JPH03141133A - Production of porous glass matrix for optical fiber - Google Patents

Production of porous glass matrix for optical fiber

Info

Publication number
JPH03141133A
JPH03141133A JP27811789A JP27811789A JPH03141133A JP H03141133 A JPH03141133 A JP H03141133A JP 27811789 A JP27811789 A JP 27811789A JP 27811789 A JP27811789 A JP 27811789A JP H03141133 A JPH03141133 A JP H03141133A
Authority
JP
Japan
Prior art keywords
burner
glass
layer
deposition
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27811789A
Other languages
Japanese (ja)
Inventor
Ryoji Suzuki
亮二 鈴木
Koichi Harada
光一 原田
Keiichiro Shioya
塩屋 啓一郎
Shigeru Emori
滋 江森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP27811789A priority Critical patent/JPH03141133A/en
Publication of JPH03141133A publication Critical patent/JPH03141133A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/64Angle
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain the title glass matrix through so called exterior process by moving a burner in a specific way as the outer diameter of the deposition layer increases to prevent glass fine particles from scattering on the surface of the layer and to carry out highly efficient deposition. CONSTITUTION:Both the ends of a target member 1 are held with e. g. a lathe and revolved, and a burner 3 is moved in the axial direction of the member 1 while spraying glass fine particles produced in a flame 4, and each glass fine particle layer 2 is formed around the member 1 per movement operation of the burner 3. In this case, the burner 3 is put to parallel displacement in the direction rectangular to both its axis and that of the member 1 so that the angle theta made by the burner axis with the tangential line on the surface of the deposition layer 2 at the intersection formed by the surface and the burner axis becomes constant within the range between 40 and 80 degrees. With this method, the outer diameter of the deposition layer 2 increases, and the scattering of the glass fine particles on the deposition surface can be reduced even if the flow of combustion gas and/or combustion-aiding gas increases.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、一般に外付は法と呼ばれている光ファイバ
用多孔質ガラス母材の製造方法に関する。
The present invention relates to a method for manufacturing a porous glass preform for optical fibers, which is generally referred to as an external method.

【従来の技術】[Conventional technology]

