JPS6296B2 - - Google Patents

Info

Publication number
JPS6296B2
JPS6296B2 JP21704782A JP21704782A JPS6296B2 JP S6296 B2 JPS6296 B2 JP S6296B2 JP 21704782 A JP21704782 A JP 21704782A JP 21704782 A JP21704782 A JP 21704782A JP S6296 B2 JPS6296 B2 JP S6296B2
Authority
JP
Japan
Prior art keywords
glass
plasma flame
deposited
rotating body
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21704782A
Other languages
Japanese (ja)
Other versions
JPS59107935A (en
Inventor
Gotaro Tanaka
Kunio Fujiwara
Naoki Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21704782A priority Critical patent/JPS59107935A/en
Publication of JPS59107935A publication Critical patent/JPS59107935A/en
Publication of JPS6296B2 publication Critical patent/JPS6296B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • C03B37/01426Plasma deposition burners or torches

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガラス微粒子の堆積効率がよく、かつ
気泡の残留しない光フアイバ用ガラスの製造方法
に関する。 高周波プラズマ炎を用いて石英系の光フアイバ
用ガラスを製造する方法において、微粒子状ガラ
スを回転体上に堆積する場合、従来は第1図イ〜
ニに示す各種々方法がある。第1図イは回転体3
の軸方向に微粒子を堆積する方法であり、プラズ
マ炎5の方向に面して回転体3の端面が配設され
ている。又、第1図ロは回転体3の径方向に微粒
子を堆積する方法であり、プラズマ炎5の方向に
対して回転体3が横に配設されている。この場
合、プラズマトーチ1の開口付近に設けられた各
高周波コイル4によりプラズマ炎5が形成され、
該プラズマ炎5にノズル2からガラス原料ガスを
流してガラス微粒子を合成し、これを回転体3に
堆積する。ところが上記イ,ロのいずれの方法に
おいてもプラズマ炎5の中心軸上に回転体3の回
転軸が対応するように配置され、プラズマ炎5の
高温部が接する付近にガラス微粒子が堆積され
る。このため被堆積部が高温となり焼結工程を経
ずに直接透明なガラス体を得ることができ気泡の
ないガラス体を製造できるが、反面、原料の堆積
効率が低いという欠点がある。一方、第1図ハ,
ニの方法は、プラズマ炎5の側方に回転体3を配
置し、プラズマ炎5の高温部が回転体上のガラス
微粒子堆積部分に接しないようにしたものであ
る。この方法においては蒸気圧の高いドーパント
を導入するのが容易であり、又原料の堆積効率も
よいが、微粒子の堆積過程では直接溶融させるこ
とは困難であり、焼結工程が必要となる。又、焼
結時に気泡を完全に除去するのが難しい。 本発明はガラス微粒子の堆積効率がよく、かつ
気泡の残留しない光フアイバ用ガラスの製造方法
を提供するものであつて、その構成は、プラズマ
炎を熱源として、プラズマ炎中で合成しまたはプ
ラズマ炎中へ導入した微粒子状ガラスを移動する
回転体上に堆積し、溶融ガラス化する光フアイバ
用ガラスの製造方法において、前記プラズマ炎に
対して前記微粒子状ガラスの流れが所定角度をな
すようにし、前記プラズマ炎の高温部に触れない
位置にて微粒子状ガラスを堆積させた後、引き続
き堆積した微粒子状ガラスをプラズマ炎の高温部
に移動して溶融透明化し、順次ガラス層を連続的
に形成することを特徴とする。 以下に本発明を実施例と共に詳細に説明する。 第2図イ,ロに本発明に係る製造方法の概略を
示す。図において、プラズマトーチ1の外周に高
周波コイル4が配置され、該コイル4によりプラ
ズマ炎5が形成される。該プラズマ炎5の側方に
はガラス微粒子を生成するための原料ガス用ノズ
ル2が設けられ、プラズマ炎5の炎の方向に対し
ガラス微粒子の流れ6の方向が所定角度をなすよ
うに配設される。一方プラズマ炎5の前方にはガ
ラス微粒子を堆積する回転体3が設けられる。 ここで第2図イは回転体3の軸方向にガラス微
粒子を堆積させる場合であり、プラズマ炎5に面
して回転体3の端面が配置される。更に回転体3
の回転軸はプラズマ炎5の中心軸よりやや側方に
設けられ、プラズマ炎5に対して所定角度をなす
ガラス微粒子流6によりプラズマ炎5の高温部8
に接しない位置、即ち高温部8の側方にガラス微
粒子が堆積される。堆積部分7は回転体3の回転
に伴いプラズマ炎5を通過して回転されるがこの
際高温部8によつて加熱され溶融焼結して透明化
し、順次連続的にガラス層が形成される。一方第
2図ロは回転体3の径方向にガラス微粒子を堆積
させる場合であり、プラズマ炎5に対して回転体
が横方向に配置される。この方法においても同様
にプラズマ炎5の炎の方向に対して所定角度をな
すガラス微粒子流6によりプラズマ炎5の側方に
ガラス微粒子が堆積される。このガラス微粒子は
回転体3の回転に伴い外周を囲むように堆積され
ると共に回転体3を軸方向に移動し、原料ノズル
側に移動することにより堆積部7がプラズマ炎中
を通過する際その高温部8に加熱されて溶融焼結
し透明なガラス層が連続的に形成される。 本発明は以上のようにガラス微粒子をプラズマ
炎の高温部に接しない位置に堆積させるので堆積
部分での温度を比較的低く抑えることができ、こ
のため蒸気圧の高いドーパントでも容易にドープ
することができると共にガラス微粒子の堆積効率
もよい。更に本発明はガラス微粒子堆積後引き続
きプラズマ炎中を通過させてその高温部により加
熱溶融するので堆積厚さが薄い状態で透明化し、
気泡のない透明なガラス層を確実に得ることがで
きる。 次に本発明の実施例を示す。 実施例 1 プラズマ炎のトーチとして最外層内径40mmφの
2重管トーチを用い、次表の条件下でプラズマ炎
を形成した。
The present invention relates to a method for manufacturing optical fiber glass that has high deposition efficiency of glass particles and does not leave any bubbles. In the method of manufacturing quartz-based optical fiber glass using a high-frequency plasma flame, when depositing particulate glass on a rotating body, conventionally
