基体上に磁性層を有する磁気記録
媒体に関する。
The present invention relates to a magnetic recording medium having a magnetic layer on a nonmagnetic metal substrate used in magnetic disks and magnetic drums of magnetic recording devices.

【従来技術とその問題点】[Prior art and its problems]

近年磁気記録装置においては、高記録密度化。 高倍転性の要求からコンタクト・スタート・ストップ型
ヘッド浮揚システムの使用が一般化されている。また記
録媒体については、薄膜化、磁気特性の向上、基体表面
精度の向上がなされており、従来から広く用いられてき
たγ−1’e20* 6粒子を塗布して形成した塗布形
媒体にかわりうる連Vt薄膜形媒体であるめっき法によ
り磁性膜を形成しためっき形媒体および反応性スパッタ
リング法、蒸着法等によりフェライト磁性膜を形成した
フェライト連続膜媒体も急速に実用化されつつある。連
続薄膜形媒体の実用化にあたっては基体品質の改善が不
可欠の条件となっている。高記録密度用媒体に用いる基
体の具備しなければならない条件としては次のものが挙
げられる。 1)表面の機械的平坦性および粗さが良好なこと。 2)微小くぼみ、微小突起等の欠陥が出来るだけ少ない
こと。 3)耐ヘッドクラツシユ性を改善するために適度な硬度
を有すること。 4)磁気記録媒体の製作完成後に基体が非磁性であるこ
と。 従来磁気ディスク基板としては、塗布形媒体にはアルミ
ニウム合金基板が用いられ、めっき形媒体においてはア
ルミニウム合金基板上にN1−Pめっきしたものが用い
られ、フェライト連続膜媒体についてはアルマイト処理
をしたアルミ2ウム合金基板が用いられていた。めっき
形媒体に用いられるアルミニウム合金にN1−Pめっき
したものは、適度な硬度(400〜500FIV)を有
し、鏡面加工性が良好で生産性に優れる反面、加熱処理
により磁性が出現する大きな欠点があった。前述したと
うり磁気記録媒体下地としては非磁性であることが必要
である。基板に磁性が存在すると、磁気記録の際磁性層
のほかに下地層にも記録されて磁化遷移幅が増大し、再
生の際には磁性媒体層の磁化がこの下の基板によって閉
じるため、磁気記録体外部に生じる磁束が減少し、ヘッ
ド出力が低下する。この様に基板に磁性が出現すると記
録再生特性が著しく低下してしまうからである。磁性の
出現する温度はめっき膜中のP(りん)含有率によって
異なるものの、耐熱限界はおおむね260〜275℃で
ある。この温度以上での加熱により磁性が発生する理由
としては、二つの理由が挙げられる。 1)無定形Niの状態から結晶Niへの状態変化2)N
iiPの生成によるパウリ磁性の出現この二つの理由の
うち、前者のNlの結晶化による磁性の出現はめっき膜
中のP含有率を高めることによりある程度抑制できるが
、後者のNi3 P生成による磁性については実用的な
N1−Pめっき系皮膜では防止できない。このため媒体
製造工程での各種熱処理温度はこれ以下にしなければな
らない大きな制約がある。またフェライト連続膜媒体の
製造工程では例えばスパッタリング法の場合、反応性ス
パッタリング時には、基板は200〜300℃の温度に
さらされ、γ−FezO,,化のための大気中加熱では
300〜350℃の温度に数時間さらされるため、この
様な温度では磁性が出現するN1−Pめっきはフェライ
ト系スパッタ形あるいはフェライト蒸着形媒体には使用
できなかった。さらにめっき形媒体では、記録・再生ヘ
ッドとの摩擦による損傷および周囲環境条件による腐食
から記録媒体を保護すべく保護膜が必要となるが、この
保護膜の焼成温度が制限されていた。 このためフェライト連a薄膜形媒体では前記の熱処理に
耐えるアルマイト処理されたアルミニウム合金が使用さ
れているのが一般的である(特開昭55−85694号
公報)。アルマイト被覆合金基板は表面加工性が優れ、
皮膜もA1.0.が主体であるためモース硬度9の硬質
膜で、記録・再生ヘッドの衝突で損傷しにくい利点を有
している。さらに高純度AI−M、合金を基材として用
いることにより、表面欠陥数も相当に低下してきている
。しかしながらこのアルマイト皮膜についてはアルマイ
ト厚さが厚い場合は当該熱処理によりクラックの発生す
る大きな欠点がある。クラックの発生するアルマイト板
を基板として用いて記録媒体を製作すると信号エラーが
生じ、磁気記録媒体としては全く信転性に欠けるものに
なる。このクシツクの発生は、77L/ ?イト皮膜と
アルミニウム合金基体との熱膨張係数の相違によるもの
であり、アルマイト膜の熱膨張係数はアルミニウム基体
のそれの約1/3と言われている。第5図は硫酸アルマ
イトの厚みと熱処理によるクラックの発生状況を示すも
ので、図中の○印はクシツクの発生がない場合、x印は
クラックが認められる場合、Δ印は判断不能の場合であ
る。このようなりラックは、表面に生ずる黒点部分を中
心に発生していることが認められ、この結果320℃で
の許容アルマイト膜の厚さは2μmと非常に薄<シなけ
ればならないことが判る。しかし2μm以下のアルマイ
ト厚、さては磁性媒体層の下地層として本来要求されて
いるヘッドとの衝突に耐えるべき硬質膜を得るという目
的に対しては甚だ不充分であり、事実γ−Fearsス
パッタ形ディスクとして実用性に欠ける理由の一つとし
て位置づけられている。さらにアルマイト処理された基
板では、アルマイト膜が絶縁性が高く化学的に不働態で
あるためにめっき形媒体には適用できず、塗布形あるい
はフェライト連続膜媒体にのみ使用範囲が限られていた
。また、アルマイト処理は電解により絶縁性の高い皮膜
を成長させる方法であるため、アルマイト膜の成長を阻
害させない充分な通電方法を確保しなければならずめっ
き法と比較して生産性に欠ける難点を有していた。その
上高記録密度アルマイト基板としてはAl−Mg以外の
不純物元素が0.01%以下にしないと信号エラーに結
びつく黒点が発生するため、99.99%以上の高純度
の材料を使用する必要がありコスト的に大きな問題であ
った。
In recent years, magnetic recording devices have achieved higher recording densities. Due to the requirement for high rotation performance, the use of a contact start/stop type head flotation system has become common. In addition, recording media have been made thinner, have improved magnetic properties, and have improved substrate surface precision, replacing the coated media formed by coating γ-1'e20*6 particles that have been widely used in the past. Ururen Vt thin film media, plated media in which a magnetic film is formed by plating, and ferrite continuous film media, in which a ferrite magnetic film is formed by reactive sputtering, vapor deposition, etc., are rapidly being put into practical use. Improving the quality of the substrate is an essential condition for the practical application of continuous thin film media. The following conditions must be met for a substrate used in a medium for high recording density. 