一般に外付は法と呼ばれている光ファイバ用多孔質ガラ
ス母材の製造方法では、第4図に示すようにターゲット
部材1の両端をガラス旋盤などで保持して回転させ、ガ
ラス微粒子合成用バーナ3をターゲット部材1の軸方向
にトラバースさせて、その火炎4中で生成されたガラス
微粒子をターゲット部材1の周囲に堆積して多孔質のガ
ラスL孜粒子堆積層2を形成する。このターゲット部材
1は後に除去されるものであったり、あるいは後に光フ
ァイバとされたときにそのコアとなる石英系のガラス棒
であったりする。バーナ3にはガラス原料ガス(SiC
04など)を燃焼ガス(H2)、助燃ガス(o2)とと
もに送り込み、火炎4中で生じる加水分解反応等により
5i02等のガラス微粒子を生成させる。バーナ3をタ
ーゲット部材1の軸方向に複数回トラバースさせ、その
1〜ラバース毎に1層ずつガラス微粒子堆積層2を形成
する。このガラス微粒子堆積層2が所定の厚さとなった
とき次の1〜ラバースを行わず、堆積を終了する。 このガラス微粒子堆積層2は上記の通り多孔質体である
ため、後に高温の炉中で加熱処理することにより焼結し
、透明ガラス化し、こうして得られる光ファイバ母材を
線引き装置にかけて細線化することにより光ファイバが
作製される。 このような外付は法において、従来では、バーナ3は、
その中心軸の延長線がターゲット部材1の中心軸に交わ
る方向に向けられ、その向きを保ったまま堆積開始から
終了までトラバースが行われている。 ところで、複数回)・ラバースを行い、ガラス微粒子堆
積層2を複数層堆積させる場合、堆積が進んで堆積層2
の外径が増加するにしたがい、堆積層2の表面温度は低
下してくる。この堆積層2の表面温度はガラス微粒子堆
積層2のかさ密度と関係しており、そのため、均一なが
さ密度のガラス微粒子堆積層2を得るためには堆積層2
が厚くなってくるにしたがい低下しようとする堆積層2
の表面温度を高めて一定の温度となるような方策をとる
必要がある。そこで、従来では堆積層2の外径が増加す
るにしたがって燃焼ガス及び助燃ガスを増加させて堆積
層2の表面温度を一定に保つようにしている。
In the manufacturing method of a porous glass base material for optical fibers, which is generally referred to as the external method, as shown in Fig. 4, both ends of the target member 1 are held and rotated with a glass lathe, etc. The burner 3 is traversed in the axial direction of the target member 1, and the glass particles generated in the flame 4 are deposited around the target member 1 to form a porous glass particles deposited layer 2. This target member 1 may be removed later, or may be a quartz-based glass rod that will become the core of an optical fiber later. Burner 3 uses frit gas (SiC
04, etc.) is fed together with combustion gas (H2) and combustion assisting gas (O2), and glass fine particles such as 5i02 are generated by a hydrolysis reaction or the like occurring in the flame 4. The burner 3 is traversed multiple times in the axial direction of the target member 1, and a glass fine particle deposit layer 2 is formed one layer at a time for each traverse. When the glass fine particle deposited layer 2 reaches a predetermined thickness, the next step 1 to rubber is not performed and the deposition is completed. Since this glass fine particle deposition layer 2 is a porous body as described above, it is later sintered by heat treatment in a high-temperature furnace to become transparent vitrified, and the optical fiber preform obtained in this way is subjected to a drawing device to be made into a thin wire. An optical fiber is produced by this. Conventionally, the burner 3 is
The extension line of the central axis is directed in a direction that intersects with the central axis of the target member 1, and traverse is performed from the start to the end of deposition while maintaining this direction. By the way, if multiple layers of glass fine particle deposited layer 2 are deposited by performing rubberizing several times, the deposition progresses and the deposited layer 2
As the outer diameter of the deposited layer 2 increases, the surface temperature of the deposited layer 2 decreases. The surface temperature of this deposited layer 2 is related to the bulk density of the glass fine particle deposited layer 2, and therefore, in order to obtain the glass fine particle deposited layer 2 with a uniform bulk density, the deposited layer 2 must be
The deposited layer 2 tends to decrease as it becomes thicker.
It is necessary to take measures to raise the surface temperature of the material and maintain it at a constant temperature. Therefore, conventionally, as the outer diameter of the deposited layer 2 increases, the amount of combustion gas and auxiliary combustion gas is increased to keep the surface temperature of the deposited layer 2 constant.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、同一のガラス微粒子合成用バーナを使用
してガラス微粒子を堆積させる場合に、燃焼ガス及び助
燃ガスの流量を増大させると、ガラス微粒子の堆積効率
が徐々に悪くなって堆積量が飽和するという問題がある
。すなわち、燃焼ガス及び助燃ガスの流量を増大させる
と、バーナから流出するガスの流速が増大し、ガラス微
粒子の速度が速くなる。ところが上記のように従来では
ガラス微粒子が堆積層の表面に直角に衝突するようバー
ナの方向を定めているため、ガラス微粒子はその速度が
大きくなると、堆積層表面に衝突したときに飛散してし
まう。そのため、何回もトラバースを行うときその回数
の進行とガラス微粒子堆積量との関係を調べてみると、
第3図の点線のようにトラバース回数が多くなるにつれ
て堆積量が飽和してしまうことが分かる。 この発明は、バーナから流出したガラス微粒子がガラス
微粒子堆積層の表面で飛散してしまうことを防止し、ガ
ラス微粒子堆積層の外径が増加してきたときでも効率良
く堆積を行うよう改善した光ファイバ用多孔質ガラス母
材の製造方法を提供することを目的とする。
However, when depositing glass particles using the same burner for glass particle synthesis, increasing the flow rates of combustion gas and auxiliary combustion gas causes the deposition efficiency of glass particles to gradually deteriorate and the amount of deposition to be saturated. There's a problem. That is, when the flow rates of the combustion gas and the auxiliary combustion gas are increased, the flow rate of the gas flowing out from the burner increases, and the speed of the glass particles increases. However, as mentioned above, in the conventional method, the direction of the burner is set so that the glass particles collide with the surface of the deposited layer at right angles, so if the speed of the glass particles increases, they will be scattered when they collide with the surface of the deposited layer. . Therefore, when we examine the relationship between the number of traverses and the amount of glass particles deposited, we find that
As shown by the dotted line in FIG. 3, it can be seen that as the number of traverses increases, the amount of deposition becomes saturated. This invention is an improved optical fiber that prevents glass particles flowing out of a burner from scattering on the surface of a glass particle accumulation layer and allows efficient deposition even when the outer diameter of the glass particle accumulation layer increases. An object of the present invention is to provide a method for manufacturing a porous glass base material for use in industrial applications.