There are various methods shown in D. Figure 1 A is the rotating body 3
In this method, fine particles are deposited in the axial direction of the plasma flame 5, and the end face of the rotating body 3 is disposed facing the direction of the plasma flame 5. FIG. 1B shows a method of depositing fine particles in the radial direction of a rotating body 3, in which the rotating body 3 is disposed laterally with respect to the direction of the plasma flame 5. In this case, a plasma flame 5 is formed by each high-frequency coil 4 provided near the opening of the plasma torch 1,
Glass raw material gas is flowed through the plasma flame 5 from the nozzle 2 to synthesize glass fine particles, which are deposited on the rotating body 3. However, in both methods (a) and (b) above, the rotating shaft of the rotating body 3 is arranged so as to correspond to the central axis of the plasma flame 5, and glass particles are deposited in the vicinity where the high temperature part of the plasma flame 5 comes into contact. For this reason, the deposited area becomes high temperature, and a transparent glass body can be obtained directly without going through a sintering process, and a glass body without bubbles can be manufactured. However, on the other hand, there is a drawback that the deposition efficiency of the raw material is low. On the other hand, Fig. 1 C,
In the second method, the rotating body 3 is placed on the side of the plasma flame 5 so that the high temperature part of the plasma flame 5 does not come into contact with the part of the rotating body where the glass particles are deposited. In this method, it is easy to introduce a dopant with a high vapor pressure, and the deposition efficiency of the raw material is good, but it is difficult to directly melt the particles during the deposition process, and a sintering step is required. Furthermore, it is difficult to completely remove air bubbles during sintering. The present invention provides a method for manufacturing optical fiber glass that has high deposition efficiency of glass particles and does not leave any bubbles. A method for manufacturing optical fiber glass in which particulate glass introduced into the glass is deposited on a moving rotating body and fused and vitrified, wherein the flow of the particulate glass forms a predetermined angle with respect to the plasma flame; After depositing particulate glass at a position that does not touch the high temperature part of the plasma flame, the deposited particulate glass is subsequently moved to the high temperature part of the plasma flame to be melted and transparent, and glass layers are successively formed. It is characterized by The present invention will be explained in detail below along with examples. Figures 2A and 2B schematically show the manufacturing method according to the present invention. In the figure, a high frequency coil 4 is arranged around the outer periphery of a plasma