1) Good mechanical flatness and roughness of the surface. 2) Defects such as minute depressions and minute protrusions should be as few as possible. 3) Appropriate hardness to improve head crushing resistance. 4) The substrate must be non-magnetic after the magnetic recording medium has been manufactured. Conventionally, as magnetic disk substrates, aluminum alloy substrates have been used for coated media, N1-P plated aluminum alloy substrates have been used for plated media, and alumite-treated aluminum has been used for ferrite continuous film media. A 2um alloy substrate was used. N1-P plated aluminum alloy used for plating media has moderate hardness (400 to 500 FIV), good mirror workability, and excellent productivity, but it has a major drawback of becoming magnetic due to heat treatment. was there. As mentioned above, the underlayer of the magnetic recording medium must be non-magnetic. If magnetism exists in the substrate, it is recorded not only in the magnetic layer but also in the underlayer during magnetic recording, increasing the magnetization transition width, and during reproduction, the magnetization of the magnetic medium layer is closed by the underlying substrate, resulting in magnetic The magnetic flux generated outside the recording body decreases, and the head output decreases. This is because when magnetism appears in the substrate, the recording and reproducing characteristics are significantly degraded. Although the temperature at which magnetism appears varies depending on the P (phosphorus) content in the plating film, the heat resistance limit is approximately 260 to 275°C. There are two reasons why magnetism is generated by heating above this temperature. 1) State change from amorphous Ni state to crystalline Ni state 2) N
The appearance of Pauli magnetism due to the formation of iiP Of these two reasons, the former, the appearance of magnetism due to the crystallization of Nl, can be suppressed to some extent by increasing the P content in the plating film, but the latter, the appearance of magnetism due to the formation of Ni3P, can be suppressed to some extent. cannot be prevented with a practical N1-P plating film. For this reason, there is a major restriction that the various heat treatment temperatures in the media manufacturing process must be kept below this range. In addition, in the manufacturing process of ferrite continuous film media, for example, in the case of sputtering, the substrate is exposed to a temperature of 200 to 300°C during reactive sputtering, and the substrate is exposed to a temperature of 300 to 350°C when heated in the air to form γ-FezO. Because of the exposure to temperature for several hours, N1-P plating, which becomes magnetic at such temperatures, could not be used for ferrite