【課題を解決するための手段1 上記目的を達成するため、この発明によれば、カラス微
粒子合成用バーナの火炎内にガラス原料を供給してカラ
ス微粒子を生成し、該ガラス微粒子をターゲット部材の
周囲に1寸着して多孔質のガラス微粒子堆積層を形成す
る光ファイバ用多孔質ガラス母材の装造方法において、
上記バーナの軸が上記ガラス微粒子堆fi層の表面と交
わる点における該堆積層表面の接線とバーナ軸とがなす
角度か40゜〜80゛の範囲内で実質的に一定となるよ
うに該堆積層の外径が増加するにしたがって上記バーナ
を、バーナ軸及びターゲット部材軸の双方に直角な方向
に平行に移動させることを特徴とする。 【作  用】 バーナのトラバース毎にターゲット部材の周囲にガラス
微粒子堆積層が1層ずつ形成され、その堆Paの外径が
増加していくが、その外径増加にしたがってバーナの位
置(バーナ軸及びターゲット部材軸の双方に直角な方向
の位置)が変1ヒさせられ、バーナの軸が上記ガラス微
粒子堆積層の表面と交わる点における該堆積層表面の接
線とバーナ軸とがなす角度が40゜〜80°の範囲内で
実質的に一定となるようにされる。 つまり、バーナの位置を変えることにより、バーナの火
炎中で生成したガラス微粒子の流れの方向と、この流れ
がガラス微粒子堆積層と接触する面とが、常に40゜〜
80°の範囲内で実質的に一定となるようにされる。 そのため、ガラス微粒子堆積体の外径が増加し、燃焼ガ
ス、助燃ガスの流量が増加し、ガラス微粒子の流れの速
度が増加した場合でも、ガラス微粒子が堆積体表面で飛
散することを減少でき、効率良くガラス微粒子を堆積す
ることができる。
[Means for Solving the Problems 1] In order to achieve the above object, according to the present invention, a glass raw material is supplied into the flame of a burner for glass fine particle synthesis to generate glass fine particles, and the glass fine particles are transferred to a target member. In a method for preparing a porous glass base material for an optical fiber, the method includes forming a porous glass particle deposit layer around the periphery by one inch,
The deposition is performed so that the angle between the tangent to the surface of the deposited layer and the burner axis at the point where the burner axis intersects with the surface of the glass fine particle deposit layer is substantially constant within the range of 40° to 80°. It is characterized in that as the outer diameter of the layer increases, the burner is moved parallel to the direction perpendicular to both the burner axis and the target member axis. [Function] Each time the burner traverses, a glass fine particle deposit layer is formed around the target member, and the outer diameter of the deposit Pa increases. and the position perpendicular to both the axis of the target member) are changed so that the angle between the burner axis and the tangent to the surface of the glass particle accumulation layer at the point where the burner axis intersects with the surface of the glass particle accumulation layer is 40 It is made to be substantially constant within the range of 80° to 80°. In other words, by changing the position of the burner, the direction of the flow of glass particles generated in the flame of the burner and the surface where this flow contacts the glass particle deposit layer are always 40 degrees to
It is made to remain substantially constant within a range of 80°. Therefore, even when the outer diameter of the glass particle deposit increases, the flow rate of combustion gas and combustion auxiliary gas increases, and the flow speed of glass particles increases, the scattering of glass particles on the surface of the deposit can be reduced. Glass particles can be deposited efficiently.