torch 1, and a plasma flame 5 is formed by the coil 4. A raw material gas nozzle 2 for generating glass particles is provided on the side of the plasma flame 5, and is arranged so that the direction of the flow 6 of the glass particles forms a predetermined angle with respect to the direction of the flame of the plasma flame 5. be done. On the other hand, a rotating body 3 is provided in front of the plasma flame 5 to deposit glass particles. Here, FIG. 2A shows the case where glass particles are deposited in the axial direction of the rotating body 3, and the end surface of the rotating body 3 is placed facing the plasma flame 5. Furthermore, rotating body 3
The rotation axis of the plasma flame 5 is located slightly to the side of the central axis of the plasma flame 5, and the high temperature part 8 of the plasma flame 5 is generated by the glass particulate flow 6 forming a predetermined angle with respect to the plasma flame 5.
Glass particles are deposited at positions that are not in contact with the high temperature section 8, that is, on the sides of the high temperature section 8. As the rotating body 3 rotates, the deposited portion 7 passes through the plasma flame 5 and is rotated. At this time, the deposited portion 7 is heated by the high temperature section 8, melted and sintered to become transparent, and glass layers are successively formed. . On the other hand, FIG. 2(b) shows the case where glass particles are deposited in the radial direction of the rotating body 3, and the rotating body is arranged laterally with respect to the plasma flame 5. In this method as well, glass particles are deposited on the sides of the plasma flame 5 by the glass particle flow 6 which forms a predetermined angle with respect to the direction of the plasma flame 5. As the rotating body 3 rotates, these glass particles are deposited so as to surround the outer periphery, and they also move in the axial direction of the rotating body 3 and move toward the raw material nozzle. It is heated by the high temperature section 8 and melted and sintered to continuously form a transparent glass layer. As described above, the present invention deposits glass particles at a position that does not come into contact with the high temperature part of the plasma flame, so the temperature at the deposited part can be kept relatively low, and therefore it is easy to dope even with a dopant with a high vapor pressure. In addition to this, the deposition efficiency of glass particles is also good. Furthermore, in the present invention, after depositing the glass particles, the glass particles are passed through a plasma flame and heated and melted by the high-temperature part of the plasma flame, so that the deposited glass particles become transparent while being thin.
A transparent glass layer without bubbles can be reliably obtained. Next, examples of the present invention will be shown. Example 1 A double tube torch with an outermost inner diameter of 40 mm was used as a plasma flame torch, and a plasma flame was formed under the conditions shown in the table below.