sputtered or ferrite evaporated media. Furthermore, plated media require a protective film to protect the recording medium from damage caused by friction with the recording/reproducing head and corrosion due to ambient environmental conditions, but the firing temperature of this protective film has been limited. For this reason, in ferrite-containing thin film media, an alumite-treated aluminum alloy that can withstand the above-mentioned heat treatment is generally used (Japanese Unexamined Patent Publication No. 85694/1983). The alumite coated alloy substrate has excellent surface workability,
The film is also A1.0. Since the film is mainly composed of , it is a hard film with a Mohs hardness of 9, and has the advantage of being less likely to be damaged by collisions with recording/reproducing heads. Furthermore, by using high-purity AI-M and alloys as base materials, the number of surface defects has been significantly reduced. However, this alumite film has a major drawback in that if the alumite thickness is thick, cracks will occur due to the heat treatment. If a recording medium is manufactured using a cracked alumite plate as a substrate, signal errors will occur, resulting in a completely unreliable magnetic recording medium. The occurrence of this squeak is 77L/? This is due to the difference in thermal expansion coefficient between the alumite film and the aluminum alloy substrate, and the thermal expansion coefficient of the alumite film is said to be about 1/3 that of the aluminum substrate. Figure 5 shows the thickness of sulfuric acid alumite and the occurrence of cracks due to heat treatment. In the figure, the ○ mark indicates that no cracks have occurred, the x mark indicates that cracks are observed, and the Δ mark indicates that it cannot be determined. be. It is recognized that such racks are generated mainly in the black spots that appear on the surface, and as a result, it is clear that the allowable thickness of the alumite film at 320° C. must be as extremely thin as 2 μm. However, an alumite thickness of 2 μm or less is extremely insufficient for the purpose of obtaining a hard film that can withstand collision with the head, which is originally required as an underlayer for a magnetic medium layer, and in fact, the γ-Fears sputter type This is considered one of the reasons why discs lack practicality. Furthermore, in the case of alumite-treated substrates, since the alumite film has high insulating properties and is chemically passive, it cannot be applied to plating media, and its use is limited to coating media or ferrite continuous film media. In addition, since alumite treatment is a method of growing a highly insulating film by electrolysis, it is necessary to ensure a sufficient electrical current flow method that does not inhibit the growth of the alumite film, which has the disadvantage of lacking productivity compared to plating methods. had. Furthermore, for high-density alumite substrates, impurity elements other than Al-Mg must be kept below 0.01%, otherwise black spots will occur that can lead to signal errors, so it is necessary to use materials with a high purity of 99.99% or higher. This was a big problem in terms of cost.