【実 施 例】【Example】

つぎにこの発明の一実施例について図面を参照しながら
説明する。第1図において、ターゲット部材1は後に光
ファイバとされたときにコアの部分となる石英系ガラス
のロッドよりなり、その両端がガラス旋盤のチャックに
より把持されて回転させられるようになっている。ガラ
ス微粒子合成用バーナ3はこのターゲット部材1の軸方
向(長さ方向)に移動(トラバース)する。このバーナ
3にはガラス原料ガス(この実施例では5iCI24)
、燃焼ガス(H2)、助燃ガス(02)、及び不活性ガ
ス(Ar)が供給され、その火炎4中で火炎加水分解反
応が生じガラス微粒子(5i02 )が生成される。 このバーナ3は、火炎4中で生成したガラス微粒子を吹
き付けながら、回転するターゲット部材1に対しトラバ
ースさせられ、これにより、ガラス微粒子堆積N2がタ
ーゲット部材1の周囲にトラバース毎に1層ずつ形成さ
れていく。 火炎4であぶられるガラス微粒子堆積層2の表面温度が
温度測定器5により測定され、その測定温度によって各
トラバースにおける堆積層2の表面温度が常に一定のも
のとなるように燃焼ガス及び助燃ガスの流量が制御され
る。 こうしてトラバースをターゲット部材1の軸方向の往復
方向に複数回繰り返して、ガラス微粒子堆積層2を複数
層形成し、全体として所望の厚さのガラス微粒子堆積層
2か得られたとき、堆積工程が終了させられる。 この実施例では、バーナ3は、ターゲット部材1を横断
する平面(ターゲット部材1の軸に対して直角な平面)
で断面して見ると、第2図のようにターゲット部材1の
中心に向いていす、中心から外れた方向を向いている。 すなわち、バーナ3は上下方向くつまりタータフ1〜部
材1の中心軸及びバーナ3の軸の双方に対して直角な方
向)に移動可能に保持されており、バーナ3の軸がガラ
ス微粒子堆積層2の表面と交わる点における堆積層2の
表面の接線とバーナ軸とがなす角度θが4゜〜80°の
範囲内で実雷的に一定となるように、その上下方向の位
置が制御される。つまり、ガラス微粒子堆積層2が1層
ずつ形成され、その外径が1層ずつ大きくなってくると
、バーナ3は第2図の上側に移動するよう平行に移動さ
せられる。 このガラス微粒子堆積層2の外径は、外径測定器6によ
り随時測定されるようになっており、ガラスi放粒子堆
積層2が1層形成されるごとに外径測定が行われ、その
測定値に応じてバーナ3の上下方向の位置がトラバース
ごとに調整される。 ここで、角度θを種々に変化させて堆積を行ったところ
、40゜〜80°の範囲で良好な堆積効率が示された。 とくに65°付近で最高の堆積効率が得られ、このとき
のトラバースごとの堆積量を調べたところ、第3図の実
線のような良好な結果が得られた。点線は、比較のため
従来の方法によって同じガス流量で堆積を行った結果を
表すものである。この実線と点線との比較から、トラバ
ース回数が少ないときは両者に大きな差はみられないら
のの、トラバース回数が増加するにつれて(ガラス微粒
子堆積体2の外径が大きくなるにつれて)、従来の方法
では堆積量の増加が飽和していくところ、これを大きく
改善できることが分かる。 なお、上記の実施例ではターゲット部材1は回転するだ
けで、その軸方向には固定し、バーナ3が移動するもの
として説明したが、逆に、バーナ3を固定し、ターゲッ
ト部材1の側をその軸方向に移動させるようにしてもよ
いことはもちろんである。
Next, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, a target member 1 is made of a quartz-based glass rod that will later become a core part when it is made into an optical fiber, and both ends of the target member 1 are gripped and rotated by chucks of a glass lathe. The burner 3 for glass particle synthesis moves (traverses) in the axial direction (lengthwise direction) of this target member 1. This burner 3 is filled with frit gas (5iCI24 in this example).
, combustion gas (H2), combustion assisting gas (02), and inert gas (Ar) are supplied, and a flame hydrolysis reaction occurs in the flame 4 to produce glass particles (5i02). This burner 3 is caused to traverse the rotating target member 1 while spraying glass particles generated in the flame 4, and thereby a layer of glass particle deposits N2 is formed around the target member 1 with each traverse. To go. The surface temperature of the glass particulate deposit layer 2 that is scorched by the flame 4 is measured by the temperature measuring device 5, and the combustion gas and auxiliary combustion gas are Flow rate is controlled. In this way, the traverse is repeated several times in the axial direction of the target member 1 to form a plurality of glass fine particle deposited layers 2, and when the desired thickness of the glass fine particle deposited layer 2 is obtained as a whole, the deposition step is started. be terminated. In this example, the burner 3 is arranged in a plane transverse to the target member 1 (a plane perpendicular to the axis of the target member 1).
When viewed in cross section, as shown in FIG. 2, it faces toward the center of the target member 1 and faces away from the center. That is, the burner 3 is held movable in the vertical direction (that is, in a direction perpendicular to both the central axis of the tartuff 1 to the member 1 and the axis of the burner 3), and the axis of the burner 3 is aligned with the glass fine particle deposit layer 2. Its vertical position is controlled so that the angle θ between the tangent to the surface of the deposited layer 2 and the burner axis at the point where it intersects with the surface of . That is, as the glass fine particle deposition layer 2 is formed layer by layer and its outer diameter increases layer by layer, the burner 3 is moved in parallel to move upward in FIG. 2. The outer diameter of this glass particle accumulation layer 2 is measured at any time by an outer diameter measuring device 6, and the outer diameter is measured every time one glass particle accumulation layer 2 is formed. The vertical position of the burner 3 is adjusted for each traverse according to the measured value. Here, when the deposition was performed while changing the angle θ variously, good deposition efficiency was shown in the range of 40° to 80°. In particular, the highest deposition efficiency was obtained near 65°, and when the amount of deposition per traverse at this time was investigated, good results were obtained as shown by the solid line in FIG. The dotted line represents the results of deposition using the same gas flow rate using the conventional method for comparison. A comparison between the solid line and the dotted line shows that when the number of traverses is small, there is no big difference between the two, but as the number of traverses increases (as the outer diameter of the glass particle deposit body 2 becomes larger), the conventional It can be seen that this method can greatly improve the increase in the amount of deposits, which is saturated when the increase is saturated. Note that in the above embodiment, the target member 1 only rotates and is fixed in the axial direction, and the burner 3 moves. However, conversely, the burner 3 is fixed and the target member 1 side is moved. Of course, it may be moved in the axial direction.