【表】 ガラス微粒子を堆積させる回転体としては外径
20mmφのGeO2を含有したSiO2ガラス棒を用い、
これを第2図ロのようにプラズマ炎に対して横方
向に配置し、ガラス旋盤に装着して50rpmの速度
で回転させた。同時に第2図ロの右方向即ち実質
的にガラス微粒子を堆積させる方向には10cm/分
の速度で移動させ、左方向即ち戻りの方向には
100cm/分の速度で移動させた。一方プラズマ炎
の側方には第2図ロに示すように内径2mmφの原
料ガス用のノズルをプラズマ炎に対して所定角度
を有するように配置し、O2をキヤリヤガスとし
てSiCl4を1000c.c./分流した。 ここでノズルから流出する原料はプラズマ炎を
横切る際に微粒子状ガラスとなるが、上記回転体
上にこのガラス微粒子が堆積する部分をプラズマ
炎の中心軸(プラズマトーチ中心軸)より約2cm
離れた位置とし、このためノズルの向きをプラズ
マ炎の中心軸に対し約45゜の角度に設定した。 上記装置構成により回転体を図中右方向に移動
する時に微粒子状ガラスを実質的に堆積させ、堆
積部がプラズマ炎を通過する際に完全に透明化さ
せて連続的にガラス層を形成した。この結果気泡
の全くない溶融ガラスを得ることができた。また
SiCl4原料の有効堆積収率は50%以上であつた。 実施例 2 実施例1と同様の条件下において、回転体の移
動速度を左方向および右方向のいずれも10cm/分
とし、右方向への移動時の他左方向への移動時に
もガラス微粒子を堆積させた。この結果も同様に
気泡の全くない溶融ガラスを得ることができ、か
つSiCl4の収率は約45%であつた。
[Table] Outer diameter of rotating body for depositing glass particles
Using a SiO 2 glass rod containing GeO 2 with a diameter of 20 mm,
This was placed transversely to the plasma flame as shown in Figure 2 (b), mounted on a glass lathe, and rotated at a speed of 50 rpm. At the same time, it is moved at a speed of 10 cm/min in the right direction in Figure 2 (b), that is, in the direction in which the glass particles are substantially deposited, and in the left direction, that is, in the return direction.
It was moved at a speed of 100 cm/min. On the other hand, on the side of the plasma flame, as shown in Figure 2 (b), a source gas nozzle with an inner diameter of 2 mmφ is placed at a predetermined angle to the plasma flame, and SiCl 4 is injected at 1000 c.c. with O 2 as a carrier gas. ./ Diverted. Here, the raw material flowing out from the nozzle becomes fine glass particles when it crosses the plasma flame, and the part where the glass particles are deposited on the rotating body is about 2 cm from the central axis of the plasma flame (the central axis of the plasma torch).
For this reason, the nozzle was oriented at an angle of about 45° with respect to the central axis of the plasma flame. With the above-mentioned device configuration, particulate glass was substantially deposited when the rotating body was moved to the right in the figure, and the deposited portion became completely transparent when passing through the plasma flame, thereby forming a continuous glass layer. As a result, molten glass completely free of bubbles could be obtained. Also
The effective deposition yield of SiCl4 raw material was over 50%. Example 2 Under the same conditions as Example 1, the moving speed of the rotating body was set to 10 cm/min both in the left and right directions, and glass particles were collected not only when moving to the right but also when moving to the left. deposited. As a result, it was possible to obtain a molten glass with no bubbles, and the yield of SiCl 4 was approximately 45%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロ,ハ,ニは従来の製造方法の概略
を示す説明図、第2図イ,ロは本発明の製造方法
の概略を示す説明図。 図中、1はプラズマトーチ、2は原料ガス用ノ
ズル、3は回転体、4はRFコイル、5はプラズ
マ炎、6はガラス微粒子流、7は堆積部、8はプ
ラズマ高温部である。
FIGS. 1A, 1B, 2C, and 2 are explanatory diagrams showing an outline of a conventional manufacturing method, and FIGS. 2A and 2B are explanatory diagrams showing an outline of a manufacturing method of the present invention. In the figure, 1 is a plasma torch, 2 is a source gas nozzle, 3 is a rotating body, 4 is an RF coil, 5 is a plasma flame, 6 is a glass particle flow, 7 is a deposition section, and 8 is a plasma high temperature section.