【発明の目的】[Purpose of the invention]

本発明は、上述の欠点を除き、耐熱性、非磁性安定性、
加工性、生産性および経済性にすぐれ、高記録密度に適
して欠陥が少なく、その上磁性層形成方法の種類に制限
されることのない下地基体を有する磁気記録媒体を提供
することを目的とする。
The present invention eliminates the above-mentioned drawbacks, has high heat resistance, non-magnetic stability,
The purpose of the present invention is to provide a magnetic recording medium having an underlying substrate that is excellent in processability, productivity, and economy, suitable for high recording density, has few defects, and is not limited by the type of magnetic layer formation method. do.

【発明の要点】[Key points of the invention]

本発明によれば、磁気記録媒体の磁性層の下地層がNi
含有量を88%以下に制限したNi−Cu  Pめっき
膜であることによって上記の目的が達せられる。Cuの
含有量は9%以上、Pの含有量は3は以上であることが
望ましく、このような高Cu!1度のN1−Cu−Pめ
っき膜はアルカリ性無電解めっき浴によって容易に形成
することができる。
According to the present invention, the underlayer of the magnetic layer of the magnetic recording medium is made of Ni.
The above objective can be achieved by using a Ni-CuP plating film whose content is limited to 88% or less. It is desirable that the Cu content is 9% or more, and the P content is 3 or more. A one-time N1-Cu-P plating film can be easily formed using an alkaline electroless plating bath.

【発明の実施例】[Embodiments of the invention]