【発明の効果】【Effect of the invention】

この発明の光ファイバ用多孔質カラス社材の製造方法に
よれば、ガラス微粒子堆蹟体の外径が大きくなってその
表面温度を保つために燃焼ガス、助燃ガスの流量が増加
させ、そのことによってガラス微粒子の流れの速度が増
加した場合でら、ガラス微粒子が堆積体表面で飛散する
ことを減少させ、ガラスi成粒子の堆積効率を高め、堆
積量がトラバース回数の増大とともに飽和してしまうこ
とを改善できる。
According to the method of manufacturing a porous glass material for optical fibers of the present invention, the outer diameter of the glass particle deposit increases and the flow rate of combustion gas and combustion auxiliary gas is increased in order to maintain its surface temperature. When the speed of the flow of glass particles increases, the scattering of glass particles on the surface of the deposit is reduced, the deposition efficiency of glass particles is increased, and the amount of deposition becomes saturated as the number of traverses increases. You can improve things.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を概念的に示す平面図、第
2図は同実施例のターゲット部材を横断する面での断面
図、第3図はトラバース回数に対するガラス微粒子堆積
量の閏f系を示すグラフ、第4図は従来例を概念的に示
す平面図である。 ■・・・ターゲット部材、2・・・ガラス微粒子堆積体
、3・・バーナ、4・・・火炎、5・・・温度測定器、
6・・・外径測定器。
FIG. 1 is a plan view conceptually showing an embodiment of the present invention, FIG. 2 is a cross-sectional view of the same embodiment taken along a plane that crosses the target member, and FIG. The graph showing the f-system, FIG. 4, is a plan view conceptually showing a conventional example. ■...Target member, 2...Glass particulate deposit body, 3...Burner, 4...Flame, 5...Temperature measuring device,
6...Outer diameter measuring device.