Claims (1)

【特許請求の範囲】[Claims] 1 プラズマ炎を熱源として、プラズマ炎中で合
成しまたはプラズマ炎中へ導入した微粒子状ガラ
スを移動する回転体上に堆積し、溶融ガラス化す
る光フアイバ用ガラスの製造方法において、前記
プラズマ炎に対して前記微粒子状ガラスの流れが
所定角度をなすようにし、かつ前記プラズマ炎の
高温部に触れない位置にて微粒子状ガラスを堆積
させた後、引き続き前記堆積した微粒子状ガラス
をプラズマ炎の高温部に移動して溶融透明化し、
順次ガラス層を連続的に形成することを特徴とす
る光フアイバ用ガラスの製造方法。
1. A method for manufacturing optical fiber glass in which a plasma flame is used as a heat source, and particulate glass synthesized in the plasma flame or introduced into the plasma flame is deposited on a moving rotating body and melted and vitrified. After depositing the particulate glass in a position where the flow of the particulate glass forms a predetermined angle and does not touch the high temperature part of the plasma flame, the deposited particulate glass is then deposited at the high temperature part of the plasma flame. Move to the section to melt and make it transparent,
1. A method for producing glass for optical fibers, characterized in that glass layers are successively formed.
JP21704782A 1982-12-13 1982-12-13 Manufacture of glass for optical fiber Granted JPS59107935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21704782A JPS59107935A (en) 1982-12-13 1982-12-13 Manufacture of glass for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21704782A JPS59107935A (en) 1982-12-13 1982-12-13 Manufacture of glass for optical fiber

Publications (2)

Publication Number Publication Date
JPS59107935A JPS59107935A (en) 1984-06-22
JPS6296B2 true JPS6296B2 (en) 1987-01-06

Family

ID=16697997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21704782A Granted JPS59107935A (en) 1982-12-13 1982-12-13 Manufacture of glass for optical fiber

Country Status (1)

Country Link
JP (1) JPS59107935A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1308786B1 (en) * 1999-07-05 2002-01-10 Cselt Centro Studi Lab Telecom PROCESS AND EQUIPMENT FOR THE FORMATION OF GLASS DISILICE FLAT LAYERS THROUGH THE USE OF A COUPLING PLASMA TORCH

Also Published As

Publication number Publication date
JPS59107935A (en) 1984-06-22

Similar Documents

Publication Publication Date Title
JP4233145B2 (en) Method and apparatus for manufacturing glass fiber preform
JP5229957B2 (en) Burner for manufacturing glass base material for optical fiber
JPS6177631A (en) Manufacture of optical fiber preform
JPS6296B2 (en)
JP3744350B2 (en) Porous glass base material synthesis burner and method for producing porous glass base material
US20060288739A1 (en) Plasma torch and preform fabrication system using the method
JPH0557216B2 (en)
JPS604978Y2 (en) Glass particle synthesis torch
JPH0327493B2 (en)
JPH0583497B2 (en)
KR100235556B1 (en) Method for producing grass preform for optical fiber using thermal spraying of quartz powder
JP3721757B2 (en) Optical fiber preform manufacturing method
JPS63123828A (en) Production of porous preform for optical fiber
JPS6321233A (en) Production of base material for optical fiber
JPH0393642A (en) Production of porous glass preform for optical fiber
JPS62246836A (en) Method of forming soot for preform
JPH03141133A (en) Production of porous glass matrix for optical fiber
JPS646132B2 (en)
JPS58167442A (en) Production of optical fiber parent material
JPH04219339A (en) Production of preform for optical fiber
JPS63147841A (en) Production of optical fiber base material
JPH0436102B2 (en)
JPS63107825A (en) Production of synthetic quartz tube
JPS62207734A (en) Method for depositing fine glass particle
JPS6110038A (en) Production of parent material for optical fiber