第1図は本発明が実施される磁気ディスク、磁気ドラム
の一般的な断面構造で、第1図ta)のA部拡大図であ
る第1図(blに示されるようにアルミニウム合金基板
1に下地層2.磁性層3.保護層4゜潤滑層5が積層さ
れている。本発明によれば下地層2が88各以下のNi
を含むN1−Cu−Pめっき膜である。このめっき膜は
、例えば第2図に示すような工程で形成される。実施例
として次の条件による無電解めっきによりめっき膜2を
形成した。 N1−Cu−Pめっき液組成: 硫酸ニッケル      0.085〜0.095モル
/l硫酸銅あるいは塩化第二銅 0.005〜0.01
5モル/1次亜りん酸ナトリウム  0.2モル/βく
えん酸ナトリウム   0.2モル/1めっき液のP)
I:      約10(水酸化ナトリム使用)めっき
液温度=80±2℃ めっき時間:wX厚に対応 膜中の組成比を硫酸ニッケルと硫酸銅の量を変えること
により調整し、第1表に示す3種のめっき膜を有する試
験片を作成した。 第1表 比較のためにP含有量9%の無電解N1−Pめっき膜を
有する比較試料21およびNi28%、Cu1%。 pH%からなる無電解N1−Cu−Pめっき膜を有する
比較試料22を作成した。これらの試料を大気中で2時
間加熱したときの磁気特性を・第3図に示す。 線に付した番号は試料番号に対応する。比較試料21、
22においては加熱により磁性が出現するのに対し、実
施例の試料11.12.13は3試料とも直線上に並ぶ
測定値が示すように400℃まで加熱しても全く非磁性
であり、試料14においても300℃まで非磁性である
。すなわち、高い非磁性安定性を確保するためには、膜
中のNi含有量を88%以下にすることが重要である。 本発明の実施例の試料におけるめっき膜のビッカース硬
さは荷重100gテ500〜600HV T:あり、磁
気ディスクの下地層として十分の硬さを持つ。しかし、
この硬さは旧の含有によって得られるもので、Ni含有
量は30%以上であることが必要である。 各試料を大気中で2時間加熱したときの硬度変化を第4
図に示す。第3図と同様各曲線に付した番号は試料番号
に対応する。図で見られるようにNi含有量の低いめっ
き膜では硬度変化が少なく、Ni含有量が減少するにつ
れて加熱後の硬度は上昇する傾向にある。しかし曲線2
1が示すN1−P膜特存の400℃付近で極大を示すよ
うな顕著な硬度の増大は認められない、このような硬度
増加はN1aPが生成することによると考えられる。こ
のことはX線回折の結果からも立証された。すなわち実
施例の試料11.12では、Niの結晶化およびN15
Pの生成は350℃までの加熱では認められず、400
℃での加熱後でもNiの結晶ピークはN1−Pめっきの
場合と比較して小さい。Niの6==4> & c」試
料13についても、325℃の加熱で初めてNi3Pの
生成が認められる。 めっき膜の厚さとしては、ある一定の強度を確保するた
めに1μ−以上が必要であり、また30μ鞘を超えると
めっき時間増加による作業性の低下およびめっき膜中の
応力が後工程の熱処理により解放されることによる基板
のそりのような機械的平坦性の劣化を起こすという欠点
を生ずることから自ずと限定されることになる。 また、N1−Cu−P合金の下地めっきを施した後、磁
性層を形成する前に下地めっき表面を一定のポリッシン
グ工程を施すことにより、表面精度をさらに改善させる
ようにすれば、高記録密度よう磁気記録媒体の基体とし
てはより好ましいものになる。 例えば、高純度Al−4%Mg合金の円板をダイヤモン
ド旋削によあ鏡面加工し、第2図の工程に従ってジンケ
ート法による前処理を行って厚さ20μmのNi45%
、 Cu49%、P6%のめっきを施し、平均粒径1.
0μmのアルミナ微粒子のPH約5の懸濁液を用いてメ
カノケミカルポリッシングでRa0.01以下の表面精
度を得ることができ、鏡面加工性も良好であることが確
認できた。この鏡面加工された基板を用いて、次の条件
でCoN1−Pの磁性めっきを行った。 CoNj−Pめっき液組成: 硫酸コバルト      0.06モル/l硫酸ニッケ
ル      0.04モル/1次亜りん酸ナトリウム
  0.2モル/l硫酸アンモニウム    0.1モ
ル/lこはく酸ナトリウム   0.5モル/lマロン
酸ナトリウム   0.2モル/lめっき液のpu: 
      9(アンモニアで調整)。 めっき液温度:65±2℃ 得られた磁気特性は膜厚0.08μ−で次のとうりで、
すぐれた値を示す。 抗磁カニ           600〜8000e残
留磁束密度:       6500〜7000 C。 角形比二0.7〜0.85 次に同様に鏡面加工されたN1−Cu−Pめつき膜上に
スパッタリング法によりγ−Fetus磁性膜を形成さ
せた。スパッタリングおよび熱処理条件は次のとうりで
ある。 スパッタリング条件(RFダイオードタイプ)ターゲッ
ト  Fe−2,5重量%Co−3,0重量%Cu全ガ
ス圧   2 Xl0−”Torr (Ar +Oz)
酸素分圧   7.8 Xl0−’TorrRFパワー
  500W 電極開路1114抛− 基板温度   200℃ 熱処理条件: 大気中360℃、3時間 得られた磁気特性は膜厚0.2μ謡において次のとうり
で、すぐれた値を示す。 抗磁カニ     Too 〜8000e残留磁束密度
:  2500〜3000 G角形比:例   0.7
7〜0.79
FIG. 1 shows a general cross-sectional structure of a magnetic disk or magnetic drum in which the present invention is implemented, and as shown in FIG. Underlayer 2. Magnetic layer 3. Protective layer 4. Lubricating layer 5 are laminated. According to the present invention, underlayer 2 is made of Ni of 88 or less.
It is an N1-Cu-P plating film containing. This plating film is formed, for example, in a process as shown in FIG. As an example, a plated film 2 was formed by electroless plating under the following conditions. N1-Cu-P plating solution composition: Nickel sulfate 0.085-0.095 mol/l Copper sulfate or cupric chloride 0.005-0.01
5 mol/1 Sodium hypophosphite 0.2 mol/β Sodium citrate 0.2 mol/1 plating solution P)
I: Approximately 10 (using sodium hydroxide) Plating solution temperature = 80 ± 2°C Plating time: wX Corresponding to thickness The composition ratio in the film was adjusted by changing the amounts of nickel sulfate and copper sulfate, and is shown in Table 1. Test pieces having three types of plating films were created. For comparison, Table 1 shows comparative sample 21 having an electroless N1-P plating film with a P content of 9%, Ni 28%, and Cu 1%. Comparative sample 22 having an electroless N1-Cu-P plating film consisting of pH% was created. Figure 3 shows the magnetic properties of these samples when heated in the atmosphere for 2 hours. The number attached to the line corresponds to the sample number. Comparative sample 21,