Claims (1)

【特許請求の範囲】[Claims] (1)ガラス微粒子合成用バーナの火炎内にガラス原料
を供給してガラス微粒子を生成し、該ガラス微粒子をタ
ーゲット部材の周囲に付着して多孔質のガラス微粒子堆
積層を形成する光ファイバ用多孔質ガラス母材の製造方
法において、上記バーナの軸が上記ガラス微粒子堆積層
の表面と交わる点における該堆積層表面の接線とバーナ
軸とがなす角度が40゜〜80゜の範囲内で実質的に一
定となるように該堆積層の外径が増加するにしたがつて
上記バーナを、バーナ軸及びターゲット部材軸の双方に
直角な方向に平行に移動させることを特徴とする光ファ
イバ用多孔質ガラス母材の製造方法。
(1) A porous optical fiber in which a glass raw material is supplied into the flame of a burner for glass particle synthesis to generate glass particles, and the glass particles are attached around the target member to form a porous glass particle accumulation layer. In the method for producing a quality glass base material, the angle between the tangent to the surface of the deposited layer and the burner axis at the point where the axis of the burner intersects with the surface of the glass fine particle deposited layer is substantially within the range of 40° to 80°. The porous material for optical fibers is characterized in that as the outer diameter of the deposited layer increases, the burner is moved in parallel in a direction perpendicular to both the burner axis and the target member axis. Method for manufacturing glass base material.
JP27811789A 1989-10-25 1989-10-25 Production of porous glass matrix for optical fiber Pending JPH03141133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27811789A JPH03141133A (en) 1989-10-25 1989-10-25 Production of porous glass matrix for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27811789A JPH03141133A (en) 1989-10-25 1989-10-25 Production of porous glass matrix for optical fiber

Publications (1)

Publication Number Publication Date
JPH03141133A true JPH03141133A (en) 1991-06-17

Family

ID=17592856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27811789A Pending JPH03141133A (en) 1989-10-25 1989-10-25 Production of porous glass matrix for optical fiber

Country Status (1)

Country Link
JP (1) JPH03141133A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018284A1 (en) * 2000-09-01 2002-03-07 Heraeus Tenevo Ag Method for producing an sio2 preform
US6474105B1 (en) * 1994-12-29 2002-11-05 Alcatel Cable Modulating a diameter-increasing step of a fiber preform with no modulation prior to a predetermined diameter
JP2010052956A (en) * 2008-08-26 2010-03-11 Fujikura Ltd Method for producing optical fiber preform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474105B1 (en) * 1994-12-29 2002-11-05 Alcatel Cable Modulating a diameter-increasing step of a fiber preform with no modulation prior to a predetermined diameter
WO2002018284A1 (en) * 2000-09-01 2002-03-07 Heraeus Tenevo Ag Method for producing an sio2 preform
JP2010052956A (en) * 2008-08-26 2010-03-11 Fujikura Ltd Method for producing optical fiber preform

Similar Documents

Publication Publication Date Title
JP3131162B2 (en) Manufacturing method of optical fiber preform
US9522839B2 (en) Optical fiber base material manufacturing method
JPH03279234A (en) Production of parent material of preform of optical fiber
US4915717A (en) Method of fabricating optical fiber preforms
EP1295854A2 (en) Method for producing a glass soot preform for optical fibres by vapour phase deposition
US4682994A (en) Process and apparatus for forming optical fiber preform
JPH03141133A (en) Production of porous glass matrix for optical fiber
KR100496449B1 (en) Outside vapor deposition apparatus for making optical fiber preform and method of making optical fiber preform using the same
JPH0393642A (en) Production of porous glass preform for optical fiber
JPH0354129A (en) Preparation of optical fiber preform
JP5342514B2 (en) Burner for glass fine particle synthesis and method for producing glass fine particle deposit
JPH02289439A (en) Production of optical fiber preform
JPS6012981B2 (en) Manufacturing method of optical fiber base material
JP2000272929A (en) Production of optical fiber preform
JP3275428B2 (en) Method and apparatus for manufacturing glass base material
JP2003040623A (en) Method for producing fine glass particle heap
JPH0777968B2 (en) Optical fiber preform base material manufacturing method
JP2002338256A (en) Method and apparatus for manufacturing glass particulate deposit
JPS604978Y2 (en) Glass particle synthesis torch
JPH03257037A (en) Production of porous glass preform for optical fiber
JP2846048B2 (en) Method for producing porous glass base material
JPH03126633A (en) Production of optical fiber base material
JPH05297235A (en) Method of fabricating film for light waveguide
JPH02243530A (en) Production of base material for optical fiber
JP2000063141A (en) Production of porous glass preform for optical fiber