In contrast to sample 11, 12, and 13 in the example, magnetism appears when heated, as shown by the measured values that line up on a straight line, even when heated to 400°C. 14 is also non-magnetic up to 300°C. That is, in order to ensure high nonmagnetic stability, it is important to keep the Ni content in the film at 88% or less. The Vickers hardness of the plating film in the sample of the example of the present invention is 500 to 600 HV T at a load of 100 g, and has sufficient hardness as an underlayer of a magnetic disk. but,
This hardness is obtained by the Ni content, and the Ni content needs to be 30% or more. The change in hardness when each sample was heated in the atmosphere for 2 hours was measured as
As shown in the figure. As in FIG. 3, the numbers attached to each curve correspond to the sample numbers. As seen in the figure, a plating film with a low Ni content shows little change in hardness, and as the Ni content decreases, the hardness after heating tends to increase. But curve 2
No remarkable increase in hardness such as the maximum at around 400° C., which is characteristic of the N1-P film shown in No. 1, was observed, and it is thought that such an increase in hardness is due to the formation of N1aP. This was also confirmed by the results of X-ray diffraction. That is, in sample 11.12 of the example, Ni crystallization and N15
No formation of P was observed when heated up to 350°C;
Even after heating at .degree. C., the Ni crystal peak is smaller than in the case of N1-P plating. Regarding Ni sample 13 with 6==4>&c, formation of Ni3P is also observed for the first time when heated to 325°C. The thickness of the plating film needs to be 1μ or more to ensure a certain level of strength, and if it exceeds 30μ, workability will decrease due to increased plating time and stress in the plating film will increase during heat treatment in the post-process. This naturally results in limitations, since this causes a disadvantage in that mechanical flatness deteriorates, such as warping of the substrate due to the release of the substrate. In addition, if the surface precision is further improved by applying a certain polishing process to the surface of the base plating after applying the N1-Cu-P alloy base plating and before forming the magnetic layer, it is possible to achieve high recording density. This makes it more preferable as a substrate for magnetic recording media. For example, a disc of high-purity Al-4%Mg alloy is polished to a mirror finish by diamond turning, and pre-treated by the zincate method according to the process shown in Figure 2 to form a 20 μm thick Ni45%
, plated with 49% Cu and 6% P, with an average grain size of 1.
It was confirmed that a surface precision of Ra of 0.01 or less could be obtained by mechanochemical polishing using a suspension of 0 μm alumina fine particles with a pH of about 5, and that mirror workability was also good. Using this mirror-finished substrate, CoN1-P magnetic plating was performed under the following conditions. CoNj-P plating solution composition: Cobalt sulfate 0.06 mol/l Nickel sulfate 0.04 mol/l Sodium hypophosphite 0.2 mol/l Ammonium sulfate 0.1 mol/l Sodium succinate 0.5 mol/l Sodium malonate 0.2 mol/l plating solution pu:
9 (adjusted with ammonia). Plating solution temperature: 65±2℃ The obtained magnetic properties were as follows at a film thickness of 0.08μ-
Shows excellent value. Anti-magnetic crab 600-8000e Residual magnetic flux density: 6500-7000C. Squareness ratio: 20.7 to 0.85 Next, a γ-Fetus magnetic film was formed by sputtering on the N1-Cu-P plated film which had been mirror-finished in the same manner. The sputtering and heat treatment conditions are as follows. Sputtering conditions (RF diode type) Target Fe-2,5% by weight Co-3,0% by weight Cu Total gas pressure 2 Xl0-”Torr (Ar +Oz)
Oxygen partial pressure 7.8 Shows excellent value. Anti-magnetic crab Too ~8000e Residual magnetic flux density: 2500~3000 G squareness ratio: Example 0.7
7-0.79

【発明の効果】【Effect of the invention】

本発明は磁気記録媒体の磁性層の下地層としてNi88
%以下、9%以上の高Cu含有量のN1−Cu−Pめっ
き膜を有するもので、これにより高温の加熱によっても
磁性の出現が全くなく、また鏡面加工性のすぐれた下地
層が得られるので高記録密度記録媒体に極めて有効に適
用できる。このようなめっき膜はアルカリ浴を用いた無
電解めっき浴により容易に形成できるので一括同時処理
が可能であり、量産性にすぐれ、また低純度のアルミニ
ウム合金板にも適用できるのでコスト低減も可能である
など得られる効果は極めて大きい。
The present invention uses Ni88 as an underlayer for a magnetic layer of a magnetic recording medium.
It has an N1-Cu-P plating film with a high Cu content of less than 9% and more than 9%, which shows no appearance of magnetism even when heated to high temperatures, and provides an underlayer with excellent mirror workability. Therefore, it can be applied extremely effectively to high recording density recording media. This type of plating film can be easily formed using an electroless plating bath using an alkaline bath, so simultaneous batch processing is possible, and it is excellent in mass production. It can also be applied to low-purity aluminum alloy plates, which reduces costs. The effects obtained are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(blは本発明の実施される磁気ディス
クの断面図で第1図(b)は第1図(9)のA部拡大図
、第2図は本発明による磁気ディスクN1−Cu−Pめ
っきの一実施例の工程図、第3図は実施例および比較例
のめっき膜の磁束飽和密度の加熱による変化を示す線図
、第4図は同じくめっき膜の硬度の加熱による変化を示
す線図、第5図はアルミニウム基板上のアルマイト膜の
加熱によるクラックの発生状況を示す線図である。 1ニアルミニウム基板、2:下地層N1−Cu−P第Z
図 第3図 人先中力ロ桑岨温7!(°υ f14図 人災中力−熱う五浪C°C)
FIGS. 1(a) and (bl are cross-sectional views of a magnetic disk in which the present invention is implemented, FIG. 1(b) is an enlarged view of part A of FIG. 1(9), and FIG. 2 is a magnetic disk according to the present invention. A process diagram of an example of N1-Cu-P plating, Fig. 3 is a diagram showing the change in magnetic flux saturation density of the plating film of the example and comparative example due to heating, and Fig. 4 is a diagram showing the change in hardness of the plating film due to heating. Fig. 5 is a diagram showing the occurrence of cracks due to heating of an alumite film on an aluminum substrate.1 Aluminum substrate, 2: Base layer N1-Cu-P No. Z
Figure 3 Figure 3 Hitoshi Churokiro Kuwaka On 7! (°υ f14 figure man-made disaster - hot five wave C°C)

Claims (1)

【特許請求の範囲】 1)非磁性金属基体上にニッケル−銅−りんめっき膜か
らなる下地層を介して磁性層が被着されるものにおいて
、下地層のニッケル含有量が88%以下であることを特
徴とする磁気記録媒体。 2)特許請求の範囲第1項記載の媒体において、下地層
の銅含有量が9%以上であることを特徴とする磁気記録
媒体。 3)特許請求の範囲第1項または第2項記載の媒体にお
いて、下地層のりん含有量が3%以上であることを特徴
とする磁気記録媒体。 4)特許請求の範囲第1項ないし第3項のいずれかに記
載の媒体において、下地層がアルカリ性無電解めっき浴
で形成されたことを特徴とする磁気記録媒体。
[Claims] 1) A magnetic layer is deposited on a non-magnetic metal substrate via an underlayer consisting of a nickel-copper-phosphorus plating film, in which the nickel content of the underlayer is 88% or less. A magnetic recording medium characterized by: 2) A magnetic recording medium according to claim 1, characterized in that the copper content of the underlayer is 9% or more. 3) A magnetic recording medium according to claim 1 or 2, characterized in that the phosphorus content of the underlayer is 3% or more. 4) A magnetic recording medium according to any one of claims 1 to 3, characterized in that the underlayer is formed in an alkaline electroless plating bath.
JP12257584A 1984-06-14 1984-06-14 Magnetic recording medium Granted JPS613317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12257584A JPS613317A (en) 1984-06-14 1984-06-14 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12257584A JPS613317A (en) 1984-06-14 1984-06-14 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS613317A true JPS613317A (en) 1986-01-09
JPH0576684B2 JPH0576684B2 (en) 1993-10-25

Family

ID=14839298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12257584A Granted JPS613317A (en) 1984-06-14 1984-06-14 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS613317A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981741A (en) * 1986-03-19 1991-01-01 Mitsubishi Denki Kabushiki Kaisha Coating alloy
JPH0663472U (en) * 1993-01-29 1994-09-09 栄一 恩田 Car shiatsu handle
JP2016018572A (en) * 2014-07-07 2016-02-01 古河電気工業株式会社 Metallic member for magnetic recording medium and magnetic recording medium
CN113106431A (en) * 2021-04-27 2021-07-13 山西智软科技有限公司 Storage medium for heat assisted magnetic recording and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857660A (en) * 1994-06-15 1996-03-05 Ondo Kosakusho:Kk Guide pin for projection nut welding machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651024A (en) * 1979-10-02 1981-05-08 Nec Corp Magnetic recording body
JPS56124118A (en) * 1980-03-06 1981-09-29 Nec Corp Magnetic recording material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651024A (en) * 1979-10-02 1981-05-08 Nec Corp Magnetic recording body
JPS56124118A (en) * 1980-03-06 1981-09-29 Nec Corp Magnetic recording material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981741A (en) * 1986-03-19 1991-01-01 Mitsubishi Denki Kabushiki Kaisha Coating alloy
JPH0663472U (en) * 1993-01-29 1994-09-09 栄一 恩田 Car shiatsu handle
JP2016018572A (en) * 2014-07-07 2016-02-01 古河電気工業株式会社 Metallic member for magnetic recording medium and magnetic recording medium
CN113106431A (en) * 2021-04-27 2021-07-13 山西智软科技有限公司 Storage medium for heat assisted magnetic recording and preparation method thereof
CN113106431B (en) * 2021-04-27 2023-03-28 深圳市优讯佳电子科技有限公司 Storage medium for heat assisted magnetic recording and preparation method thereof

Also Published As

Publication number Publication date
JPH0576684B2 (en) 1993-10-25

Similar Documents

Publication Publication Date Title
US4629660A (en) Perpendicular magnetic-recording medium
US6844046B2 (en) Magnetic recording medium, production process thereof, magnetic recording and reproducing apparatus, and sputtering target
US5252367A (en) Method of manufacturing a magnetic recording medium
US5250339A (en) Magnetic recording medium
JPS613317A (en) Magnetic recording medium
JPS61253622A (en) Magnetic recording medium and its production
US5294312A (en) Method for preparing a magnetic recording medium
JPH0647722B2 (en) Method of manufacturing magnetic recording medium
US5560786A (en) Magnetic thin film material for magnetic recording
JPS61246914A (en) Magnetic recording medium and its production
JPH03273525A (en) Production of magnetic recording medium
JP2653204B2 (en) Method for manufacturing in-plane magnetic recording medium
JP3940448B2 (en) Magnetic disk substrate and manufacturing method thereof
JPS6313256B2 (en)
JPS59142735A (en) Magnetic recording medium
JPH0451885B2 (en)
JP2527616B2 (en) Metal thin film magnetic recording medium
JPS61216125A (en) Production of magnetic recording medium
JPS61276115A (en) Magnetic recording medium and its production
JPS61224122A (en) Magnetic recording medium and its production
JPS61184725A (en) Magnetic recording medium and its production
JPS6364623A (en) Magnetic recording medium
JPS6339128A (en) Magnetic recording medium
JPS61224121A (en) Magnetic recording medium
JPS61224120A (en) Magnetic recording medium and its production